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Abstract

Speedup, a commercial software package for the dynamic modeling of chemical
processes, has been coupled with the PVM software to allow a single process model to be
distributed over several computers running in parallel. As an initial application, this
coarse distribution technique was applied to a batch chemical plant containing 16 unit
operations. Computation time for this problem was reduced by a factor of 4.7 using only
three parallel processors in the UNIX computing environment. Better than linear
acceleration was achieved from the significant reduction in computation required to
reinitialize the smaller subprocesses at discontinuities in the solution. The process was
physically divided at points that naturally separated the overall plant into distinct
subprocesses. This facilitated the computation by minimizing the interconnection
between the parallel units. Techniques were developed to make efficient material and
energy transfers between the modeled subprocesses based on actual material transfers
used in plant operations.

Keywords: parallel computing, coarse distribution, dynamic modeling, chemical process,
batch processes.

1. Introduction

As computing costs have decreased and computers have become larger and faster, the
dynamic modeling of chemical processes at greater levels of detail is an area of
increasing interest. As opposed to more commonly used steady-state process models, a
dynamic model can provide valuable information about process timings, transient
behavior during startup and process upsets, and the coupling between unit operations.
Inherently transient behavior such as reaction kinetics can be included in the model.
These advantages are particularly apparent for batch processes that do not exhibit true
steady-sate behavior in the first place. However, dynamic modeling clearly requires
significantly greater computational effort than is needed to solve for a single steady-state
operating condition. One method to reduce the time required to obtain a solution is to
divide the problem into segments and solve the parts in parallel on multiple computer
processors. This technique also mimics actual plant operations where many processes
may be operating simultaneously. Parallel computing has been used to advantage in many
areas of science and engineering and has increasingly been applied to industrial
engineering problems. Overviews of industrial applications of parallel computing are
given by Eldredge et al., (1997) and by Thole and Stuben (1999).
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A considerable amount of work is in progress to develop better numerical methods to
take full advantage of parallel computations. Large scale simulations of chemical
processes is an application area where very large systems of coupled non-linear equations
naturally occur. This is especially true when a large number of chemical species must be
considered. Vegeais and Stadtherr (1990) describe a parallel computing strategy for
chemical flowsheets. Mallya et al., (1997) and Paloschi (1996, 1998) focus their efforts
on developing solvers to take advantage of a parallel architecture at the solver level. Our
work has adopted the strategy of applying unmodified commercial software at the model
development level, and as such, is more accessible to others wishing to use coarse
distribution parallel computing techniques.

The Speedup software from ASPEN Technology was one of the first commercially
available flowsheeting packages for the dynamic modeling of chemical processes
(Pantelides, 1988). Speedup allows the user to readily develop unique models of unit
operations using algebraic and first order differential equations that can then be combined
into a system flowsheet and solved in a time dependent form. Since many of the unit
operations at the Savannah River Site are unique, this framework has been particularly
useful for flowsheet modeling needs at our location. ASPEN Technology has recently
replaced Speedup with a new software package called Aspen Custom Modeler (ACM).
ACM retains the equation based structure and solution methods used by Speedup while
also providing a graphical user interface with convenient flowsheet building capabilities
not available in Speedup. However, ACM is only supported on Windows based
workstations and personal computers. Therefore, the work discussed here, which took
advantage of the UNIX computing environment, is no longer supported by the
commercially available software. Nevertheless, the general concepts and methods
described in this paper focus on communication logic that can be implemented regardless
of computing platform, and these will still be of interest to the engineering modeling
community. The concepts are general and provide the basis for similar implementation
with the newer ACM software. Work is now in progress at our site to adapt the methods
described here to ACM in the Windows operating environment.

Parallel computing using Speedup has been previously reported in the literature
(Paloschi, 1996 and Paloschi, 1998). In the previous work, the author replaced the
Speedup nonlinear equation solver with his own coding that was designed to use parallel
processors. In contrast, the work described in this report uses the commercial Speedup
package without any modifications. We simply run a Speedup model on each of the
parallel computers and exchange information between them using the PVM software
(Geist et al. 1994). Each machine is then running a simulation that represents a part of the
overall chemical process. Information exchange between the processors simulates the
physical transfer of material and energy between the separate parts of the chemical plant ,
as well as process control signals. The previous work by Paloschi was also limited to
obtaining a steady-state solution for a flowsheet. Paloschi and Zitney (1997) have
reported on the parallel simulation of a chemical plant that is very similar in concept to
the techniques described in this report. The authors describe using the Speedup flowsheet
solver coupled with PVM for message passing to run both steady state and dynamic
simulations of a chemical plant. The problem they apply the method to is a continuous
chemical plant simulation with recycle. In the current work, we describe the dynamic
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simulation of a batch chemical process. Modeling a batch process versus a continuous
one leads to a fundamental difference in the calculation timing. Continuous simulation
allows the selection of a time step that maximizes computational efficiency whereas,
when simulating a batch operation, the time step is further constrained by the process
communication logic. The work reported here on parallel simulation of a batch process
produced greater than linear acceleration in computing time through the use of coarse
discretization or coarsely noded parallel computing techniques.

2. Background

The chemical process described in this work models the treatment of radioactive waste at
the Savannah River Site (SRS). The safe and efficient cleanup of radioactive waste is an
area of extreme importance and national interest. Preliminary waste processing is first
done in the site tank farm to separate the material into aqueous salt solutions and sludge
suspensions. Sludge is pretreated by dissolving aluminum salts and washing out water
soluble non-radioactive components to reduce the volume of highly radioactive waste.
Plans are in progress to treat concentrated salt cake by first redissolving the material and
precipitating insoluble radionuclides such as uranium and strontium. Cesium would then
be removed from the remaining solution by a solvent extraction process now under
development. However, at the time this work was performed, it was thought that a
precipitation process would be used for cesium removal. Therefore, this paper is based on
the older precipitation process. After concentration and washing, salt and sludge fractions
containing most of the radioactivity will be sent to the Defense Waste Processing Facility
(DWPF) for final treatment and vitrification. The DWPF plant has been in operation
since 1996 vitrifying sludge waste alone pending the start of salt processing operations.

