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ABSTRACT1

This study used an experimental model of a constructed wetland to evaluate the risk of2

mercury methylation when the soil is amended with sulfate.  The model was planted with3

Schoenoplectus californicus, and the sediments were varied during construction to4

provide a control and two levels of sulfate treatment.  This allowed characterization of5

sulfate’s effect on mercury bioaccumulation in periphyton and two species of fish –6

eastern mosquitofish (Gambusia holbrooki) and lake chubsucker (Erimyzon sucetta).7

After one year in the experimental model, mean dry-weight normalized total mercury8

concentrations in mosquitofish from the non-sulfate treated controls (374 ± 77 ng/g) and9

the reference location (233 ± 27 ng/g) were significantly lower than those from the low10

and high sulfate treatments (520 ± 73 and 613 ± 80 ng/g, respectively). For lake11

chubsucker, mean total mercury concentration in fish from the high sulfate treatment12

(276 ± 63 ng/g) was significantly elevated over that observed in the control (109 ± 4713

ng/g), the low sulfate treatment (122 ± 42 ng/g), and the reference population (41 ± 214

ng/g).  Methylmercury in periphyton ranged from 6.6 ng/g (dry weight) in the control to15

9.8 ng/g in the high sulfate treatment, while total mercury concentrations ranged from16

1148 ng/g in the control to 1297 ng/g in the low sulfate treatment.  Fish methylmercury17

bioaccumulation factors from sediment ranged from 52 to 390 and from 495 to 3059 for18

water.  Based on these results, it can be concluded that sulfate treatments add a factor of19

risk due to elevated production of methylmercury in sediment and porewater which20

biomagnified into small fish, and may potentially increase through the food web.21

22

Keywords: mercury, methylmercury, Gambusia holbrooki, Erimyzon sucetta, sulfate23
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INTRODUCTION1

2

Mercury is a ubiquitous environmental contaminant spread globally from natural and3

anthropogenic sources through a complex geochemical cycle.  Elevated mercury4

concentrations in aquatic systems have caused human health concerns world-wide due to5

the consumption of contaminated fish.  The most toxic form of mercury is6

methylmercury, the mercury species that most easily bioaccumulates and biomagnifies7

through the aquatic food web.  Methylmercury has been detected in all species of fish and8

fish-consuming mammals, including humans [1].  From the standpoint of human health9

risk, the accumulation of methylmercury in edible fish tissue has resulted in fishing10

restrictions, numerous health advisories, and much public apprehension [2,3]. There are11

over 1000 fish consumption advisories currently in effect across the United States due to12

mercury contamination [4].13

14

Once in the aquatic environment, inorganic mercury (Hg2+) may be transformed into15

methylmercury, primarily through the activity of anaerobic sulfate-reducing bacteria in16

sediment [5-8].  As inorganic mercury is taken up by sulfate reducers, methylation occurs17

through a side reaction within the bacteria’s normal metabolic pathway [9-11]. As18

methylmercury is lipophilic, this means of methylmercury production is a key mechanism19

affecting the quantity of mercury accumulated in fish [7,8,12].20

21

Natural wetlands are often conducive to mercury methylation and can be contributors of22

methylmercury to downstream environments [13,14].  Methylmercury research,23
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therefore, often focuses on natural wetland systems such as the Everglades [15-18],1

boreal wetlands and peat bogs [19-22], or natural depression wetlands in the southeastern2

United States [23].  Currently, however, little information exists regarding the behavior3

of mercury in man-made wetland treatment systems or on the use of wetland-based4

systems to remove inorganic mercury from regulated wastewater discharges.5

6

Wetland treatment systems depend upon several processes for the immobilization of7

cationic metals from the wastestream [24], including the formation of solid metal-sulfide8

precipitates.  Treatment systems amended with sulfate-rich compounds (e.g., gypsum) for9

the enhanced production of sulfide potentially favor microbial selection for sulfate-10

reducing bacteria.  While these bacteria produce the sulfide needed to immobilize metals11

