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Abstract: In this work, a computationally efficient Bayesian framework for the reduction 

and characterization of parametric uncertainty in computationally demanding environmental 3-D 

numerical models has been developed. The framework is based on the combined application of 

the Stochastic Response Surface Method (SRSM, which generates accurate and computationally 

efficient statistically equivalent reduced models) and the Markov Chain Monte Carlo method. 

The application selected to demonstrate this framework involves steady state groundwater flow 

at the U.S. Department of Energy Savannah River Site General Separations Area, modeled using 

the Subsurface Flow And Contaminant Transport (FACT) code.  Input parameter uncertainty, 

based initially on expert opinion, was found to decrease in all variables of the posterior 

distribution. The joint posterior distribution obtained was then further used for the final 

uncertainty analysis of the stream baseflows and well location hydraulic head values. 

Index terms: 6309 - Decision making under uncertainty; 1832 - Groundwater transport; 

1869 - Stochastic processes; 3210 - Modeling 

Keywords: SRSM, Bayesian Inference, Metropolis Hastings, Markov Chain Monte 

Carlo (MCMC), Input Distributions, Uncertainty Analysis, Groundwater Flow 

1 Introduction 

In many environmental applications, complex computer programs are often used to 

model and analyze real phenomena. The systematic accounting of parametric uncertainty in such 

models is valuable, as this aids in the quantification of the degree of confidence in model 

observations and data. Uncertainty almost always exists in such systems in both the observed 

data and in the parameters themselves (such as recharge rate and conductivity fields in the case 

of models of groundwater flow) and its disregard may easily lead to ill-fitted or poorly calibrated 
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models.  Additionally, for environmental problems, prior information on physically reasonable 

values of these parameters is also often available from expert analysis/opinion/experience, as is 

calibration information in the form of actual field measurements of the model predicted output 

quantities (observational data). This leads to an interesting and challenging parameter estimation 

problem, namely, the adjustment of the prior uncertain information in view of the comprehensive 

environmental model and the observed field data. 

The Markov Chain Monte Carlo (MCMC) approach is a class of numerical Bayesian 

inference methods that address many of the problems associated with the estimation of model 

parameters for complex nonlinear systems. Bayesian inference is particularly suited to the 

estimation of parameters in mechanistic models because a priori information on physically 

reasonable values of these parameters can be conveniently incorporated into the parameter 

estimation process, in the form of informative prior distributions. MCMC methods generate 

probability distributions rather than point estimates for model parameters, and use a probabilistic 

framework to “merge” the information contained in observational data with the prior information 

about model parameters. 

In the case of computationally intensive models, often encountered in environmental 

applications, the time and resources required by MCMC methods can prove to be prohibitively 

expensive when applied directly to the complex numerical codes themselves (which may have 

substantial individual simulation run times). The present work utilizes the Stochastic Response 

Surface Method (SRSM, Isukapalli 1999) in order to provide a statistically equivalent reduced 

model, which serves as a computationally efficient but sufficiently accurate surrogate for the 

original model in the numerical Bayesian inference step. 
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Through SRSM, the statistics of outputs of an uncertain system are approximated by 

series expansions of standard random variables containing coefficients that can be calculated 

from the results of a limited number of model simulations. The utility of the reduced model rests 

in the computationally fast evaluations of approximations of the outputs of the complex code (via 

polynomial evaluations); this provides a feasible and convenient route to apply the MCMC 

techniques indirectly to the complex model. 

Once the Bayesian inference procedure is complete, and model parametric input 

uncertainty is estimated in a manner consistent with observed data (which in essence, is an 

“inverse modeling” task), the resulting joint posterior distribution of the inputs can be utilized to 

estimate uncertainty in the outputs of the full model. This is once again done accurately and 

efficiently via the use of the SRSM. 