As described by Choi et al. (1991), an integrated steady-state model of the entire waste
processing operation has existed for several years. This model was developed using the
du Pont Company’s proprietary process simulation software CPES (Chemical Process
Evaluation System). This model has over 1700 process streams and 650 unit operations
and tracks 183 chemical species. The model includes detailed waste processing chemistry
and performs rigorous vapor-liquid equilibrium calculations. It has been used to plan
waste removal operations and perform environmental permitting calculations for plant
operations. Although most of the actual processing occurs in discrete batches, the CPES
simulation treats the processes as equivalent continuous steady-state operations.
Therefore, it provides only averaged information on system dynamic behavior and batch
cycle behavior.

Dynamic modeling of various parts of the SRS High Level Waste (HLW) system has
been undertaken in recent years. In particular, Gregory et al. (1994) describe the
development of an integrated model of the entire HLW system including waste
generation, storage in the tank farm, waste treatment, and final disposal. This model,
originally written in Speedup, simulates tank farm operations and in-tank waste treatment
processes in some detail. However, there is a large difference in the process time scales
between DWPF operations and those in the tank farm. Waste treatment in the tank farm
uses million gallon tanks and large volumes of material, whereas DWPF batches are on
the order of several thousand gallons. A single batch of pre-treated waste will supply
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many DWPF feed batches. Therefore, to achieve a reasonable simulation time, the large
scale model treats DWPF operations as a simple continuous process to estimate the
volume and composition of glass product and recycle streams.

To complement these process models, a detailed model of DWPF operations was
developed by Smith (1998) with the objective of optimizing plant performance such that
the environmental impacts from waste processing operations are minimized while the
amount of waste treated is maximized. The model was used extensively for the evaluation
of alternative methods of salt waste disposition.

The DWPF plant consists of three major processing areas: 1) Salt Processing Cell, 2)
Chemical Processing Cell, where high level radioactive waste is chemically treated to
produce a form suitable for vitrification, and 3) Melt Cell, where glass formation and
canister pouring takes place. The DWPF model was written in Speedup and performs
material and energy balances around 16 primary unit operations consisting of process
vessels where liquid solutions are mixed, concentrated, separated, and stored. Aqueous
and organic liquid phases and the vapor phase are considered in the process modeling.
The liquid phase contains up to 42 chemical species, while nine species are tracked in the
vapor phase. Table 1 lists the chemical species used in the model. Product glass
composition and melt physical properties (density, liquidus temperature and viscosity)
are predicted for given feed material compositions. In addition, the model accurately
reflects batch operating sequences throughout the process and includes an algorithm to
optimize the composition of the glass product by maximizing the amount of waste
material included in the glass mixture. The model is used to predict chemical
compositions in the process vessels and the vent system and to calculate material
volumes throughout the entire process. A version of this model that uses simplified
process chemistry and idealized vapor-liquid equilibrium calculations is currently
operational and was used for the work described in this paper.

The full integrated model of the entire HLW system contained about 11,500 algebraic-
differential equations and took over 12 hours of CPU time to simulate one year of
operation on our fastest available workstation. To fully utilize the modeling, it is
necessary to simulate the system behavior over several years of operation. Therefore,
development of a parallel model to reduce the computational time was proposed. Since
the integrated model is so complex, an initial effort with the smaller and more tractable
DWPF model was chosen as a test problem with which to develop parallel computing
methods.

3. Model Description

Figures 1-3 show schematic diagrams of the three processing areas in DWPF. These
schematics represent the level of detail included in the dynamic process model. Labels
enclosed in ovals denote feed streams to the process. Transfer streams between the parts
of the process are labeled in hexagonal blocks. Unenclosed labels mark sinks where
material leaves the process. Control valves with meters attached indicate transfer lines
where a pre-specified volume of material flows through the line for each batch. The
action of control valves that do not have meters attached is dictated by tank conditions.
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Signals are sent to these control valves that will initiate flow when both the delivery and
receiving tanks are in the correct state. That is, when the delivery tank is ready to transfer
a finished batch and when the receiving tank is able to accommodate the additional
volume, both tanks simultaneously signal the valve to open. Similarly, a closing signal to
stop flow is sent when either the receiving tank is full or the tank sending material
through the line has been emptied to its specified heel volume.

 The following sections provide brief descriptions of the individual process areas. A more
complete description of a slightly different version of the DWPF model has been
published elsewhere (Smith, 1998).

3.1. Salt Cell

Figure 1 shows a schematic diagram of the DWPF Salt Cell as it is represented in the
Speedup model. To simplify the schematic, initials are used to identify process units. The
full process unit names and corresponding vessel volumes are listed in the table below the
figure. Tank volumes are given in gallons, which corresponds with the usage in actual
plant process measurements and control systems. The primary processing vessel in the
DWPF Salt Cell is the Precipitate Reactor (PR) where precipitate from the tank farm is
hydrolyzed using acid. The PR has a condenser/decanter unit that separates aqueous and
organic phases boiled off during the hydrolysis reaction. The aqueous phase is returned to
the PR and the organic byproduct collected in the Organic Waste Storage Tank (OWST).
Off-gas vapors pass through a secondary condenser (not modeled) prior to venting.
Additional tanks in the process feed raw materials and collect the liquid product.

