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Abstract 
 
A pore saturation model expresses the capillary pressure as a function of a characteristic 
pore pressure and the wetting phase saturation.  Singularity analyses of the total energies 
of the wetting and nonwetting phases give the residual saturations for the two phases.  
The total energy consists of a potential term and a work term associated with the effective 
pressure gradient for each phase.  The derived residual wetting saturation is 0.236, and 
the derived residual nonwetting saturation is 0.884. 
 
The model includes separate pressures for imbibition and drainage to account for 
capillary hysteresis.  In the model, the pressure gradient for the wetting phase defines the 
imbibition pressure, and the nonwetting phase pressure gradient defines the drainage 
pressure.  At the residual nonwetting saturation, the two pressures differ by the 
characteristic pore pressure.  The two pressures coincide at a critical minimum saturation 
of 0.301.  The model also includes an entry head to account for the minimum force 
required for drainage to begin.  The model utilizes a single fitting parameter, a 
characteristic pore pressure, which can be related to a characteristic pore diameter. 
 
The model successfully correlates a selected set of laboratory imbibition and drainage 
data for a uniform sand.  The predicted residual wetting saturation and critical minimum 
saturation agree with measurements.  The characteristic pore pressure used to fit the 
capillary pressures corresponds to a pore diameter approximately equal to the mean 
particle diameter.  The use of a characteristic pore pressure in the capillary pressure 
model restricts its applicability to granular materials with open, approximately uniform 
pore structures. 
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Nomenclature 
 
A  interfacial area in the Gibbs’ adsorption theorem calculation 

pd  particle diameter for porous material 
F  Helmholz free energy for the Gibbs’ adsorption theorem 

sG  potential energy associated with saturation of the porous medium 
H  molar enthalpy 
k  Darcy coefficient for permeability 

nk  relative permeability to the nonwetting phase 

wk  relative permeability to the wetting phase 

in  number of moles of the ith solute in the Gibbs’ adsorption theorem calculation 

aP  average pressure in the pores of the porous medium 

cP  intrinsic capillary pore pressure, equal to the gas-liquid pressure difference 

d,cP  capillary pressure measured for drainage of the wetting phase 

i,cP  capillary pressure measured for imbibition of the wetting phase 

0,i,cP  minimum capillary pressure required to imbibe the wetting phase at the residual  
nonwetting phase saturation 

flowP  characteristic pressure for flow in capillary pores 

gP  gas phase pressure in capillary pores 

lP  liquid phase pressure in capillary pores 

potP  potential pressure associated with partial saturation of capillary pores 

i,vP  vapor pressure of the ith solute in the Gibbs’ adsorption theorem calculation 

oP  ambient pressure for liquid in contact with the porous medium 

gR  universal gas law constant 
s  relative saturation with the wetting phase 

crs  critical saturation where the capillary pressure for imbibition equals the  
 capillary pressure for drainage 

maxs  maximum saturation for a fissured porous material 

mins  minimum saturation for a fissured porous material 

rns  residual nonwetting phase saturation 

rws  residual wetting phase saturation 

sS  entropy associated with partial saturation 
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T  absolute temperature 
nv  velocity of the nonwetting phase 

wv  velocity of the wetting phase 
V  molar volume 
W  work required for flow through the porous medium 

gW  work required for flow of gas through the porous medium 

lW  work required for flow of liquid through the porous medium 
z  distance in the direction of flow 
ε  porosity 

nµ  dynamic viscosity of the gas or nonwetting fluid 

wµ  dynamic viscosity of the liquid or wetting fluid 
σ  air-water interfacial tension 
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1. Introduction 
 
Capillary pressure represents the pressure required to displace a given volume of one of 
the phases from a two-phase mixture in a porous medium.  The capillary pressure is 
typically measured either by imbibition or by drainage.  Imbibition pressure 
measurements begin with the porous medium, typically a soil, saturated with the 
nonwetting phase, which would be the gas in a gas-liquid mixture.  (For convenience, this 
paper will refer to the terms porous medium and soil, wetting phase and liquid, and 
nonwetting phase and gas interchangeably.)  The soil is connected to a reservoir 
containing the liquid, and pressure differences are recorded as the medium absorbs 
measured volumes of this phase.  Drainage pressure measurements start with the soil 
completely saturated with the wetting phase.  For gas-liquid mixtures, this is often 
accomplished by using a soluble gas, such as carbon dioxide, that can be purged 
completely from the soil.  One end of a section of the soil is attached to a pressurized 
reservoir of gas, and the pressure required to displace a given fraction of the liquid is 
measured. 
 
