
This document was prepared in conjunction with work accomplished under Contract No.
DE-AC09-96SR18500 with the U. S. Department of Energy.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States Government or any agency
thereof.

This report has been reproduced directly from the best available copy.

Available for sale to the public, in paper, from: U.S. Department of Commerce, National Technical
Information Service, 5285 Port Royal Road, Springfield, VA 22161,
phone: (800) 553-6847,
fax: (703) 605-6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/help/index.asp

Available electronically at http://www.osti.gov/bridge
Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S.
Department of Energy, Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN
37831-0062,
phone: (865)576-8401,
fax: (865)576-5728
email: reports@adonis.osti.gov

http://www.ntis.gov/help/index.asp
http://www.osti.gov/bridge
mailto:orders@ntis.fedworld.gov
mailto:reports@adonis.osti.gov

WSRC-MS-2004-00804
Page 1 of 7

Database/Template Protocol to Automate

Development of Complex Environmental Input Models

by

LEONARD B. COLLARD
Westinghouse Savannah River Company
Savannah River Technology Center
Aiken, SC 29808

A paper proposed for presentation at the
SCS Spring Simulation Multiconference
San Diego, California
April 2 – 8, 2005

and for publication in the proceedings of the meeting

This paper was prepared in connection with work done under Contract No. DE-AC09 96SR18500 with the
U. S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the
U. S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this
paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted
paper.

WSRC-MS-2004-00804
Page 2 of 7

Database/Template Protocol to Automate

Development of Complex Environmental Input Models

Leonard B. Collard
Westinghouse Savannah River Company

Aiken, SC 29802

Keywords: Contaminant transport, database, automation,
batch

ABSTRACT

At the U.S. Department of Energy Savannah River Site,
complex environmental models were required to analyze the
performance of a suite of radionuclides, including decay
chains consisting of multiple radionuclides. To facilitate
preparation of the model for each radionuclide a
sophisticated protocol was established to link a database
containing material information with a template. The
protocol consists of data and special commands in the
template, control information in the database and key
selection information in the database. A preprocessor
program reads a template, incorporates the appropriate
information from the database and generates the final
model.

In effect, the database/template protocol forms a command
language. That command language typically allows the user
to perform multiple independent analyses merely by setting
environmental variables to identify the nuclides to be
analyzed and having the template reference those
environmental variables. The environmental variables can
be set by a batch or script that serves as a shell to analyze
each radionuclide in a separate subdirectory (if desired) and
to conduct any preprocessing and postprocessing functions.

The user has complete control to generate the database and
how it interacts with the template. This protocol was
valuable for analyzing multiple radionuclides for a single
disposal unit. It can easily be applied for other disposal
units, to uncertainty studies, and to sensitivity studies. The
protocol can be applied to any type of model input for any
computer program. A primary advantage of this protocol is
that it does not require any programming or compiling while
providing robust applicability.

INTRODUCTION

A commercially available program, Porflow™
(ACRI, 2004), was used to analyze the transport of each
radionuclide from a trench containing solid waste to a
hypothetical well 100 m away (Collard and Hiergesell,

2004). Porflow™ required an input file, designated as the
model in this document.

A preprocessor program was developed to read a template,
incorporate the appropriate information from a database and
generate the final model. Special commands in the template
contain information that direct the preprocessor perform
matching and copying actions. Controls in the database
specify the variables in the command to match with
specified variables in the database. Other database controls
specify the variables in the command and database to write
and the order to write them. The database also contains
controls that specify a default format for outputting the
selected information. The template can override the
database controls.

A preprocessor (prePorflow, a Fortran computer program)
uses the protocol to generate a model for each radionuclide.
The primary intent of the protocol was to produce a simple
but sophisticated tool that

• eliminates computer programming (except for the
preprocessor)

• allows a single set of databases for multiple
radionuclides and multiple disposal units

• provides options for matching template data with
database keys

• provides options to select template and database
data to output to the model

• provides options to select the output format for the
model

The system using the protocol is depicted in Figure 1. Each
component of the system utilizing the protocol is described
below.

SHELL

The dashed box represents the iterative portion of the
system referred to as the shell. Multiple radionuclides were
individually analyzed, so a loop was established to select
each radionuclide in turn. For the initial application, only
one disposal unit was analyzed. If more disposal units are
considered a second outer loop representing each disposal
unit will be required. After selecting the next radionuclide
from a list, environmental variables were set describing that
radionuclide. A separate directory was created to hold all
information for the analysis of the selected radionuclide.