To start the Salt Cell process, about 3500 gallons of precipitate from in-tank salt
processing would be charged into the PR. The volume of each batch of precipitate added
to the transfer tank can be varied and is specified through an input data file. Thereafter,
the volume transferred into downstream tanks will depend upon either the amount of
material that a receiving tank can accept or the amount of material a supply tank can
discharge. The operating limits on tank volume for each vessel are defined within the
model. Copper catalyst solution and formic acid are made up in their respective feed
tanks. Raw materials are assumed to always be available. The Salt Cell process consists
of two batch cycles in the PR. After each batch, the material remaining in the PR is
transferred into the PRBT. When the PRBT has collected two batch volumes, it must be
emptied before Salt Cell processing can continue. When the OWST is full, the contents
are transferred to a waste disposal facility. The waste disposal process is modeled as an
infinite sink able to accept organic waste product as required.

As noted in the introduction, work is currently in progress to replace the in-tank
precipitation with a solvent extraction process. Raffinate liquor from the solvent
extraction containing radioactive cesium will then be added directly to the DWPF
Chemical Cell thereby eliminating the need for Salt Cell processing. Full operational
details of this revised process have not been developed. Therefore, for demonstration
purposes, the work described here has used the older process design.
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3.2. Chemical Cell

Figure 2 shows a schematic diagram of the DWPF Chemical Cell model. The Chemical
Cell contains the Slurry Receipt and Adjustment Tank (SRAT), where washed sludge
from the tank farm is mixed with the aqueous product from the Salt Cell process and the
Slurry Mix Evaporator (SME) where adjusted sludge is mixed with glass forming frit and
concentrated. The SRAT and SME both have condensers and a common condensate
collection tank (SMECT). Other tanks in the process feed raw materials and collect the
condensate and liquid products. The process units shown in Fig. 2 indicate the level of
detail included in the Speedup model.

After two Salt Cell batches have been completed, the aqueous product in the PRBT is
transferred into the SRAT for further processing. At this point, the next Salt Cell batch
can be started. If the SRAT is not available after two PR batches are finished, processing
in the Salt Cell must wait until the contents of the PRBT have been transferred out before
another batch can be started. As a part of the SME operations, an optimization calculation
is performed to minimize the amount of frit (maximize the amount of waste) added to the
slurry. The glass product must meet certain constraints on its composition to ensure that
the material can be processed and that the resulting waste form will be acceptable. This
poses a multivariable constrained optimization problem. Jantzen and Brown (1993) have
described the appropriate glass property correlations and solution techniques. Basically,
the composition of the slurry must be adjusted such that the liquidus temperature and
viscosity of the molten glass fall within ranges that allow acceptable melter performance.
Likewise, the final glass product must be homogeneous and meet performance criteria for
resistance to leaching. These properties have been correlated with the chemical
composition of the glass. Adding the minimum amount of glass frit to the slurry such that
these compositional constraints are met optimizes the process by minimizing both
material costs and the final volume of waste product. A simplified version of the original
algorithm is implemented as Fortran procedure PCCS in the DWPF model. Batch
sequencing techniques similar to those used to make material transfers were used to
ensure that the optimization calculation was performed only one time for each SME batch
and at the proper time in the batch cycle. The calculation must be performed after the
SRAT batch has been transferred into the SME so that the composition of the SME heel
is accounted for in the glass blending.

3.3. Melt Cell

The DWPF Melt Cell contains the Melter Feed Tank (MFT), glass melter, glass canister
where the product is collected, the melter off-gas condenser, and a condensate collection
tank (RCT). Slurry produced in the Chemical Cell is transferred into the MFT which
serves as a holding tank to transition from the batch chemical processing into continuous
melter feeding. Figure 3 shows a schematic diagram of the Melt Cell as it was modeled in
Speedup with specific unit information provided in the accompanying table.

In the Melt Cell, slurry from the MFT is continuously fed to the joule heated glass melter
at a rate of about one gpm. The melter is maintained at around 1050 C and pours the
molten glass into three-meter tall stainless steel canisters that hold on the order of 1680
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kg of glass. After filling, the glass canisters are sealed and stored on site pending the
availability of a permanent storage facility. The model performs only material balance
calculations around the melter to predict the composition of the glass product and melter
off-gas. No energy balance calculations are performed around the melter. At the high
melter temperature, volatile material in the feed stream, principally water, is driven off
and the metals are converted into the oxide forms listed in Table 1, which then dissolve in
the molten glass.

The DWPF Chemical Cell and the Melt Cell have been in actual operation for over five
years. The Salt Cell is not currently operational, and at this time, the replacement of both
this process and the in-tank precipitation step that precedes it are being investigated to
mitigate the formation of flammable benzene vapors. Nevertheless, the integrated model
described above can be used for preliminary attainability studies and the modeling can be
modified easily to accommodate future process changes.

4. Parallel Computing Methods

4.1. Concept

The fundamental purpose of parallel computing methods is to employ multiple processors
to evaluate independent pieces of a calculation simultaneously, and thereby reduce the
computational time compared to a single computer evaluating the same pieces
sequentially. Computational time savings are realized if the reduction in compute time is
large compared to the additional overhead time incurred to distribute the problem to the
multiple computers. Most modern parallel applications separate the calculations at the
compiler level and distribute individual mathematical operations to the available
processors. This approach generally leads to so-called, “massively parallel” applications
and can employ hundreds of processors. At the other extreme is the approach we take in
this paper, a “coarsely distributed” or “coarse node” parallelization. This method is based
on the nature of the chemical processes being evaluated, and not on the numerical
characteristics of the solution method.