Capillary measurements commonly are correlated using the Leverett (1941) J function.  
The J function is used to scale capillary pressures with the Darcy permeability of the soil, 
the interfacial tension between the wetting and nonwetting phases, and the contact angle 
between the wetting phase and the soil.  The J function exists because the capillary 
pressure is a characteristic function of the relative saturation of the two phases in the soil. 
 
Capillary pressure measurements for soils with uniform pore size distributions spike at an 
irreducible fractional wetting phase saturation, rws .  At this residual wetting saturation, 
which is the same for imbibition and drainage, no additional amount of liquid can be 
displaced, no matter how much pressure is applied.  Conversely, at least in theory, there 
is no pressure that can be applied to prevent the soil from beginning to absorb liquid.  As 
the liquid saturation increases, the imbibition pressure decreases.  The pressure drops to 
zero, and absorption of liquid stops, at a maximum fractional wetting phase saturation, 

rns , called the residual nonwetting saturation.  Significant drainage does not occur until a 
threshold pressure referred to as the displacement pressure or the entry head is exceeded.  
It has been conjectured that the displacement pressure represents the pressure required to 
dislodge the gas from the capillary pores so that it will flow.  The drainage pressure then 
increases as the liquid saturation decreases.  At any given saturation, the drainage 
capillary pressure exceeds the imbibition capillary pressure.  The hysteresis between the 
two pressures is greatest at the residual nonwetting saturation. 
 
The relationship between the capillary pressure and the saturation changes for material 
with large pores, such as glass beads, loose sand, or gravel, and for consolidated materials 
with monolithic structures, such as many rocks.  For materials with large pores, the most 
notable difference is that the residual wetting saturation decreases and may disappear 
entirely, so that the material drains completely.  For highly consolidated materials, some 
pores may not be accessible to flow, so the overall residual saturations may be higher 
than the residual saturations in the porous fraction of the material.  This study focuses on 
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fine granular materials with an open pore structure, which exhibit a limiting value for the 
residual wetting and nonwetting saturations. 
 
Historically, the capillary pressure has been correlated as a function of the liquid 
saturation, normalized with respect to the difference between the residual nonwetting and 
wetting saturations.  Most capillary pressure models utilize two parameters to relate the 
pressure to the relative saturation.  The relationship typically takes the form of a power 
law relation (Brooks and Corey, 1964; van Genuchten, 1980), an exponential equation 
(Kosugi, 1994, 1996), or a combination of these two forms applied over different liquid 
saturation ranges (Rossi and Nimmo, 1994).  Brooks and Corey (1964) assigned the entry 
head, defined as the minimum capillary pressure during drainage, as one parameter and 
used the other parameter to characterize the pore size distribution.  Several other models 
have followed this convention. 
 
Parker and Lenhard (1987) addressed the hysteresis between drainage and imbibition.  
They developed a model that includes effects of gas entrapment during imbibition.  Their 
model defines limiting maximum capillary heads for drainage and minimum capillary 
heads for imbibition.  They state that the actual pressure must lie at some value between 
these limits that depends on the flow history.  A simple method of applying this model is 
to define separate limiting capillary pressures for imbibition and drainage (White and 
Oostrom, 1996). 
 
Another complicating factor in modeling the capillary pressure is the existence of 
fractures through which flow preferentially occurs. To model fractured media, Klavetter 
and Peters (1986) and Nitao (1988) used dual porosity functions that assign different 
capillary pressure-saturation relations to the fractures and to the low permeability solid 
matrix.  Their models equated the fracture and solid matrix pressures. 
 
Most recent attempts to model capillary pressure stem from a network resistance analog 
developed by Fatt (1956).  Network models use Monte Carlo methods to calculate 
pressures and flows in a network of capillary pores with a specified coordination number, 
loosely defined as the number of neighboring pores connected to each pore.  Dodd and 
Kiel (1959) added the concept of dead end pores to the network model.  This feature 
allowed them to calculate the residual wetting saturation as a function of the coordination 
number and fluid properties.  Other notable modifications to the network modeling 
approach include the use of volume-average equations of motion (Lin and Slattery, 1982) 
and the use of percolation theory to describe the pore structure (Larson, Scriven, and 
Davis, (Sahimi et al., 1986)). 
 