(including mercury) from the wastestream, they are also responsible for simultaneous12

mercury methylation [8].  Under these conditions, an increase in methylmercury13

production can occur if inorganic mercury is bioavailable.  If inorganic mercury is14

present in discharge water, efforts must be made to ensure that constructed wetland15

systems augmented with sulfur-derived compounds are not increasing a source of more16

harmful mercury species.17

18

To study methylmercury bioaccumulation in gypsum-amended sediments, we used a19

pilot-scale experimental model of an actual constructed wetland built to reduce copper,20

mercury, and metal-related toxicity in a wastestream at the Department of Energy’s21

Savannah River Site (SRS) on the Upper Coastal Plain of south-central South Carolina22

(Aiken and Barnwell counties). Use of an experimental model allowed us to vary soil23
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preparation and provide a controlled environment for both replication and comparison1

between soil treatments.  Like the full-scale wetland, the experimental model was planted2

with a single species of vegetation, Schoenoplectus californicus, and the model received3

effluent directly from the wastestream.  The soil of  the model, however, was varied to4

provide a control and two sulfate treatments.  This allowed characterization of sulfate’s5

effect on mercury methylation and bioaccumulation by fish and periphyton.6

7

We selected two fish species for determination of mercury bioaccumulation –  lake8

chubsucker (Erimyzon sucetta) and eastern mosquitofish (Gambusia holbrooki).  These9

species are known to inhabit SRS wetlands [25], and they represent different trophic10

niches within these wetlands [26]. This study also compared how sulfate treatments11

affected mercury uptake and methylation within periphyton communities which provide12

food to these fishes.13

14

MATERIALS AND METHODS15

16

The experimental field model consisted of a flow-through system of twelve 1268-liter17

rectangular fiberglass tanks (Aquaculture Systems Technologies, New Orleans, LA),18

placed adjacent to the wastestream.  Soil indigenous to the Savannah River flood plain19

was placed in each tank to a depth of 46 cm then amended with organic material (wood20

mulch and chopped plant material) so that the organic material made up 6% of the soil21

volume. Soils were composed of 85% sand and 15% silts/clays.  Horticultural lime22

(Hoffman, Lancaster, NY) and ammonium nitrate fertilizer (Royter Clark, Norfolk, VA)23
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were added at rates of 95 g/tank and 75 g/tank, respectively.  Aquatic plants, giant1

bulrush (Schoenoplectus californicus), were obtained from a commercial vendor2

(Horticultural Systems, Inc., Parrish, FL) and planted on 15-cm centers in the saturated3

soil.4

5

The experimental design included a control and two levels of sulfate treatment − each6

with four replicates. Pelletized agricultural gypsum (CaSO4•2H2O; Southdown, Easton,7

PA) was added to the soil of the treatment tanks prior to planting and flooding; soil in the8

control tanks contained no added gypsum. Two sulfate concentrations were selected:  a9

low sulfate addition (3 kg/tank), and a high sulfate addition (12 kg/tank). Treatment and10

control replicates were spaced within the experimental system to ensure statistical11

independence.12

13

Water directly from the wastestream was continuously pumped into a 265-liter elevated14

holding tank (US Plastics Corp., Lima, OH) before being gravity fed into each of the15

twelve tanks.  Discharge was through a slotted pipe set 30 cm above the sediment16

surface.  Flow rate through the system was 0.15 L/minute for an estimated 48-hour17

hydraulic retention time for wastewater passing through the system.18

19

Surface water sampling for each tank was conducted at the outflow device using a20

syringe submerged 5 cm below the surface. Interstitial water (porewater) was collected21

using in situ samplers commonly  referred to as sippers.  Sippers are constructed of22

hollow stakes having a porous Teflon collar located at the appropriate sampling depth (0-23
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3, 3-6, 6-9, and 9-12 cm).  Mercury and methylmercury samples were filtered in the field1

through 0.45 µm Acrodisc syringe filters. (Gelman Laboratory, Ann Arbor, MI) and2

collected in fluoropolymer bottles which had been acid cleaned and double sealed in an3

ultra clean laboratory.4

5

The system was allowed to stabilize for eight weeks prior to the introduction of fish.  In6

late August 2001, twenty juvenile mosquitofish collected from an uncontaminated7

impoundment were introduced into each of the tanks after a four-day acclimation period.8