A coarsely distributed parallel approach is a natural fit to the DWPF process described
above. In fact, the parallel model was designed to mimic the actual DWPF operation as
closely as possible. The several cells described, Salt, Chemical, and Melt cells, can each
be operated in a batch mode with relatively infrequent pauses to either discharge material
to a downstream cell or receive material from an upstream cell. Because of this, a
computational model can be constructed to operate exactly the same way as the actual
facility. For example, a model of the Chemical Cell can be initialized with a charge of
material from the Salt Cell. It can then be run without further interaction from either of its
neighboring cells until such time that its internal batch processing is completed. The
criteria for completion of the batch are entirely self-contained in the Chemical Cell, so no
intervention or information is required from the other cells. Once the batch is completed,
the processing in the Chemical Cell halts and waits for the next appropriate operation,
such as a discharge to the Melt Cell.
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This type of behavior lends itself well to a Speedup model implementation in which the
processes in each cell are developed into a model of that particular cell. The model for
each cell is completely self-contained and requires only input and output information to
run in conjunction with the other cell models. An external driver program was developed
to coordinate the transfers of material to and from each of the cells.

The ability to realize a reduction in overall compute time depends on the same
fundamental comparison as the massively parallel approach; viz., the reduction in time
resulting from using multiple computers must be large compared to the overhead incurred
in distributing the problem. In the case of this DWPF model, this criterion was satisfied
easily, and for this reason, the coarsely distributed approach seemed a natural fit. The
computational time for each of the cells, even when accelerated by reducing the size of
each individual model, was much greater than the time needed to transfer flow stream
information (volume and composition) at the relatively infrequent pauses of each cell
model. In fact, even with a relatively old Ethernet™ network, the communication time
was so small compared to compute time that it was essentially negligible. All of the time
improvements were realized by reducing the Speedup calculation time, and this reduction
was significant.

4.2. Implementation

Details of the file structure used on the parallel machines and information on how the
combined Speedup and PVM parallel computing environment was created are provided
in this section. For this initial effort, time was not available to optimize the system or
investigate many of the variations in parallel configurations that could be tested. What is
described here is a system that has worked well but could still potentially be improved.

The Parallel Virtual Machine (PVM Version 3.4, 1997) software was used to set up a
small-scale parallel-computing environment on the SRS UNIX cluster. This parallel
system consisted of first two and later three IBM RS/6000 workstations. The PVM
software, freely available from several sources (Geist, et al., 1994), uses the parent-child
construct to spawn multiple processes on machines in the parallel cluster. The software
also provides methods for the jobs to exchange information over the cluster network. As
a test, UNIX support personnel installed PVM, Speedup and Fortran first on a set of two
machines in the cluster (pvma and pvmb) and later on three dedicated machines (pvmx,
pvmy and pvmz). Message passing is improved if all of the machines use the same data
architecture so that the need for message translation is eliminated. This was the case for
our small test networks.

The following UNIX .cshrc  file was created on each machine to set environmental
parameters and path names that point to the location of the PVM and Speedup files:

------------------------.cshrc----------------------
setenv TERM vt100
setenv DISPLAY oxygen:0.0
setenv PVM_ARC AIX46K
setenv PVM_ROOT /usr/local/pvm
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set path=($path $PVM_ROOT/lib)
set path$($path .)

source /Speedup/su556/libdisk/splogical.csh
----------------------------------------------------

The file also identifies the local machine, in this case named oxygen, which was used to
run the simulations and view the results. Each machine in the cluster must have a UNIX
.rhosts file identifying the other machines in the PVM cluster and the user home
directory on each machine. These files have the following structure:

on pvmx ---------.rhosts---------
pvmy fsmith
pvmz fsmith
-------------------------

In this file, fgsmith is the user home directory on both machines. Corresponding files
were created on the other two machines in the cluster.

It is also desirable, but not absolutely necessary, to have a Hostfile on the machine
that will be used as the parent machine where PVM is launched. This file has the
structure:

on pvmx ----------Hostfile----------
pvmx ep=source
pvmy ep=source
pvmz ep=source
----------------------------

This file tells PVM which machines are available to use in the parallel computing
environment and sets the directory (source) on each machine as the location where
executable programs (ep) will be found. Therefore, each machine had a subdirectory
named source created directly under the home directory and the executable programs
were placed in these directories.

On the parent machine, pvmx, Speedup was run within the source directory. For
example, the source file chem_cell.speedup was placed in the source directory
and (assuming we are starting with a fresh Speedup directory) Speedup was run with the
following command lines:

Speedup> new chem_cell
Speedup> store chem_cell
Speedup> comp(ile) dyn(amic) noex(ecute) run
Speedup> quit

This created an executable Speedup module in the directory. To link to the PVM Fortran
and C libraries, the following Speedup.include file was also created in the source
directory:

----------------Speedup.include---------------
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-L/usr/local/pvm/lib/AIX46K –lfpvmz
-L/usr/local/pvm/lib/AIX46K –lpvmz
----------------------------------------------

The include file provides paths that direct the Speedup compiler to the PVM Fortran and
C libraries. In addition, the Speedup procedures that call PVM subroutines need to use
the include file FPVMZ.H  by having the line:

include ‘../fpvmz.h’

in the subroutine. As a quirk of Speedup, the software converts all of its imbedded
Fortran code, including that in any user written procedures, into uppercase. On the case
sensitive UNIX machines this then required that the name of the include file also be
uppercase. Therefore, the include file was copied from the PVM directories into the local
directory where Speedup would be run and the file was renamed in uppercase.

Compiling and linking creates the executable Speedup module speedpdyn.exe in the
subdirectory scrdisk. On each of the machines in the PVM cluster, these executables
were copied into the source directory and assigned the more meaningful names
Chem_Cell, Salt_Cell and Melt_Cell. For unknown reasons, PVM would not operate
correctly unless the Speedup software was located in the home directory on the child
machines. That is, on pvmy and pvmz, for example, it was necessary to run Speedup in
the home directory and then store the executable in the source subdirectory. If the
Speedup itself was located in the source directory the error message:

‘could not determine problem size’

was generated within the PVM log file when PVM was executed. It was unclear whether
this message was generated from PVM or Speedup and time was not available to resolve
this issue. Since the system worked smoothly when Speedup was located in the child
machine home directories, this directory structure was simply used during our test
program. On the two child machines, the executables were placed in the source
subdirectories. Once the Speedup executable files were created and located in the proper
directories, PVM was started on the parent machine with the command line:

pvm Hostfile

The parent Speedup executable could then be run and the child processes automatically
spawned from within Fortran procedures in the parent process.