This paper presents a departure from both traditional analytic and network models.  A 
probabilistic pore pressure model and global energy balances replace the semi-empirical 
approach of analytic models and the detailed pore structure and flow equations and the 
Monte Carlo approach used by the network models.  The energy balances are solved for 
singularities in the driving forces for flow of the wetting and nonwetting phases, to obtain 
the residual wetting and nonwetting saturations, respectively.  The pore pressure models 
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are then used to calculate the capillary pressure as a function of saturation.  Results are 
compared to selected measurements of residual saturations and capillary pressures. 
 
2. Derivation of Energy Balance for Capillary Pressure Model 
 
The singularity analyses for the residual saturations are based on comparisons of the 
potential energy associated with the difference between the pressures of the two phases in 
the soil and the work required for flow of each phase.  The analysis is loosely analogous 
to the Gibbs’ adsorption theorem, which relates work done by surface forces to the 
chemical potential of a system (Koenig and Swain, 1933; Guggenheim, 1936; Morrow, 
1970).  In its simplest form, Gibbs’ adsorption theorem states that the interfacial tension 
σ  of a system equals the change in the Helmholz free energy F  per unit interfacial area 
A  at constant temperature and volume: 
 

 
V,TA

F






=

∆
∆

σ          (1) 

 
Gibbs’ adsorption theorem can be recast as an energy balance, with the product A∆σ  
representing the work required to extend a surface and the term F∆  representing the 
accompanying change in the chemical potential energy of the system.  The potential 
energy is defined in terms of chemical activities, which for an ideal solution at 
equilibrium, are the vapor pressures.  Thus, for Gibbs’ adsorption theorem, 
 
 ( )i,vg

i
i PlnTRnF ∆∆ ∑−=        (2) 

 
where gR  is the gas law constant, in  is the number of moles of solute i adsorbed on the 
liquid interface, and i,vP  is the vapor pressure of solute i. 
 
The capillary pressure model presented in this paper extends this representation from a 
surface to a volume of soil.  The model replaces the chemical potential with a mechanical 
potential based on the stored interfacial energy and substitutes a flow work term for the 
work needed to extend an interface.  Figure 1 presents a simple schematic representation 
of the model.  As this figure shows, the model is applied to an adiabatic control volume 
within a larger volume of soil, from which the only energy transfer occurs by flow of gas 
and liquid in or out.  The model evaluates changes of the potential energy within the 
control volume and changes in the amount of flow work performed by the control volume 
on its surroundings. 
 
The energy balance for the control volume takes the form 
 
 WGH s ∆∆∆ +=         (3) 
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where H  is the enthalpy, sG  is the mechanical potential associated with the interfacial 
energy, and W  is the flow, or pressure-volume, work term.  The energy balance is 
formulated in terms of the enthalpy because it is an open system in which liquid and gas 
may cross the volume boundaries. 
 
Since the model assumes that the soil control volume is adiabatic, the enthalpy term is 
zero, and 
 
 WGs ∆∆ −=          (4) 
 
The mechanical potential and flow work terms can be expressed in terms of pressures 
much as the chemical potential in the Gibbs’ adsorption equation.  For a control volume 
initially comprised of one mole of gas, these expressions are 
 
 ( )potgs PlnTRG ∆∆ −=        (5) 
 
and 
 
 ( )( )flowg PlnTRW −−= ∆∆        (6) 
 
These expressions differ from the Gibbs’ adsorption energy in that the energies are 
applied to a fixed volume rather than a fixed mass.  The volume is defined as fixed 
because the capillary pressure model applies to interfacial and solid surface forces rather 
than to forces tied to the mass of gas or liquid present within the control volume, and will 
be used to derive capillary pressure and residual saturation expressions in terms of 
saturation volume fractions rather than masses.  Nevertheless, it is convenient to define 
the size of the control volume such that the potential energy and flow work terms apply to 
molar quantities, as is done in Equations 5 and 6. 
 
The potential energy also can be interpreted as an entropy akin to the entropy of mixing.  
According to this interpretation, the entropy associated with partial saturation is 
 
 ( )potgs PlnRS ∆∆ −=         (7) 
 
The model employs different flow pressures for imbibition and drainage.  The flow 
pressure for imbibition is based on liquid phase flow, while the flow pressure for 
drainage is based on gas phase flow. 
 