WSRC-MS-2004-00804
Page 3 of 7

The default directory was changed to the newly created
directory by moving to the newly created directory. The
iteration was performed by recursively calling a DOS batch

file on an IBM PC using the pseudo-code segment shown in
Figure 2. A script file in Unix or similar shell programming
can accomplish the same purpose.

Figure 1. Execution flowchart

:: ***** recursive call
%1 %2
:: ***** Loop for each nuclide
For %%N in (Nuc1 Nuc2) DO call %0 Goto NextNuc %%N
Goto End

:: ***** Start of operations for new nuclide
:NextNuc
:: ***** set environmental variable identifying new nuclide
set Nuclide=%3

:: ***** Make new directory and change to it
md %Nuclide%
cd %Nuclide%

:: ***** Execute preprocessor
prePorflow.exe
…
:End

Figure 2. Batch code segment for recursive calls

PREPROCESSOR

The preprocessor reads records from the template. If the
record does not contain a special command to activate the
database linkage, then that record is merely echoed to the
model. If the template record contains a special command,
the preprocessor performs one of several special functions.
The major function is to interact with the database and
select replacement values to insert into the model, similar to
a mail-merge program, but with greater capabilities. The
preprocessor can perform auxiliary functions to enhance the
database selection and insertion capabilities.

TEMPLATE

The template protocol includes not only the command itself,
but also the strings that follow on the same special
command line or its continuation. Table 1 provides a
summary of the most important special commands with a

Create new directory
Move to new directory

Select next nuclide
Set environmental variables

Execute preprocessor

Start

End

Database

Template

Model

WSRC-MS-2004-00804
Page 4 of 7

brief description of the actions invoked by that command. Each special command is discussed in more detail below.

Table 1. Special template commands and actions

Category Special command Action
Error checking !BuildEcho Echoes special commands to the model.
 !BuildNoEcho Turns off echo of special commands to the

model.

Variable
definition

!Build~Set Declares a variable and sets a value for it.
The variable can be used later where its
current value is placed in the model. This
improves the readability of the template
and provides flexibility.

 !Build~Sub Redefines the value for a previously
declared variable.

Logic control !BuildIf

!BuildElse
!BuildEndIf

The capability to have if-else-endIf
statements is provided. Combining this
capability with variable definitions
increases flexibility.

Database !Build Perform substitution from database
 !BuildChain Perform substitution from database for a

chain
 !BuildChainContinue Continuation of !BuildChain command
 !BuildChainEnd End of !BuildChain command

Error checking commands

The first two special commands allow specific error
checking of the template. By default the preprocessor,
prePorflow, echoes all special commands to the model.
Porflow™ ignores all input that begins with an exclamation
point, thus inclusion of the strings containing the special
commands in the model does not affect the actual analysis
of the model. Turning off the echo produces a model that
does not contain the special commands, equivalent to not
using the preprocessor. The echo can be turned on for a
specific portion of the template which allows for specific
error checking.

Variable definition commands

The third and fourth special commands allow variable
declaration, definition and redefinition. The template
subsequently can refer to these variables, which will be
replaced by their contents. These capabilities provide a
simple mini-programming capability that does not require
compilation of a program. The !Build~Set special
command creates a variable and defines its initial value.
Because the protocol is intended for an individual without
programming capabilities, the number of variables is limited

to 10 and a maximum length of 30 characters is allowed for
each variable name (which is stored as a string) and the
name must begin with a tilde (~). The value associated with
each variable is also a string with a maximum length of 30
characters allowed. These limitations could easily be
relaxed, but they worked very effectively for the analysis
where they were applied. The !Build~Sub special command
merely redefines the value for a previously declared
variable. All strings are enclosed by double quotes.

Examples of the use of the first special command are
!Build~Set “~Nuclide1” “Pu-241”
!Build~Set “~Nuclide2” “Am-241”
!Build~Set “~Nuclide3” “Np-237”

This set of commands could be used to define a decay chain.
The template could be generic and use “~Nuclide1”,
“~Nuclide2”, and “~Nuclide3” throughout the remainder of
the template, thus making it applicable for all chains and
only requiring the initial variable definitions.

Logic control commands

The template protocol allows use of an if-else-endIf
capability. Note that the looping capability to analyze each

WSRC-MS-2004-00804
Page 5 of 7

radionuclide must be provided via the shell. The shell
already needs to provide a looping capability to be able to
create and change directories, so no additional looping
capability was provided within the template protocol. The
!BuildIf special command compares two strings. The only
option is to specify whether the test is to see if the strings
match (using .EQ.) or if they do not match (using .NE.). If
the test condition is true, then that portion of the template is
operated on. If the condition is false, then the portion of the
template after the !BuildElse is operated on (if present). A
simple example of an if-else-endIf logic control follows:

!BuildIf “~Nuclide2” “.EQ.” “”
 !Build~Set “NumberOfNuclides” “1”
!BuildElse
 !Build~Set “NumberOfNuclides” “2”
!BuildEndIf

The example determines the number of nuclides in the
chain. If the name of the second nuclide is empty, then the
number of nuclides is set to one, else it is set to two. This
example works correctly only for decay chains with two or
fewer radionuclides.