Interfacing PVM with the flowsheet simulation package Speedup was one of the
challenges of this project. Early in the development it was decided to internalize the PVM
interface within the Speedup models. PVM uses its own library of subroutines to
implement message passing between processes and specialized coding is required to
make calls to the PVM subroutines. This coding was placed in Speedup procedures,
which are user written Fortran subroutines that can be called from within the Speedup
models. Since flowsheeting software commonly allows user written subroutines, this
method should be of general applicability. The Speedup models pass information such as
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tank volume, liquid density, and composition to the procedure along with a signal
indicating when a material transfer is ready to take place. The procedure then used the
PVM subroutines to transfer the data to the target process. Figure 4 shows a schematic
diagram of the parallel model.

The coding from the Salt Cell model, which is the simplest of the three interfaces, can be
used to illustrate the concepts involved. The objective is to transfer Precipitate Hydrolysis
Aqueous (PHA) solution from the PRBT vessel into the SRAT. The PRBT is part of the
Salt Cell model while the SRAT is part of the Chemical Cell model that is running on
another computer. Within the Salt Cell model, a simple unit operation is used to represent
the Chemical Cell, where the transfer from the PRBT will be received. The only purpose
of this model is to call the Xfer_Chem procedure (see listing in appendix) with the
correct information to make the transfer. Inputs to the procedure are the PRBT tank
parameters (volume, density, concentration vector, and batch number), a signal that the
PHA transfer is ready, and the current simulation time.

Examining procedure Xfer_Chem in the appendix, three types of calls are recognized
through the Speedup provided flag icall. The procedure is called once before the
dynamic calculations start with the flag icall=1. During this call, the process obtains a
unique task identification number (tid) and finds the tid of the parent process using the
PVM calls:

call pvmfmytid  (mytid)
call pvmfparent (mptid)

The Salt Cell model is programmed assuming that the Chemical Cell model will be the
parent process. The choice of a parent process for the parallel network is arbitrary but
influences the required code structure. The procedure is also called at the end of the
dynamic simulation with the flag icall=2. This is used as a signal for the process to exit
from the PVM system using:

call pvmfexit (info)

At all other times when the procedure is entered, while the dynamic simulation is running
(flag icall=0), the procedure first checks that the simulation time has advanced since the
last call. This prevents the procedure from performing the same instructions more than
once while the Speedup solution is converging at each time step. If the simulation time
has advanced (time>tset), the procedure checks that a transfer is not already in progress
(x_pha=.false.) and that the signal that a transfer is ready to start has been set
(nsignl=1). For the Salt Cell, a signal that a transfer is ready occurs when the PRBT has
been filled with two batches of PHA from the PR. If both conditions are met, the
procedure looks for a message from the Chemical Cell that it is ready to receive a batch
of PHA. The Chemical Cell will send this message when its own batch cycle is at the
point where PHA must be added to the SRAT vessel. The PVM calls used are:

call pvmfrecv   (mptid   , msgtype,  info)
call pvmfunpack (integer4,isignl,1,1,info)
call pvmfunpack (real8   ,time0 ,1,1,info)
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The message is contained in the buffer info and consists of a signal flag (isignl) and
the current Chemical Cell simulation time (time0). Once the Salt Cell has reached the
point in its cycle where a PHA transfer needs to be made, it will wait to receive this
message without performing any further calculations. This waiting period consumes
minimal computer resources and is necessary to synchronize transfers between the two
parts of the process.

When the message that a transfer can be made is received, the Salt Cell responds by
sending the required information. The volume of PHA to be transferred (pha_vol), PHA
density (pha_rho), composition vector (pha_con), and batch number (nbatch) are
packed into the buffer info and sent to the Chemical Cell process using the PVM calls:

call pvmfinitsend (msgcode                ,info)
call pvmfpack     (real8   ,time   ,1   ,1,info)
call pvmfpack     (integer4,nbatch ,1   ,1,info)
call pvmfpack     (integer4,lpha   ,1   ,1,info)
call pvmfpack     (real8   ,pha_vol,1   ,1,info)
call pvmfpack     (real8   ,pha_rho,1   ,1,info)
call pvmfpack     (real8   ,pha_con,lpha,1,info)
call pvmsend      (mptid   ,msgtype       ,info)

The message also contains the current Salt Cell simulation time (time) and the length of
the concentration vector (lpha).

After sending the message and writing the information to standard output for tracking
purposes, the procedure compares the Salt Cell simulation time to the Chemical Cell
simulation time. If the Chemical Cell is at a later time in the simulation, the Salt Cell uses
the calculated difference (delt) to advance the calculation before the flow of material out
of the PRBT is started. In this way, the simulation time between the two models is
synchronized. Finally the procedure sets the transfer logical indicator x_pha to true to
indicate that a transfer is in progress. Another transfer cannot start until this one is
completed. On subsequent passes through the procedure, the subroutine will check to see
if the flag nsignl has been set to a value of 0, indicating that the transfer is complete.
At this point, the logical signal x_pha is reset to false and the subroutine will again check
for a Chemical Cell message that it is ready to receive a PHA transfer (nsignl=1).
Similar logic is used in the other models and subroutines to effect transfers of information
between the Chemical Cell and Melt Cell processes.

The procedure is relatively compact having a total of 150 lines of code including
comments. Similar procedures were used in the other two models, which demonstrates
that the creation of parallel computing systems using packages such as PVM does not
require extensive coding.