3. Derivation of Pore Pressure Model 
 
To derive the pressures for the potential energy and the flow work, a model for the pore 
pressure as a function of saturation must be developed.  This model is based on a simple 
statistical interpretation of the distribution of wetting and nonwetting phases in the pores.  
The model assumes that each pore is filled with either a liquid wetting or a gaseous 
nonwetting phase. 
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The capillary pore pressure is distributed by gas-liquid interfaces between the pores.  The 
distribution of gas-and liquid-filled pores and the connections between pores are assumed 
to be random.  The difference between the average pore pressure and the liquid pressure, 
according to this model, is equal to the product of the capillary pore pressure and the 
probability that a liquid-filled pore is in contact with a gas-filled pore and not with liquid 
in another pore.  This probability, in turn, is the gas saturation.  Thus, the difference 
between the average pore pressure and the liquid pressure is given by 
 

( )sPPP cla −=− 1         (8) 
 
Because the liquid wets the soil, the liquid pressure is lower than the average pressure 
and this pressure difference is positive.  Figure 2 depicts the forces acting on the liquid in 
the pores in two dimensions. 
 
Likewise, the difference between the gas pressure and the average pore pressure is equal 
to the product of the capillary pressure and the liquid saturation, or, 
 

sPPP cag =−          (9) 
 
This pressure difference is also positive. 
 
It may be noted that the gas and liquid pressure differences cancel each other, as they 
must, so that the volume average of the two pressures equals the average pressure: 
 

( )sPsPP gla −+= 1         (10) 
 
The difference between the gas and liquid pressures is just the capillary pore pressure, as 
one should expect: 
 
 clg PPP =−          (11) 
 
Confirmation of this model is provided by a derivation of residual gas and liquid 
saturations.  This derivation follows. 
 
The potential energy is calculated from the difference between the average pressure in the 
soil, aP , and the reference pressure for flow through the soil, oP .  For an influx of liquid 
into the soil (imbibition), the reference pressure is the liquid phase pressure, and 
 

( )sPPP coa −=− 1         (12) 
 
For flow of gas (drainage), the reference pressure equals the gas phase pressure, so that 
 
 sPPP coa −=−         (13) 
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These pressure differences apply only to the fractions of the pore volume occupied by 
liquid and gas, respectively.  Consequently, for either liquid or gas flow, the potential 
energy is based on a pressure differential given by 
 
 ( )ssPP cpot −= 1         (14) 
 
The pressure differential is defined to be positive for both imbibition and drainage.  
Substitution of this pore pressure in the equation for the potential energy yields 
 

( )( )ssPlnTRG cgs −−= 1∆∆        (15) 
 
The delta sign indicates that this equation gives the change in the potential energy for 
small changes in the saturation.  Because this is a differential analysis, the value of sG  at 
the reference state can be arbitrary. 
 
4. Analysis of Residual Wetting Saturation 
 
At the residual wetting phase saturation, rws , the resistance to flow of the liquid becomes 
infinite, and, in an overall energy balance, the resistance to flow of the gas can be 
ignored.  It may be stated, then, that for a given change in the saturation the change in the 
potential energy counteracts the change in the work needed to cause the liquid to flow.  In 
other words, at rwss = , 
 

ds
dW

ds
dG ls −=          (16) 

 
where lW  is the work term for liquid flow. 
 
The liquid work function is derived from the Darcy equation for flow of two immiscible 
phases.  The Darcy equation for the wetting phase is: 
 

dz
dsPkk

dz
dPkksv c

w

wl

w

w
w µµ

ε −=−=       (17) 

 
or 
 

( )
dz

slndPkkv c
w

w
w εµ

−=        (18) 

 
From this expression the pressure acting on a given volume of liquid is seen to be 

( )slnPc .  The change in the corresponding work function is given by 
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( )( )slnPlnTRW cgl −−= ∆∆        (19) 
 
As with the potential energy, this expression gives the change in the work function for 
small changes in the saturation. 
 