Database commands

The database category of special commands in the template
forms the core of the protocol. These special commands
interact with the database to produce the main information
for the model. The first special command is !Build. This
special command will be followed by several strings. Any
string that begins with a tilde (~) is replaced by its value,
because that string should have previously been defined.
The first string after the !Build special command specifies
the name of the database to use for matching. The database
name is appended to a pathname that the preprocessor reads
only once. This concatenation of names allows shorter
names to be used in the template and requires the pathname
to be entered only once.

Subsequent strings on the special command line can be used
for matching with database data, copying to the model or
merely as comments. The same string can be used for
matching and for copying. A simple example for a !Build
command is as follows:

!Build "Kd.dat" "I-129" "Sand" “Use for waste also”

In the example, the database containing Kd values would be
used for matching. The radionuclide used for matching
would be “I-129”. the physical medium would be “Sand”,
and “Use for waste also” would be a comment. The order of
the strings depends on the matching order specified in the
database.

!BuildChain provides a method to copy the set of all decay
information for a decay chain. The special command
contains the name of the parent radionuclide. The
preprocessor then uses the set of variable names for the
chain. For each radionuclide in the chain, the half life is
read and copied to the model. Porflow™ requires
regeneration information for the progeny. The regeneration
is unity if no branching fraction is involved and the analysis
is performed using moles or atoms. For analyses using Ci,
the ratio of parent to daughter half lives is required and can
easily be provided in the database for inclusion in the
model.

!BuildChainContinue is provided to continue information
across more than one input line, because the commands can
become quite lengthy. The !BuildChainEnd command
signifies the end of the !BuildChain.

DATABASE

The database consists of a separate file for each type of
material property, e.g., half life, radionuclides in the decay
chains, distribution coefficients describing the partitioning
of a radionuclide between soil and water, etc. Each
database contains three or four sections of information as
follows:

1. header section to describe template and database
file layouts, and provide matching controls

2. format section to describe output to model
3. data for matching, output and comments
4. end comments

A partial database example is provided in Figure 3.

! DB:2str 2num/ Match:2 DB=1,2 In=2,3/ OUT: In:2 @2,3; DB:0str; 2num @1,2
 2 2
 2 1,2 2,3
 2 2,3 0 2 1,2
 ('TRAN for ', a,1x,a, ' C Kd= ', es9.2, ' diff= ',es10.3)
"H-3 " "Topsoil " 0.00E+00 1.578E+02
"H-3 " "Clay " 0.00E+00 4.734E+01

WSRC-MS-2004-00804
Page 6 of 7

Figure 3 Database example

The example header section is the first four lines of the
database. The first line is strictly a comment line to help
improve readability. A brief description is provided for
each number in the rest of the header section. The numbers
in the first record are vertically aligned with the subsequent
numbers to easily see the relationship, although this is not a
requirement.

The second line describes the database layout. For this case
the database contains two strings followed by two real
numbers. This layout is seen for the first data line that in
this example starts with “H-3”. The first string is the
radionuclide, the second string is the physical medium
(Topsoil). The two real numbers are the distribution
coefficient (Kd) and the diffusion coefficient.

The third line of the database describes the matching
protocol. The first number indicates that 2 fields need to
match. The next pair of numbers defines the positions in the
database that are used for matching, in this case the first and
second strings are selected. The second pair of numbers
defines the positions in the template that are used for
matching. In this case the second and third strings in the
template are used for matching. The first string in the
template was used to provide the name of the database, so
the next strings after that are used for matching. Matching
is performed in the order in which the strings are presented.

The fourth line of the database describes the order in which
to output information to the model. The first set of values
describes information to copy from the template (the “In” in
the first record refers to the template as input). In this
example two values will be copied from the template. The
positions are the second and third strings. The second set of
values describes information to copy from the database
itself (the “DB” in the first record refers to the database).
The next number describes how many strings from the
database will be copied. Because the value is zero, no
positions in the database are entered. After the zero, the
next number of 2 describes how many real numbers from
the database will be copied. The 1,2 that follows states that

both numbers from the database will be copied in the order
entered.