5. Parallel Computing Results

When only two machines were available, two different versions of the DWPF Speedup
model were tested. The first version split the Salt Cell from the rest of the model. This
was a convenient initial test problem since there is only one stream connecting the Salt
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Cell to the rest of the model (transfer of PHA from the PRBT to the SRAT). CPU timings
comparing a run with the coupled model to one with the parallel calculation are shown in
Table 2. Splitting the model in this way significantly improved the overall run time
(acceleration factor of 1.64), even though the split was far from optimal. A more
desirable split would balance the computational load between the processors more
evenly. These initial results were encouraging, since even separating a small part of the
model from the main calculation dramatically reduced the elapsed CPU time. As
discussed below, this is likely the result of a significant reduction in the number of
discontinuities and the associated reinitialization of the problem that must be handled by
the individual processes.

With only one transfer stream between the parallel processes, the logic to test for
transfers was clear. As described above, the Chemical Cell model was run up to the point
where it was ready to receive a transfer of material from the PRBT to the SRAT. At this
point the model sent a message to the Salt Cell model that it was ready to accept a
transfer. In parallel, the Salt Cell model ran up to the point where the PRBT was ready to
send a transfer to the SRAT. At this point the Salt Cell model tested whether the
Chemical Cell had sent a transfer message. If the message had not been sent, the Salt Cell
calculation would wait until it received the transfer message. In a similar fashion, the
Chemical Cell model waited after sending a transfer message to the Salt Cell until the
corresponding return message was received and the physical transfer could be made. As a
part of the messages, each process sent the other the simulation time when it expected the
transfer to occur. When a transfer was ready to be sent and received, each model
compared the expected transfer times. The model that had not yet reached the greater of
the two times then ran an additional delay time to catch up and synchronize the two
calculations. This logic worked well with only one transfer stream.

As a second test problem, the DWPF model was split into a different configuration where
the Melt Cell was separated from the rest of the model. This split required breaking two
streams, one where material is transferred from the SMECT into the RCT, and the other
from the SME to the MFT. As shown in Table 2, this split produced a slightly better
division of the computational load between the nodes and gave an acceleration factor
greater than two. Splitting the model in an even different fashion could perhaps improve
the results further. However, the tested splits were ‘natural’ in the sense that the overall
process was divided into its separately functioning parts.

With two transfer streams, it was necessary to modify the transfer message logic
described above. Transfers between the SME and MFT could be scheduled exactly as
described for those between the PRBT and the SRAT. However, the SMECT to RCT
transfers were slightly different. Logic was required to transfer material from the SMECT
to the RCT whenever at least 4000 gallons could be moved. This emulated actual
operating procedure designed to avoid overfilling the tanks while minimizing the number
of transfers. Since these transfers could occur while a SME batch was being processed,
the Melt Cell model could no longer simply be allowed to run until it was ready to
receive the next SME batch. If the Melt Cell model executed faster than the Chemical
Cell model it could potentially miss some of the SMECT transfers. The transfer logic was
therefore modified such that the Melt Cell would run until it was in a position to accept
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either transfer from the Chemical Cell. Then, when the Chemical Cell signaled that either
a SMECT or SME transfer was ready, the earliest transfer time was selected and
whichever model had stopped prior to this time in the simulation was advanced to the
transfer time and the transfer was executed. The models would then each continue
running until another transfer could be made. In this way, each model could execute as
fast as possible on its individual machine and the timing between the parts of the
simulation only needed to be synchronized whenever material transfers occurred.

To further test the parallel-computing environment, UNIX support personnel created a
three-node cluster of IBM RS/6000 workstations running PVM, Speedup and Fortran.
Since different machines were used in this test network, execution timings are not
directly comparable to the results shown in Table 2. The machines in the three-node
cluster were all similar, having comparable CPU times for identical problems, but were
somewhat older and slower than the original test machines. As a test problem, the DWPF
model was now split into three parts (Chemical Cell, Salt Cell and Melt Cell) again
following natural divisions within the process itself. Each separate model was compiled
and executed on one of the PVM machines. This three-node cluster was successfully run
with the execution timings shown in Table 3. Again, if the computational load were
balanced more evenly, an even greater improvement in execution time could be achieved.

6. Comparisons of Parallel and Serial Computing Results

To establish that the serial and parallel versions of the model were equivalent, the time
histories of the liquid volume in several of the tanks obtained from both simulation
techniques were plotted together. The tanks involved in the inter-process transfers, the
PRBT, SRAT, SME, SMECT, RCT and MFT, were selected for this comparison. Graphs
of the tank volume as a function of time calculated by both the serial and parallel versions
of the model for these six tanks are plotted in Figs. 5-10. The three transfer tanks, PRBT,
SME and SMECT, were expected to behave identically in both versions of the model
since the logic to initiate a transfer was identical. Any differences in liquid volume or
timing would clearly indicate some discrepancy between the models. As shown in Figs.
5, 7 and 8, the three transfer tanks behaved identically in both versions of the model with
the two sets of results overlaying exactly. Of more interest is the behavior of the three
receiving tanks, SRAT, RCT and MFT. For these tanks to operate the same in both
versions of the model the transfer logic must be correct and the time between the parallel
parts of the model must be synchronized. As shown in Figs. 6, 9 and 10, the three
receiving tanks behaved essentially identically in the two versions of the model. In most
cases, the two results overlap so closely that the two separate curves can not be
distinguished. Minor differences in the liquid volumes in the MFT and RCT can be seen
on close examination of the results toward the end of the simulation. Implementing the
inter-process transfers required modifications to the Speedup model logic which
introduced minor variations in the calculation time step and made it difficult to perfectly
reproduce the serial model behavior. However, the serial and parallel computations
produce virtually identical results. Even the relatively complex and unpredictable
behavior of the liquid volume in the RCT is reproduced in the parallel version of the
model. This tank provided the strictest test that the logic in the parallel model
implementing inter-tank transfers was correct.
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7. Conclusions