Substitution of this work term and the change in the potential energy in the energy 
balance yields 
 

( )( ) ( )( )
ds

slnPlndTR
ds

ssPlndTR c
g

c
g

−
−=

−
−

1
    (20) 

 
or 
 

( )
s

ssln
21
1

−
−

=          (21) 

 
This equation is satisfied for  
 

2360.srw =          (22) 
 
5. Analysis of Residual Nonwetting Saturation 
 
A similar line of reasoning is used to calculate the residual saturation of the gas, rns .  
Here, the resistance to the gas flow is infinite, and the resistance to flow of the liquid can 
be ignored.  Thus, 
 

ds
dW

ds
dG gs −=         (23) 

 
where gW  is the work term for gas flow. 
 
The Darcy equation for the gas phase is: 
 

( )
dz
dsP

kk
dz

dPkk
vs c

n

ng

n

n
n µµ

ε −=−=−1      (24) 

 
or 
 

( )






 −
−−=

dz
slndPkkv c

n

n
n

1
εµ

       (25) 

 
From this expression the pressure acting on a given volume of gas is seen to be 

( )slnPc −− 1 .  From this pressure must be subtracted the capillary pressure.  The 
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capillary pressure must be supplied to the gas to convert it from a stationary state in 
which it is in contact with a pore wall to a mobile state in which it is surrounded by 
liquid.  The total pressure supplied to the gas phase is therefore, ( )( )slnPc −+− 11 , and 
the corresponding change in the work function is: 
 

( )( )( )slnPlnTRW cgg −+−−= 11∆∆       (26) 
 
Again, this expression gives the change in the work function for small changes in the 
saturation. 
 
Substitution of this work term and the change in the potential energy in the energy 
balance gives 
 

( )( ) ( )( )( )
ds

slnPlndTR
ds

ssPlndTR c
g

c
g

−+−
−=

−
−

111
   (27) 

 
or 
 

( )
s

ssln
21

131
−

−
=−         (28) 

 
This equality is satisfied for 
 

8840.srn =          (29) 
 

Both the residual nonwetting saturation, 0.884, and the residual wetting saturation, 0.236, 
agree well with limiting saturations shown in generalized capillary and relative 
permeability plots (Bear, 1972; Scheidegger, 1957; Corey, 1977).  The measured residual 
saturations for a uniform sand (Morell-Seytoux and Khanji, 1975; Morel-Seytoux et al., 
1973; Vauclin, 1971) agree almost exactly with the derived values; the measured wetting 
saturation, estimated by graphical interpolation, was 0.230 and the measure wetting 
saturation was 0.884.  Other measured residual wetting saturations for air-water and 
several aqueous-organic liquid-liquid mixtures in unconsolidated sand ranged from about 
0.07 for air and water to about 0.27 for water and butyl acetate, which has a particularly 
low capillary pressure (Brooks and Corey, 1964; Demond and Roberts, 1991).  Residual 
nonwetting saturations for these same systems ranged from about 0.65 for trichloroethane 
and water to about 0.88 for air and water. 
 
6. Calculation of Capillary Pressure for a Laboratory Test 
 
Measured capillary pressures depend on the characteristics of the porous material in 
which the measurements are made.  Simple pressure models such as the one described in 
this work do not describe actual capillary behavior adequately largely due to the presence 
of inhomogeneities, such as fissures in an otherwise mostly impermeable material.  Other 
factors that simple models typically do not address are the presence of more than two 
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phases or condensable vapors.  For these reasons, a fair evaluation of a simple capillary 
pressure model requires the use of data generated under carefully controlled conditions, 
preferably in a laboratory, using a material with a homogeneous pore distribution. 
 
Smiles et al. (1971) (also see Vachaud and Thony, (1971)) conducted one such series of 
tests in a soil column filled with uniformly packed sand.  The sand was screened through 
a 2-mm sieve to obtain a narrow particle size distribution, with 60 per cent of the material 
smaller than 0.3 mm and 15 per cent smaller than 0.15 mm.  The porosity of the sand was 
measured by water displacement to be 0.41.  The column was aerated so that the air 
remained at atmospheric pressure throughout the packed bed.  Smiles et al. measured 
local moisture content by gamma ray attenuation, using an Am-241 source, and measured 
the capillary pressure using a tensiometer.   
 
Smiles et al. depict the variations of imbibition and drainage pressures with absolute 
water saturation in terms of volume fraction of the bulk material.  The capillary pressures 
measured by Smiles et al. exhibited hysteresis, with less suction required for imbibition 
of water than was measured during drainage.  After the initial imbibition into a dry bed, 
subsequent imbibition and drainage cycles terminated at a maximum water saturation 
where no additional air was displaced and at a minimum saturation where the drainage 
pressure coincided with the imbibition pressure.  Imbibition pressures were completely 
reproducible from cycle to cycle, while drainage suction pressures declined slightly but 
remained distinctly greater than the imbibition pressures.   
 