In early December 2001, ten juvenile lake chubsuckers from a laboratory population9

described by Hopkins et al. [27] were acclimated and introduced into each tank.10

11

Both fish species were harvested in September 2002 using standard minnow traps.  After12

collection, fish were held in the laboratory for 24 hours to clear gut contents.  Standard13

measurements were determined, and the fish were frozen for analysis. The number of14

chubsuckers recovered from the tanks was limited to one or two per tank, while15

mosquitofish were collected in abundance.  To reduce variability and generational16

differences, analysis was performed on larger (>0.8 g)  female mosquitofish, and five17

individuals per tank were homogenized into one sample.  Whole fish were analyzed.  A18

subsample of each species was weighed, dried for 48 hours at 100°C,  then weighed again19

to determine the percent moisture for the dry weight normalization calculations.20

21

Both species of fish were also harvested from reference sites with no known source of22

contamination, either present day or historical.  Lake chubsuckers were harvested from a23
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depression wetland, commonly referred to as a "Carolina Bay" within the boundary of1

SRS.  This bay has been identified as Bay # 142 and has been described by Schalles et al.2

[28].  Mosquitofish were collected from Fire Pond, a small impoundment often used as a3

reference site for studies of heavy metal contamination [29].4

5

Periphyton was allowed to colonized for six weeks on acid-washed plastic plates inserted6

into the tanks for this purpose.  Colonies were scraped from the plates and collected in7

polypropylene sample tubes.  Samples from replicated tanks were composited to ensure8

adequate volume, centrifuged to remove excess water, and frozen until analysis.  A9

subsample from each tube was dried and weighed for percent moisture determination.10

11

Whole sediment cores were taken the end of this experiment for measurement of total and12

methylmercury. Sediment cores were collected using a plastic core barrel sampler (15 cm13

length and 2 cm diameter) with a Teflon plunger.  Sediment cores were sliced into 214

depths (0-6 and 6-12 cm) then frozen in polypropylene sample tubes until analysis. A15

subsample of each core was weighed, dried at 100°C for 48 hours, then weighed again to16

determine the percent moisture in the sample.17

18

Analysis of total and methylmercury19

Low-level total mercury in sediment, periphyton, and fish tissue was measured via20

Inductively-Coupled Plasma Mass Spectrometry (ICP-MS) using the cold-vapor21

reduction, isotope dilution method described by Smith [30].  Tissue samples (2.5 g) were22

acidified with nitric acid, spiked with 0.5 mL of an enriched 201Hg isotope solution, then23
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microwave digested.  Aliquots of the digested samples were then reacted with a1

combined solution of potassium hydroxide (0.1%) and sodium borohydride (5%) for the2

reduction and volatilization of all mercury species which were carried into the instrument3

in an argon stream.  Total mercury concentration in the sample was determined based on4

the ratio of 202Hg/201Hg. This analysis was carried out using a VG Plasma Quad 3 ICP-5