As computing power becomes less expensive, the availability of multiple processors
increases and the ability to use parallel computing methods becomes attractive. The work
reported here establishes the feasibility and advantages of parallel computing with
Speedup. Significant savings in computational time were realized by splitting a model of
a batch chemical process into several parts and running the calculation on multiple
computers in parallel. With three computers and a non-optimal splitting of the
computational load we have achieved almost a factor of five in computational
acceleration. Considering the timings in Table 3, it appears that adding another processor,
splitting the Chemical Cell model into two equal pieces and shifting some of the Melt
Cell calculations over to the Salt Cell would approach the goal of a load balanced parallel
system. With a fourth processor, we would expect to achieve a further increase in the
acceleration factor over the serial model computation. The greater than linear acceleration
observed in our results is attributed to the isolation of model discontinuities to smaller
pieces of the calculation and significant timesaving realized by avoiding reinitialization
of the entire model.

With the batch model, a significant part of the timesaving realized from the parallel
computation comes from eliminating the necessity to reinitialize the entire computation at
every discontinuity. When modeling batch processes in particular, a large number of
discontinuities typically occur during the solution. Discontinuities arise when process
variables experience an abrupt change in state. For example, when flows start and stop,
when state conditions such as a tank volumes or operating temperatures reach upper and
lower limits, when timers used to control process sequencing start and stop all create
discontinuities in the solution. At these points, the equation solver must stop and
reinitialize the solution to account for the change in state variable before continuing with
the solution. Restarting the solution at points of discontinuity is time consuming and can
produce long run times. Significant savings in CPU time can be realized by reducing the
number of discontinuities that must be handled. For example, with the Salt Cell,
Chemical Cell, and Melt Cell all coupled, when a discontinuity occurs in one part of the
model the entire solution must stop and reinitialize. By separating the models and running
them in parallel, discontinuities are isolated more specifically and other parts of the
model can continue to run when a discontinuity is encountered and reinitialization of the
calculation is required in one segment.

The above arguments indicate that splitting a batch simulation into separate pieces
running on individual processors will achieve better acceleration than using a parallel
solver on the full problem. This result should pertain to the modeling of most batch
process. The principal drawback to this scheme is the necessity of running separate
copies of the underlying simulation software on each platform. Licensing multiple copies
of commercial software is expensive whereas using a parallel solver embedded within
one copy of the software can be more easily scaled to many processors and will be more
cost effective. Nevertheless, often achieving an improvement in simulation run time by a
factor of ten or even two can make a substantial difference in the usefulness of the model.
The methods described in this report present a simple way to achieve this improvement in
productivity.
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Future work will focus on generalizing the concepts developed in this work. While an
attempt was made to write relatively general algorithms to implement the information
transfer between the processes some features of the scheme are specifically designed for
this application. It is felt that with some additional effort, the methods developed here can
be generalized to model material transfers in a parallel computing environment. Also the
Speedup software used in this study is no longer commercially supported. Nevertheless,
the techniques developed here are of general applicability that can be translated to other
simulation packages and computer systems. At our site we are currently translating these
methods to the Aspen Custom Modeler™ flowsheet simulation package running on a
Microsoft Windows™ network of workstations.
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Table 1. Chemical Species In DWPF Model

Liquid Phase Components

Al2O3 B2O3 BO3H3 BaO C6H6 CO2H2

CaO Ca3P2O8 Cr2O3 Cs2O CsCO2H CsTPB

CuN2O6 CuO Fe2O3 H2O HNO3 K2O

KCO2H KTPB Li2O MgO MnO NH3

NH4CO2H NH4TPB NaCO2H NaCl NaF NaNO2

NaNO3 NaOH Na2O Na2SO4 NaTi2O5H NaTPB

NiO P2O5 SiO2 TiO2 U3O8 ZrO2

Vapor Phase Components

C6H6 CO2 CO2H2 H2O H2 N2

NH3 NO2 O2

Table 2. Two Node DWPF Model Timings in CPU Seconds.

UNIX machine run times

Model pvma pvmb Factor

Full DWPF 807.9 1.00

Chem+Melt

Salt Cell

493.7

60.0

1.64

Chem+Salt

Melt Cell

362.8

82.8

2.23

Table 3. Three Node DWPF Model Timings in CPU Seconds.

UNIX machines run times

Model pvmx pvmy pvmz Factor

Full DWPF 1362.4 1.00

Chem_Cell

Salt_Cell

Melt_Cell

289.6

96.3

216.3

4.70
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PRCD

PR

Aqueous Organic

Air

OWST

To Vent

PRBT

Copper Nitrate
Catalyst

Formic Acid

Precipitate

Water

To
SRAT

Unit ID Full Name Volume (gal) Heel (gal)

PR Precipitate Reactor 9000 1000

PRCD Precipitate Reactor Condenser/Decanter - -

PRBT Precipitate Reactor Bottoms Tank 9500 1500

OWST Organic Waste Storage Tank 9000 1500

Figure 1. Model representation of DWPF Salt Cell.
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To
MFT

SRAT

Air

SME

Air

From
PRBT

SRATC

To Vent

SMEC

To Vent

SMECT

Nitric Acid

Sludge

Fresh
Frit

Decon
Frit

Water

MWW T
To

RCT

PCCS

Unit ID Full Name Volume (gal) Heel (gal)

SRAT Slurry Receipt and Adjustment Tank 12000 1500

SME Slurry Mix Evaporator Tank 12000 1500

SRATC SRAT Condenser - -

SMEC SME Condenser - -

SMECT SME Condensate Tank 9000 1500

MWWT Mercury Water Wash Tank 1000 100

Figure 2. Model representation of DWPF Chemical Cell.
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To Vent

GMC

Melter

Canister

Air

OGCT

MFT

From
SME

RCT

NaOH

NaNO2
Recycle
to Tank
Farm

From
SMECT

Unit ID Unit Name Volume (gal) Heel (gal)