The simulation of saturated groundwater flow beneath the U.S. Department of Energy 

Savannah River Site General Separations Area (GSA)  (Figure 1 and Figure 2), using the 

Subsurface Flow And Contaminant Transport (FACT) code (Hamm and Aleman 2000), requires 

model inputs such as three-dimensional conductivity fields and a two-dimensional recharge rate 

field, in which uncertainty is inherent. However, this uncertainty can be fairly well characterized 

through expert opinion, based on years of collected data and experience gained through 

traditional trial and error model calibration. FACT is a complex three-dimensional transport 

model employing the finite element method for the numerical solution of the continuity equation 

and Darcy's Law and is computationally quite demanding, averaging about half an hour per 

FACT code simulation (when run on a Sun Fire 280R with two 750MHz UltraSPARC III CPUs 

and 4GB memory). Quantities of interest in the uncertainty analysis tasks are model outputs such 

as hydraulic head values (for which actual data are available from field measurements) and 
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stream baseflow rates. The methods and results presented in this paper are new developments 

which build upon and extend those described in the article by Balakrishnan et al. (A Comparative 

Assessment of Efficient Uncertainty Techniques for Environmental Fate and Transport Models: 

Application to the FACT Model, submitted to Journal of Hydrology, 2003) 

The following sections of this paper describe the uncertainty analysis procedure, the 

Bayesian inference task and its numerical solution via the MCMC technique, followed by the 

details of SRSM and the case study that employs these methods. 

2 Framework for Empirical Bayesian Uncertainty Reduction and Analysis 

The task of parametric uncertainty analysis, as used in this work, refers to deterministic 

computer codes (where the program run twice on the same inputs results in identical outputs 

being produced) being run over ranges, or distributions of input parameters, thus resulting in 

corresponding distributions of output quantities of interest. The objective here, is to make 

inference about the distributions of the outputs of the complex computer code, given a joint 

distribution of input parameters. It should be noted that the underlying assumption in this type of 

analysis, is that the complex code accurately or adequately predicts the outputs of interest over 

the entire range of input conditions. It is thus assumed that model or structural uncertainty 

(where the model itself is in question) is minimal in the cases examined. When such effects are 

strong, the proposed procedure may not be the most appropriate and the reader is referred to 

Draper (1995) and Kennedy and O’Hagan (2001) for discussion/description of alternative 

treatments.  In order to proceed with parametric uncertainty analysis of this type, it is evident that 

an input distribution of parameters is necessary. While it is often the case that physical 

constraints combined with expert opinion are sufficient to specify these input distributions and 
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hence successfully carry out an uncertainty analysis, it is often more desirable to incorporate in a 

consistent manner any available observed data relating to the actual phenomenon being modeled, 

in order to obtain a more accurate estimate of the uncertainty in the input parameters - a task that 

the Bayesian framework is ideally suited to. 

In this manner the Bayesian inference task may be viewed as updating/refining 

uncertainty “encapsulated” in the expert opinion based input distributions (e.g. Brand and Small 

1995). Examples of previous work on these lines and some pertinent references include Kennedy 

and O'Hagan (2001), Currin et al. (1991), Brand and Small (1995), and O'Hagan et al. (1999).  

Further references that deal with similar inference tasks from an “inverse modeling”/model 

calibration perspective can be found in Hill (1998) and Porter (2000). While analytical results are 

tractable for idealized cases where significant simplications in input and model assumptions can 

be made (for example the linearization of flow equations), the present approach to this problem 

makes no restrictions on the complexity of the model or process itself and aims to have the input 

distributions specified in a fairly unrestrictive manner while making posterior (i.e. updated) 

Bayesian inference numerically via MCMC simulation. This work most notably differs from the 

previous (and more standard) approaches to Bayesian methods in hydrogeology (Christakos and 

Li 1998, Christakos et al. 1999; Kitanidis 1986, Kitanidis 1995, Kitanidis 1997; Woodbury and 

Ulrych 2000, etc.) by providing a common framework to enable the utilization of available 

complex computer codes (in our case study, a three-dimensional finite element code) in the 

Bayesian inference task, as well as the inverse modeling task.  



Revised Manuscript 001810 

-7- 

2.1 Markov Chain Monte Carlo Simulation 

MCMC simulation involves the generation of numerical approximations of a distribution 

using the probabilities of individual realizations of the distribution. In a Bayesian context, the 

distribution of interest is the joint posterior distribution of the model parameters P(θ|d), which 

incorporates both prior information on the model parameters θ, as well as additional information 

in the form of observed data d. The joint posterior distribution of the model is then given by 

Bayes rule as: 

( | )P θ d  ∝  ( | ) ( )P Pθ θd  

where P(θ) is the prior distribution and P(d|θ) is the likelihood function for model parameters. In 

general, P(θ|d) cannot be estimated directly, because it is usually not possible to sample from the 

likelihood function. However, it is possible to calculate the value of the likelihood function for a 

given realization of the model parameters, and MCMC exploits this property to generate samples 

from P(θ|d) when the chain has converged. A sufficiently large number of these samples can be 

used as a good numerical approximation of P(θ|d). Figure 3 shows a flowchart entailing the steps 

involved in a typical MCMC simulation. 

