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compatibility and long-term criticality control
in the repository.  Testing has been
performed to fully characterize the
degradation products of the MD-SNF form
with neutron absorbing material additions
under static aqueous conditions relevant to
the proposed repository.

Previous work done at Argonne National
Laboratory on irradiated U-Al fuel coupons
documented the formation of silica-
substituted aluminum hydrogels, uranyl-
silicates, uranyl-oxyhydroxides and
becquerelite in drip tests conducted in
equilibrated natural J-13 water at 90°C.v i

II.  DESCRIPTION OF WORK

Corrosion Test Program
A testing protocol guide to support the
repository disposal of aluminum-based
spent nuclear fuel forms was recently issued
by ASTM.vii  Corrosion testing per this guide
is ongoing.  The corrosion testing to date
has included vapor, static, single-pass flow,
and electrochemical tests on uranium-
aluminum and surrogate melt-dilute
materials.

Static coupon tests were performed in
synthetic J-13 water spiked with sodium-
hydroxide to produce a pH of approximately
of 11.  Table 1 displays the nominal
concentration of the starting sodium
hydroxide spiked J-13 waters.
These tests were run at 90°C for 3 month
exposures.  The goal for these test was to
identify/characterize the type of corrosion
products formed during degradation of U-Al
alloys expected from the melt-dilute
treatment technology.  Several different alloy
compositions were examined in these test
and they are given as follows:  eutectic U-Al,
U-Al-3Gd, U-Al-3Hf, U-Al-1.5Gd-1.5Hf, U-Al-
1.5Si, and U-Al-1.5Si-3Gd.

Table 1.  Nominal Composition for
Sodium-hydroxide Spiked Synthetic J-13

Species Concentration
(ppm)

Al 0.87
B 1.48

Ba 14.1
Ca 10.0
Cd <0.0028

Co <0.0088
Cr <0.01
Cu 0.02
Fe 0.04
Li <0.02

Mg 1.31
Mn <0.0018
Mo <0.02
Na 1670
Ni 0.03
P 0.34

Pb <0.138
Si 40.1
Sn <0.052
Sr 0.03
Ti <0.028
V <0.026
Zn 0.16
Zr <0.0096
La <0.14
Ag <0.06

Characterization of the corrosion products
formed on the surfaces of the surrogate U-Al
alloy coupons were analyzed using x-ray
diffraction(XRD) and scanning electron
microscopy (SEM).  For the SEM analysis,
,the coupons surfaces as well as cross-
section were examined.  Energy Dispersive
Spectroscopy was performed on these
samples to identify the elemental species in
the corrosion products.

III.  CHARACTERIZATION RESULTS

Eutectic Al-U Alloy
Characterization of cross-sectioned samples
from a eutectic U-Al coupon was performed
using SEM and EDS.  Figures 1 and 2 show
coss-section SEM image of the coupon.
EDA analysis from points A and B resulted
in determination of alumino-silicates and
uranyl-silicates as shown in Figures 3 and 4.
XRD results were inconclusive as to
identifying the exact alumino-silictae and
uranyl-silicate due to a relatively thick
aluminum-oxide layer on the surface of the
sample.



A  

Figure 1.  Eutectic U-Al Alloy with
Corrosion Product Layer

B

Figure 2.  Corrosion Product Layer on a
Eutectic U-Al Alloy

Figure 3. EDS scan from point A in Figure
1 Indicating Alumino-silicate Corrosion
Product

Figure 4.  EDS scan from point B in
Figure 2 Indicating Uranyl-silicate
Corossion Product

Al-U-3Gd Alloy
Examination of the eutectic U-Al doped with
3wt% gadolinium using SEM showed a
similar corrosion product microstructure to
that of the base eutectic U-Al alloy, Figure 5.
Analysis of the corrosion product regions
with EDS once again showed the presence
of Al-oxides, alumino-silicates, and uranyl-
silicates, Figures 5 and 6.  The uranyl-
silicate corrosion product in these samples
appears interdispersed within the alumino-
silcate products, Figure 7.  A possible
explanation for this occurrence is that
formation of the alumino-silicate begins from
the Aluminum matrix trapping UAlX particles,
which subsequently undergo the reaction to
form the uranyl-silcates.

A

Figure 5  SEM Photomicrograph of
Corrosion Product Layer on a U-Al-Gd
Alloy



Figure 6. EDS scan from point A in
Figure 5 Indicating Alumino-silicate
Corrosion Product

Figure 7.  SEM Photomicrograph of
Uranyl-Silicate Corrosion Product

Figure 8.  EDS Analysis of Uranyl-silicate
Corrosion Product

Al-U-3Hf Alloy
The U-Al-3Hf alloy coupon was coupled to
an A36 carbon steel coupon during testing
to simulate the melt-dilute Al-SNF form in a
carbon steel liner.  Characterization of this
coupon following exposure showed similar
microstructural features to the previous
exposed samples with the exception of small
patches of particles the alumino-silicate

layer that appeared as “feathery needles”,
Figure 8.  EDS analysis of these “feathery
needles” returned a result of an iron-based
compound, Figure 9.  XRD results
preliminarily identified the compound as
“green rust”  Fe6(OH)12(CO3).   These “green
rust” particles are < 1� in size.

Figure 9.  SEM Photomicrograph of
“feathery needle” Corrosion Product on
U-Al-3Hf Coupled to A36 Carbon Steel

Figure 10.  EDS Analysis Indicating an
Fe-O-C Compound Identified as “green
rust’-- Fe6(OH)12(CO3).

Al-U-1.5Gd-1.5Hf Alloy
The U-Al-1.5Gd-1.5Hf alloy was also
coupled to A36 carbon steel during testing.
Characterization of this sample using SEM
and EDS showed the formation of uranyl-
silicates, alumino-silicates, and “green rust”
on the surface of the sample, Figures 10-15.
It is interesting to note the presence of
gadolinium in the uranyl-silicate corrosion
product.  This indicates that collocation of
the neutron absorber (Gd) with the initial
UAlx particle in the starting microstructure
remains even after reaction  to form the
uranyl-silicate.
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Figure 11.  SEM Image of Corrosion
products on a U-Al-1.5Gd-1.5Hf Alloy

C
Figure 12.  SEM Image of Thin Corrosion
Product Layer

Figure 13.  EDS Scan from point C in
Figure 12—Indicating “green rust”
corrosion product layer

Figure 14.  EDS Scan from point B in
Figure 11—Indicating alumino-silicate
corrosion product layer

Figure 15.  EDS Scan from point A in
Figure 11—Indicating uranyl-silicate
corrosion product layer

IV.  SUMMARY

Characterization of the uranium-aluminum
alloys, including neutron absorbers, in these
static cell tests with high pH modified J-13
water at 90°C showed the formation of
alumino-silicates and uranyl-silicates.

Preliminary indications from these tests
demonstrate that gadolinium remains co-
located with uranium containing corrosion
products.  This provides a technical basis for
a waste form involving integral neutron
absorbers.
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