Because detailed information is provided for each match
and each output, information for the database or the
template can be used both for matching and output, and the
order can be changed. For example, the matching could be
done for the second string, then the third string, but they
could be output in the opposite order.

The format section follows the header section. The format
is any valid Fortran format. In this case the literal ‘TRAN
for ‘ is output. Then two strings are output, which are
separated by a space. Referring to the last line of the header
section, the two strings are the second and third strings from
the template. The literal ' C Kd= ' is next output followed
by a real number in scientific notation. Finally the literal '
diff= ' is output followed by a second real number in
scientific notation. Referring to the last line of the header
section, the two real numbers are the first and second
numbers in the database, respectively.

The data section for matching, output and comments follows
the format section. The first line of data was described in
the discussion of the header section.

The end comments section is the last section, which is
optional. If a $EndData line appears in the database, the
preprocessor stops processing, so the database can contain
extensive comments on how the protocol works for that
database.

PREPROCESSOR – PART 2

Two more features of the preprocessor provide more power.
The first feature is that the preprocessor will check the
information being copied from the database to see if it
consists of special commands, and if so, operates on them
before copying them to the model. Figure 4 shows an
example for decay chains:

! DB:6str 0num/ Match:1 DB=1 In=2/ OUT: In:0; DB:6str @1,2,3,4,5,6 0num
 6 0
 1 1 2
 0 6 1,2,3,4,5,6 0

 ('!Build~Set "~Waste-Spec1" "',a,'"',/, '!Build~Set "~Generic1" "',a,'"',/, '!Build~Set "~Elem1" "',a,'"',/, &
 '!Build~Set "~Waste-Spec2" "',a,'"',/, '!Build~Set "~Generic2" "',a,'"',/, '!Build~Set "~Elem2" "',a,'"',/)

"U-234_Glass " "U-234 " "U " "Th-230" "Th-230" "Th"

WSRC-MS-2004-00804
Page 7 of 7

Figure 4. Database example with special commands

The format section (‘!Build~Set “ …) indicates that multiple
lines of !Build~Set special commands form the output.
Because the preprocessor operates on them before
performing a copy, no copy actually occurs. Instead, the
commands declare and define variables “~Waste-Spec1”,
etc. that can be used subsequently by the preprocessor or
that can appear subsequently in the template. Only 1 match
is performed, so the user generates the decay chain merely
by identifying the parent in the template.

The second feature is that the user can override the default
protocol in the database. If the override option is selected
by including an “Override” string at the end of the !Build
special command line, then the entire header section and
format section are changed by including them in the
template. This feature provides full control to change the
operations of the database and how they interact with the
template.

MODEL

The model is merely the output from the preprocessor. The
model can range from a standard file to a file that includes
all the special commands to allow complete error checking.

RESULTS

The preliminary version of the database/template protocol
was developed and successfully implemented (Collard and
Hiergesell, 2004). The initial implementation indicated the
need to provide additional capabilities. Some of those
capabilities were incorporated by revising the preprocessor.

CONCLUSIONS

The protocol establishes a balance between simplicity and
robustness that satisfied the primary intent to produce a
simple but sophisticated tool that

• eliminates computer programming (except for the
preprocessor)

• allows a single set of databases for multiple
radionuclides and multiple disposal units

• provides options for matching template data with
database keys

• provides options to select template and database
data to output to the model

• provides options to select the output format for the
model.

A simple mail-merge program could not have satisfied the
complexities involved. A complex computer program or a

set of simpler computer programs could have produced the
same models. However, changes to those programs would
have been required for each type of disposal unit analyzed.
The protocol described in this document contains the
robustness to satisfy the projected needs. With only one
database better control of the quality of the information will
exist.

While this protocol was developed to satisfy a specific need,
it has sufficient robustness that it provides a widespread
field for applications without the need for additional
programming. This protocol can be applied to uncertainty
and sensitivity analyses and is general enough that it can be
applied to almost any analysis program.

A set of comprehensive examples is required to educate
users on nuances and more sophisticated features. For
example, the capability to have a database contain special
commands that the preprocessor operates on before copying
information to the model requires more thought than does
direct copying. The Override capability and sophisticated
formatting are more complicated.

A commercial database may be needed to track changes to
the data in a more rigorous manner. In that case, the
commercial database could produce the preprocessor
database as a standard report.

REFERENCES

ACRI, 2004. http://www.acri-
us.com/software/porflow/default.htm

Collard, L.B. and R.A. Hiergesell, 2004. Special Analysis:
2004 General Revision of Slit and Engineered Trench
Limits, WSRC-TR-2004-00300, Revision 0, Westinghouse
Savannah River Company, Aiken, South Carolina, 29808,
June 14.