A number of algorithms exist that allow the construction of the Markov chain. For the 

purpose of this study, one of the most widely applied algorithms was employed, namely, the 

Metropolis-Hastings algorithm (Metropolis et al. 1953, Hastings 1970). When using a symmetric 

proposal distribution ( 1) ( 1)( ( * | ) ( | *))t t
t tJ J− −=θ θ θ θ  the Metropolis-Hastings algorithm  involves: 

1. Obtaining θ(0), an initial realization of the parameter vector. 

2. Obtaining θ(t), the tth realization of the parameter vector by : 
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a. Sampling from a proposal distribution, Jt(θ*|θ(t-1)), to obtain a candidate 

parameter vector θ*, 

b. Calculating an acceptance probability α as:  

( )
( )

( )
( )( 1) ( 1) ( 1)

* | | * ( *)
| | ( )t t t

P P P
P P P

α
− − −

= =
θ θ θ
θ θ θ

d d
d d

 (1) 

 

c. Accepting the candidate point as per 

( )( )
( 1)

* with probability min ,1
otherwise.

t
t

α
−


= 


θ
θ

θ
 

 

The Markov chain generated by the Metropolis-Hastings algorithm will eventually 

converge to the distribution used in the calculation of the acceptance criteria (which is the joint 

posterior distribution of model parameters, in this case) for any form of the proposal distribution 

given that the Markov chain is ergodic (Gilks et al. 1996). 

A crucial aspect of MCMC simulation is the verification of convergence of the Markov 

chain to a stationary distribution. The present study, employs two widely used diagnostic 

convergence metrics, the Gelman and Rubin (1992) and Brooks and Gelman (1998) criteria. As a 

large number of iterations of the steps of the algorithm are usually required for convergence, the 

computational constraints imposed by complex models necessitate the use of a computationally 

efficient, yet accurate surrogate model of the process, for which we advocate the use of the 

SRSM. 
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2.2 The Stochastic Response Surface Method 

The Stochastic Response Surface Method (SRSM, Isukapalli 1999) is an extension of the 

classical deterministic Response Surface Methods and the Deterministic Equivalent Modeling 

Method (Tatang 1995). The motivation underlying the development of the SRSM was to reduce 

the number of computationally demanding full model simulations required for adequate 

estimation of statistics of their output probability densities, as compared to conventional methods 

of uncertainty analysis (like Monte Carlo, Latin Hypercube sampling etc.). This is accomplished 

by approximating both the inputs and outputs of the uncertain system through series expansions 

of standard random variables; the series expansions of the outputs contain coefficients that can 

be calculated from the results of a limited number of full model simulations. Thus, successful 

application of the SRSM results in generating a computationally less demanding, statistically 

equivalent, reduced model of the chosen system outputs. 

Evaluating an SRSM expansion consists of the following steps (Figure 4): (a) input 

uncertainties are expressed in terms of a set of standard random variables (srvs), (b) a functional 

form is assumed for selected outputs or output metrics, and (c) the parameters of the functional 

approximation are determined. 

The srvs are selected from a set of independent, identically distributed (iid) normal 

random variables, }{ n
ii 1=ξ , where n is the number of independent inputs, and each ξi has zero 

mean and unit variance. When the input random variables are independent, the uncertainty in the 

ith model input Xi, is expressed directly as a function of the ith srv, ξi; i.e., a transformation of Xi 

to ξi is employed. Such transformations are useful in the standardized representation of the 

random inputs, each of which could have very different distribution properties. Table 1 presents 
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a list of transformations for some probability distributions commonly employed in transport-

transformation modeling. In cases where the random inputs are correlated and the 

interdependence of the variables described by a correlation matrix, a transformation process can 

be applied to the inputs as outlined in Isukapalli (1999). 