MS (Thermo VG Scientific, West Sussex, England). Data were normalized for dry6

weight by dividing the measured mercury (or methylmercury) concentration by the7

percent dry weight of the sample.8

9

Low-level methylmercury analyses of water, sediment, and tissue were preformed using a10

technique modified from US EPA Method 1630 [31].  Organics were removed from the11

samples through subboiling distillation of acidified samples [32].  Mercury in the12

distillate was then ethylated with sodium tetraethylborate and purged with argon onto a13

trap packed with Tenax [33].  The Tenax was flash heated in a stream of argon to release14

the mercury which was speciated chromatographically [34], combusted to Hg0, and15

measured using cold vapor atomic fluorescence spectrometry (CVAFS) [35].  The16

CVAFS mercury analyzer was a Tekron Model 2500 (Tekron Inc, Ontario, Canada) and17

the integrator was a Hewlett-Packard Model HP3394A (Hewlett Packard Co., Boise, ID).18

The detection limit was 0.02 ng/L as Hg.19

20

Statistical analysis21

Data distribution and variance were evaluated through Kolmogorov-Smirnov Tests for22

Normality [36] and Levene’s Test for Equal Variance [37]. A One-way Analysis of23
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Variance combined with a Least Significant Difference procedure [38] compared1

mercury concentrations in fish tissue within each species. Statistical analyses were2

performed with SPSS Base 10.0 statistical software [39].3

4

RESULTS5

6

Mean dry-weight normalized total mercury concentration measured in mosquitofish7

(Gambusia holbrooki) from the control tanks was 374 ng/g, and the mean of the field-8

collected reference samples was 233 ng/g.  Both of these values were significantly lower9

than those from the low and high sulfate treatment which were 520 and 613 ng/g,10

respectively (Table 1).  Mean total mercury concentrations measured in lake chubsuckers11

(Erimyzon sucetta) from the experimental tanks were 109 ng/g in the control, 122 ng/g in12

the low sulfate treatment, and 276 ng/g in the high sulfate treatment.  Mean total mercury13

in the reference population was 41 ng/g (Table 1).  For this species, only those from the14

high sulfate treatment were significantly elevated;  all others, including the reference,15

were statistically equivalent.  Previous work [40] has shown that most of the mercury16

body burdens in fish are accumulated as methylmercury, and we assumed that was the17

case in this study.  Inorganic mercury is absorbed much less efficiently across the gut and18

gills and is eliminated much more rapidly [41,42].19

20

Periphyton is generally abundant in wetland systems and serves as a plant-based food21

source at the base of the wetland food web [43].  Dry-weight normalized methylmercury22

concentrations in periphyton ranged from 6.6 in the control to 9.8 ng/g in the high sulfate23
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treatment.  There were no statistical differences among treatments for methylmercury;1

however, the general increase in methylmercury concentrations from the control through2

the high sulfate treatment mirrors the increase in fish mercury body burdens (Figure 1).3

Mean total mercury concentrations measured in periphyton from the experimental model4

were unexpectedly high at 1148 ng/g in the control, 1297 ng/g in  the low sulfate5

treatment, and 1477 ng/g in the high sulfate treatment.  There were no statistical6

differences between total mercury concentrations in the control or the treatments.  These7

data are in agreement with other studies which have shown that mercury concentrations8

in periphyton are largely inorganic and that consumers of periphyton preferentially9

bioaccumulate methylmercury [15,44].10

11

Sediment methylmercury concentrations ranged from 1.4 to 2.3 ng/g(dry wt.) with the12

highest concentration observed in the low sulfate treatment (Figure 2).  Overall mean13

porewater methylmercury concentrations in the sulfate-treated tanks were three-fold14

higher than the control (1.7 vs. 0.5 ng/L; Figure 3A).  However, these elevated porewater15

methylmercury concentrations in sulfate treatments were not detected in surface waters16