RCT Receipt Collection Tank 9000 1500

OGCT Off Gas Condensate Tank 9000 1500

GMC Glass Melter Condenser - -

MFT Melter Feed Tank 9000 1500

Melter Glass Melter 1000 630

Canister Glass Canister 180 0

Figure 3. Model representation of DWPF Melt Cell.
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Chem Cell
Model

Salt Cell
Model

Melt Cell
Model

PRBT-SRAT
SME-MFT

Parent Process

Child Process #1 Child Process #2

Transfer
Signals

Data Transfer
Data Transfers

PVM Inteface PVM Inteface

PVM Inteface

SMECT-RCT

Figure 4. Parallel computing system used for DWPF model.
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Figure 5. Time history of PRBT liquid volume calculated by serial and parallel models.
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Figure 6. Time history of SRAT liquid volume calculated by serial and parallel models.
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Figure 7. Time history of SME liquid volume calculated by serial and parallel models.
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Figure 8. Time history of SMECT liquid volume calculated by serial and parallel
models.
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Figure 9. Time history of RCT liquid volume calculated by serial and parallel models.
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Figure 10. Time history of MFT liquid volume calculated by serial and parallel models.
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Appendix: FORTRAN procedure to implement Salt Cell PVM-SPEEDUP interface.

PROCEDURE XFER_CHEM

     Input TIME, VOLUME, LIQDENSITY,
           MASSFRACTION(LIQCOMP),
           NOUNIT, NUMBER

    Output NUMBER, NOUNIT

PRECALL
POSTCALL

Code
c
c     subroutine to transfer information between
c     salt cell and chemical cell
c
      subroutine xfer_chem (time,pha_vol,pha_rho,
     &                      pha_con,lpha,
     &                      pha_sig,pha_bat,
     &                      pha_dt ,pha_mt,
     &                      ifail,itype,icall)
      implicit double precision (a-h,o-z)

      include ’../fpvmz.h’

      dimension pha_con(lpha)

      character*5 tank
      integer tids(0:2)
      logical x_pha

      data delt   / 0.0    /
      data tset   / 0.001  /
      data isignl / 0      /
      data x_pha  / .true. /

      nbatch = nint(pha_bat)
      nsignl = nint(pha_sig)
c
c     no mesage encoding, assume that parallel
c     machines can all recognize native format
c
      msgcode = 1

      if (icall.eq.1) then
c
c     enroll this program in PVM as a child process
c     and get the parent tid
c
         call pvmfmytid  (mytid)
         call pvmfparent (mptid)

         write (*,’(/a,i6 )’) ’ salt cell ( child) tid = ’, mytid
         write (*,’( a,i6/)’) ’ chem cell (parent) tid = ’, mptid

      else if (icall.eq.2) then
c
c     leave PVM before exiting
c
         write (*,’(/a/)’) ’ salt cell process exiting pvm’
         call pvmfexit (info)
      else

         if (time.gt.tset) then
            if (.not.x_pha .and. nsignl.eq.1) then
c
c     wait for signal from chemical cell that srat is ready
c     for a transfer
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c
               msgtype = 1
               call pvmfrecv   (mptid   ,msgtype   ,info)
               call pvmfunpack (integer4,isignl,1,1,info)
               call pvmfunpack (real8   ,time0 ,1,1,info)

               if (isignl.eq.-1) then
                  ifail = 4
                  write (*,’(a)’) ’ salt cell abort signal’
                  return
               end if
c
c     send a signal back to the chemical cell with the prbt
c     batch number, pha volume, density and composition
c
                  tank = ’ prbt’
               msgtype = 2
               call transmit (tank,mptid,msgtype,msgcode,
     &                        nbatch,lpha,pha_rho,pha_vol,
     &                        pha_con,time,time0,delt)

               x_pha = .true.
            else if (x_pha .and. nsignl.eq.0) then
               x_pha = .false.
               isignl = 0
            end if
         end if
      end if

      tset   = time
      pha_dt = delt
      pha_mt = float(isignl)

      return
      end
c
c     subroutine to transmit pvm messages
c     containing transfer information
c
      subroutine transmit (tank,mptid,msgtype,msgcode,
     &                     nbatch,ncomp,density,volume,
     &                     conc,time,time0,delt)

      implicit double precision (a-h,o-z)

      include ’../fpvmz.h’

      dimension conc(ncomp)

      character*5 tank

      call pvmfinitsend (msgcode                 ,info)
      call pvmfpack     (real8   ,time   ,1    ,1,info)
      call pvmfpack     (integer4,nbatch ,1    ,1,info)
      call pvmfpack     (integer4,ncomp  ,1    ,1,info)
      call pvmfpack     (real8   ,density,1    ,1,info)
      call pvmfpack     (real8   ,volume ,1    ,1,info)
      call pvmfpack     (real8   ,conc   ,ncomp,1,info)
      call pvmfsend     (mptid   ,msgtype        ,info)
c
c     write out transfer information
c
      write (*,’(  /,a,f12.5)’)  ’         time = ’, time
      write (*,’(2x,2a,i2   )’)  tank,  ’ batch = ’, nbatch
      write (*,’(    a,i2   )’)  ’   components = ’, ncomp
      write (*,’(   2a,f12.5)’)  tank,’ density = ’, density
      write (*,’(1x,2a,f12.5)’)  tank, ’ volume = ’, volume
      do i=1,ncomp
         write (*,’(4x,2a,i2,a,f12.5)’) tank,’(’,i,’) = ’, conc(i)
      end do
c
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c     check for time deficit between parts of process
c
      if (time0.gt.time) then
         delt = delt + time0 - time
      end if
      write (*,’(a,f12.5)’) ’ time deficit = ’, delt

      return
      end
$Endcode
****