The following section describes a capillary pressure model for these experiments, based 
on the wetting and nonwetting pressure gradient derived in the previous section.  As 
stated previously, measured capillary pressures differ for imbibition and drainage of the 
wetting phase.  For imbibition, the wetting phase, or liquid, supplies the motive force for 
displacement of the nonwetting, or gas, phase.  Consequently, it may be argued that the 
effective capillary pressure within the porous medium is the integral of the pressure 
gradient for the liquid phase.  In the Smiles et al. tests, the force to displace the gas was 
applied over the entire surface of the soil bed, but the bed was aerated so that the air 
within the capillary pores remained at atmospheric pressure.  A hydraulic advantage 
accompanies the force applied to the liquid in the pores, then, in inverse proportion to the 
liquid saturation.  It follows that the effective liquid pressure measured by the tensiometer 
is the integral of the liquid phase pressure gradient, divided by the saturation.  This gives 
for the measured capillary pressure for imbibition: 
 

 ( )
s
sln

P
P

P
P

c

,i,c

c

i,c −= 0         (30) 

 
where 0,i,cP  represents the minimum pressure required for imbibition of liquid into a 
saturated soil containing nondisplaceable gas. 
 
During drainage, both liquid and gas displace the liquid that leaves the soil.  Hence it may 
be argued that the effective capillary pressure is the volume average of the integrals of 
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the pressure gradients for the gas and the liquid.  Again, because the air remained at 
atmospheric pressure during drainage, there is a hydraulic advantage applied to the 
measured pressure, so the effective pressure is this volume-average pressure integral, 
divided by the saturation. 
 
At the maximum residual nonwetting phase saturation, the measured suction pressure 
dropped by a step change from its value for drainage to its value for imbibition.  This 
pressure change can be attributed to the change from a continuous gas phase at 
atmospheric pressure to a continuous liquid phase where, at static equilibrium, the outside 
pressure equals the liquid phase pressure.  Since the liquid phase pressure is less than the 
gas phase pressure by the characteristic capillary pore pressure, the suction pressure for 
imbibition must be less than the pressure for drainage by just this pressure, divided by the 
saturation to account for the effective hydraulic advantage.  These considerations, with 
adjustments to account for differences between the integration constants for the liquid 
and volume-average pressure gradients, give, for the measured capillary pressure for 
drainage, 
 

 

( ) ( ) ( )[ ] ( )

( ) ( )[ ] ( )
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rn

rn
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,i,c

c

d,c

s
slnsslns
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P

P
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−−+−
−

−−+−
+−+=

111

11110

   (31) 

 
The minimum suction pressure required for imbibition into a liquid-saturated soil, i.e., the 
entry head, most likely is a function of the capillary pore pressure.  The most plausible 
explanation that fits the measured data is that an excess capillary force is required to 
displace air from an array of pores located on the surface in all three directions (one 
perpendicular to the surface and two in transverse directions).  The required force is the 
three-dimensional vector sum of the forces required for unidirectional displacement, one 
of which corresponds to the pressure.  According to this interpretation, the minimum 
capillary pressure is the pore pressure multiplied by the square root of three: 
 

 30 =
c

,i,c

P
P

         (32) 

 
This entry head is applied at the outer surface of the soil, so this pressure difference is not 
normalized with respect to the liquid saturation. 
 
A combination of the capillary pressure equations for imbibition and drainage yields a 
critical saturation where these two pressures coincide: 
 

 
( ) ( ) ( )[ ] ( ) ( ) ( )[ ]
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crcrcr
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Substitution of rns  in this expression gives, for this critical saturation, 
 
 3010.scr =          (34) 
 
Below this saturation, the suction pressure that develops during drainage is less than the 
suction pressure that accompanies imbibition.  The logical conclusion is that the soil will 
not drain to a saturation below this critical value, unless the source of liquid is removed 
from contact with the soil.  The fact that the Smiles et al. tests terminate close to this 
critical saturation support this conclusion. 
 