The next step involved in implementing SRSM is expressing the series expansion of 

normal random variables in terms of Hermite polynomials; the “polynomial chaos expansion” 

(Ghanem and Spanos 1991).  When normal random variables are used as srvs, an output can be 

approximated by a polynomial chaos expansion on the set }{ n
ii 1=ξ , given by: 
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where y is an uncertain output of the model, the …
1i

a s are deterministic constants to be 

evaluated, and the ( )
piip ξξ ,,

1
…Γ s are multi-dimensional Hermite polynomials of degree p, given 

by: 

 

 ( ) ( ) 1 1
2 2

1

1

, , 1 ,
T T

p

p

pp

p i i
i i

e eξ ξ ξ ξξ ξ
ξ ξ

−∂
Γ = −

∂ ∂
…

…
 (3) 

 



Revised Manuscript 001810 

-11- 

where ξ is the vector of p iid normal random variables }{ p

kik 1=
ξ , that are used to represent input 

uncertainty. 

It is known that the set of multi-dimensional Hermite polynomials form an orthogonal 

basis for the space of square-integrable probability distribution functions, and that the 

polynomial chaos expansion converges in the mean-square sense (Ghanem and Spanos 1991). In 

general, the accuracy of the approximation increases as the order of the polynomial chaos 

expansion increases and thus the order of the expansion can be selected to reflect accuracy needs 

and computational constraints. 

For example, an uncertain model output y, can be expressed via first, second and third 

order SRSM polynomial approximations, y1, y2 and y3 as follows: 
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where n is the number of srvs used to represent the uncertainty in the model inputs, and ai,m, aij,m, 

aijj,m, and aijk,m are the coefficients to be estimated, where m represents the order of polynomial 

expansion. 

The final step in the SRSM implementation is to determine these coefficients of the 

polynomial chaos expansion, which is accomplished through an extension of traditional 

collocation methods that is based on a combination of regression and an improved input 

collocation scheme called the Efficient Collocation Method (Isukapalli 1999). This improved 

sampling scheme selects points based on a modification of the standard orthogonal collocation 

method of Tatang (Tatang 1995, Villadsen and Michelsen 1978). The points are selected so that 

each standard normal random variable ξi takes the values of either zero or one of the roots of the 

higher order Hermite-polynomial. Borrowing from Gaussian quadrature, this scheme attempts to 

increase the order of behavior a polynomial (of fixed order) can capture. Details of the ECM and 

other aspects of SRSM can be found in Isukapalli (1999), Isukapalli et al. (2000), and Isukapalli 

and Georgopoulos (1999). 

After the set of sample input points is generated using the ECM and suitable 

transformations and corresponding outputs obtained by running the model at these points, 

regression is employed to obtain robust estimates of the coefficients. The model outputs at the 

selected sample points are equated with the estimates from the series approximation, resulting in 
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a set of linear equations with more equations than unknowns. This system of equations is then 

solved using singular value decomposition. 

The final results obtained upon successful application of the above methodology, are 

efficient and statistically equivalent SRSM polynomial expansions that accurately represent the 

full model outputs given a set of input distributions. 

2.3 Methodology 

The present approach to the problem of parametric uncertainty reduction and analysis of 

complex models, in summary, consists of (I) updating/reducing the uncertainty in the expert 

opinion based input parameter distributions (priors) given additional information, and (II) using 

these updated (posterior) input parameter distributions, which may equivalently be specified in 

the form of the joint distribution of these parameters, for the task of uncertainty analysis of the 

output quantities of interest. 

For complex models, where it is desired to make minimal restrictions on the input 

parameters and the model process, itself, step (I) in the above procedure is done numerically via 

MCMC. As it is often unfeasible to apply MCMC techniques to convergence on the complex 

models directly, we suggest the use of SRSM expansions to approximate the outputs of the 

complex model in this step (i.e. to create a statistically equivalent surrogate model). The prior 

distributions can be specified based on expert opinion (informative) or can be vaguely 

defined/flat (non-informative) depending on the case specifics. SRSM expansions can handle 

both these types of distributions as input variables. SRSM expansions are then fit to the outputs 

of the complex model as shown in the previous subsection and these expansions used in the 

numerical Bayesian uncertainty updating. 
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In other words, what we propose for step (I) is:  

1. An SRSM approximate model of the complex model outputs, of appropriate 

order, be fit following the exposition in the previous subsection and the 

development in equations 2-6, based on the prior distributions of the parameters. 

This results in functions of the form y(θ), that give direct input output relations 

(Note that the srvs ξi  are related to corresponding θi’s through the functions used 

to fit the θi’s,  e.g. via Table 1).   

2. Numerical Bayesian inference then be carried out via MCMC based on the 

statistically equivalent SRSM approximate model constructed in the previous 

step. Note that likelihood values P(d|θ), for the probability model under 

consideration, are now evaluated based on the SRSM polynomial outputs, ( )y θ . 