(Figure 3B).  Despite the fact that the highest methylmercury concentrations were17

confined to the benthos, results indicate that methylmercury has been efficiently18

transferred from water and/or sediment into the food web.  Sediment methylmercury19

bioaccumulation factors ranged from 52 to 390, and methylmercury bioaccumulation20

factors in water ranged from 495 to 3059 (Table 2).  Other studies have noted that the21

magnitude of mercury accumulation in biota does not always appear to be associated with22

changes in water column concentration [15], because dietary exposure has been shown to23
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be the dominant route of methylmercury uptake in fish [45].  In fact, the propensity of1

mercury to increase concentration several orders of magnitude from water to fish is well2

documented [46-48]. As methylmercury fluxes from sediment and porewater, it3

accumulates in phytoplankton such as algae and diatoms [49,50].  It is then efficiently4

concentrated by herbivorous zooplankton species [51] and subsequently accumulated by5

fish preying upon these organisms [45,52,53].6

7

The differences in mercury burdens between the two fish species reflect the somewhat8

longer exposure period for the mosquitofish combined with the fact that these two species9

occupy different trophic niches [26].  Lake chubsuckers primarily feed upon algae,10

benthic detritus, and associated benthic organisms, while mosquitofish are typically11

carnivorous water column feeders [26].  Although mosquitofish may shift to periphyton12

in the winter months [43], plant material has been shown to make up less than 25% of the13

overall mosquitofish diet [54] with zooplankton prey species making up the balance [55].14

In contrast, plant material comprises up to one-half of the diet of lake chubsuckers [54].15

Higher overall mercury body burdens in mosquitofish probably reflect this increased16

dependence upon prey items.17

18

Data presented here indicate that mercury accumulation by small fish species in a19

constructed wetland model was enhanced by sulfate addition, and this was presumably20

due to increased mercury methylation by sulfate-reducing bacteria and ensuing transfer21

into the aquatic food web.  Mercury concentrations in both species of fish from the non-22

sulfate treated control were somewhat elevated over those from reference populations23
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(Table 1) but the differences were not statistically significant.  Based on these results, it1

can be concluded that sulfate amendments add a factor of risk due to elevated production2

of methylmercury in sediment and porewater which can biomagnify into small fish, and3

may potentially spread or increase through the food web.4

5
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Table 1. Mean total mercury concentrations measured in fish tissue from the

experimental model.  Values in parentheses represent one standard deviation from the

mean.

Treatment Dry-weight Normalized Mercury

Concentration in Mosquitofish

(Gambusia holbrooki)

(ng/g)

Dry-weight Normalized Total

Mercury Concentration in Lake

Chubsuckers (Erimyzon sucetta)

(ng/g)

Control 374  (±77) 109  (±47)

Low Sulfate 520a  (±73) 122  (±42)

High Sulfate 613a (±80) 276b  (±63)

Reference 233  (±27) 41  (±2)

aMercury concentrations in mosquitofish were statistically higher in the low and high

sulfate treatments when compared to fish from the control and the reference samples.

bMercury concentrations in lake chubsuckers were significantly higher in fish from the

high sulfate treatment when compared to the control, the low sulfate treatment, and the

reference samples.
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Table 2.  Bioaccumulation factors for methylmercury in each species for each treatment.

These factors are based upon mercury concentration in tissue compared to the

methylmercury concentration in the top 6 cm of sediment or the overall mean

methylmercury concentration in surface water.

Species Treatment Sediment Water

Methylmercury

BAF

Methylmercury

BAF

Gambusia Control 275 1700

Low 223 3059

High 390 2358

Erimyzon Control 80 495

Low 52 718

High 176 1062
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FIGURE CAPTIONS

Figure 1.  Mean methylmercury concentrations in periphyton and total mercury

concentrations measured in mosquitofish (Gambusia holbrooki) and lake chubsuckers

(Erimyzon sucetta) from the experimental wetland model.

Figure 2.  Mean methylmercury concentrations in sediment from the experimental model.

Asterisk (*) indicates that the mean value was significantly higher than all others.

Figure 3.  Overall methylmercury concentrations in porewater (A) and surface water (B)

from the experimental model.  Porewater methylmercury concentrations were

significantly lower (p<0.05) in the control than in either of the treatments.  There were no

significant differences in surface water methylmercury concentrations.
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Figure 3
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