Figure 3 compares imbibition and drainage pressures measured by Smiles et al. with the 
predictions of the capillary pressure model just described.  This figure plots measured 
suction pressures for one drainage cycle and one imbibition cycle.  The drainage data 
represent the second overall drainage cycle and the first after the soil bed was initially 
and completely saturated with water.  Subsequent drainages gave slightly lower suction 
pressures, but these pressures maintained about 80 per cent of the difference from 
imbibition pressures shown in the figure.  The imbibition data are representative of all 
imbibitions.  Measured capillary suction pressures are normalized with respect to the 
pressure difference between drainage and imbibition at the residual gas saturation.  This 
pressure difference was estimated to be 11.95 cm water. 
 
As the model predicts, the data exhibit both a residual nonwetting saturation and a critical 
saturation where the imbibition and drainage capillary pressures are equal.  The model 
gives a remarkably accurate forecast of both of these saturations, as well as the 
magnitudes of the capillary pressures.   
 
The pore size for the capillary pore pressure and the average particle diameter for the 
Smiles et al. tests should be of comparable magnitude.  A comparison between the 
reported particle diameter and a pore diameter calculated from the Laplace capillary 
pressure relation, 
 

 
c

p P
d σ4

=          (35) 

 
verifies that these two diameters are roughly equal.  The calculated pore diameter is 0.244 
mm.  This diameter approximately equals the sand particle sieve size of 0.2 mm and the 
measured particle diameters, which were smaller than 0.15 mm for 10 per cent of the 
particles and smaller than 0.30 mm for 60 per cent of the particles by volume. 
 
7. Conclusions 
 
A model has been developed that uses a characteristic pore pressure to predict residual 
wetting and nonwetting saturations and capillary imbibition and drainage pressures.  The 
model is based on an energy balance that equates changes in potential surface energy to 
changes in pressure-volume work.  In the model, a simple probabilistic distribution 
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expresses capillary forces as a function of the relative saturation and the characteristic 
pore pressure.  Pressure gradients are derived from Darcy’s law.  Limiting imbibition 
pressures are based on flow of the wetting, or liquid, phase, and limiting drainage 
pressures are based on flow of the nonwetting, or gas, phase.  The model implicitly 
assumes that the soil is homogeneous and isotropic. 
 
The model predicts a residual wetting saturation, rws , of 0.236 and a residual nonwetting 
saturation, rns , of 0.884.  The derived expressions for the limiting capillary pressures for 
imbibition, i,cP , and drainage, d,cP , are: 
 

( )
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sln
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P
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i,c −= 0         (30) 
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   (31) 

 
where cP  is the characteristic pore pressure and 0,i,cP  is the entry head required to 
initiate imbibition into the soil.  It is argued that the entry head equals the vector sum of 
the characteristic pore pressure acting in all three directions at the soil surface.  
According to this argument, 
 

30 =
c

,i,c

P
P

         (32) 

 
The model defined in the preceding equations accurately correlates limiting imbibition 
and drainage pressures in a selected laboratory test that used a uniformly packed, sieved 
sand (Smiles et al., 1971; Vachaud and Thony, 1971).  In particular, the model predicts 
that there is a critical saturation, crs , of 0.301, below which the imbibition pressure 
exceeds the drainage pressure.  Logic dictates that a soil will not drain to any lower 
saturation, provided that soil remains in contact with liquid.  Indeed, measured 
saturations for the cited imbibition and drainage tests did not fall below this critical 
saturation. 
 
Predicted residual saturations are in almost exact agreement with measurements made in 
a similarly uniform sand (Morell-Seytoux and Khanji, 1975; Morel-Seytoux et al., 1973; 
Vauclin, 1971).  Residual saturations reported elsewhere do not agree as closely with the 
model predictions.  Most notably, reported residual nonwetting saturations range from 
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0.07 to 0.27.  One can speculate that the lower reported saturations might result from 
anisotropies in the porous materials or from gravity drainage.  A study benchmarking the 
model with a wider selection of capillary pressure data is planned. 
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Figure 1.  Schematic Representation of Energy Balance Control Volume 

 
 Adiabatic, Permeable Boundary 

∆G, Potential Energy 

∆W, Flow Work 

Control Volume 

Shaded area represents a volume of soil. 
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Figure 2.  Capillary Forces on Liquid-Filled Pores 

Liquid Gas 
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Figure 3.  Comparison of Smiles et al. Measured Capillary Pressures for 
Imbibition and Drainage with Predicted Pressures 