Once the Bayesian inference step is complete and the joint posterior distribution of the 

input parameters has been obtained (i.e. the MCMC simulation deemed converged), this joint 

posterior distribution can then be used as an updated input to the statistically equivalent SRSM 

model (the same expansions utilized in the Bayesian inference step) and step (II) carried out to 

obtain the final uncertainty analysis of the outputs of the system. 

The following sections introduce the case study, which is a steady state groundwater flow 

model of the U.S. Department of Energy Savannah River Site General Separations Area using 

the FACT code and highlights the various aspects of application of this methodology. 
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3 Case Study Description: The GSA Steady State Groundwater Flow as Simulated by the 

FACT Code 

The General Separations Area (GSA) of the U.S. Department of Energy Savannah River 

Site model covers a 40 km2 area bounded by Fourmile Branch on the south, Upper Three Runs 

on the north, F-area on the west, and McQueen Branch on the east (Flach and Harris 2000). The 

FACT numerical model extends from the ground surface to the bottom of the Gordon aquifer 

(Figure 1 and Figure 2), which is overlain by the Upper Three Runs aquifer. 

Groundwater from the Upper Three Runs (UTR) aquifer unit is assumed to discharge 

equally from each side of Upper Three Runs, Fourmile Branch and McQueen Branch.  

Therefore, these streams provide natural, no-flow boundary conditions for most of the UTR 

aquifer unit.  On the west side of the unit, hydraulic head values from a contour map of measured 

water elevations are prescribed.  The Gordon aquifer is assumed to discharge equally from both 

sides of Upper Three Runs and so a no-flow boundary condition is specified over the north face 

of the model. Lacking natural boundary conditions, hydraulic heads are specified over the west, 

south and east faces of the model within the Gordon aquifer. Areas of groundwater recharge and 

discharge, consistent with computed hydraulic head at ground surface, are computed as part of 

the model solution using a combined recharge/drain boundary condition, applied over the entire 

top surface of the model. Groundwater discharges to surface water in regions where the 

computed head is above ground elevation.  The Subsurface Flow And Contaminant Transport 

(FACT) code is a transient three-dimensional, finite element code designed to simulate 

isothermal groundwater flow, moisture movement, and solute transport in variably saturated and 

fully saturated subsurface porous media (Hamm and Aleman 2000). The code is designed 

specifically to handle complex multi-layer and/or heterogeneous aquifer systems in an efficient 
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manner and accommodates a wide range of boundary conditions. The code uses simple 

rectangular (plane or brick) elements that can be deformed in the vertical dimension to 

accommodate stratigraphic variations. 

The groundwater flow equation is approximated using the Bubnov-Galerkin finite 

element method in conjunction with an efficient symmetric PCG (Preconditioned Conjugate 

Gradient, ICCG) matrix solver.  

The areal resolution of the model is 200 ft2 except in peripheral areas.  There are 108 

elements along the east-west axis, and 77 elements along the north-south axis.  The vertical 

resolution varies depending on hydrogeologic unit and terrain/hydrostratigraphic surface 

variations. Each hydrostratigraphic surface is defined by numerous picks ranging in number from 

approximately 70 to 375 depending on the surface.  The Upper Aquifer Zone (UAZ) of the UTR 

aquifer unit is represented with 9 finite-element layers in the vertical direction.  The vadose zone 

is included in the model, although the physical processes therein are not modeled in detail. The 

Lower Aquifer Zone (LAZ) contains 5 finite-element layers while the Tan Clay confining Zone 

(TCZ) separating the aquifer zones is modeled with 2 vertical elements. The Gordon confining 

and aquifer units each contain 2 elements, for a total of 20 vertical elements from ground surface 

to the bottom of the Gordon aquifer.  The 3D mesh size is therefore 108x77x20=166,320 

elements or 109x78x21=178,542 nodes. 

Hydraulic conductivity values in the model are based directly on a large characterization 

database comprised of approximately 85 pumping and 481 slug test data points, 258 laboratory 

permeability measurements, and nearly 37,500 lithology data records.  The conductivity field is 

heterogeneous within hydrogeologic units and reflects variations present in the characterization 
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data. The initial conductivity values are further refined through model calibration to observed 

heads in wells. 

Prior groundwater budget studies provide an estimate into the average natural recharge 

over the entire model domain.  Various man-made features (e.g. basins) provide additional 

recharge in localized areas. 

The estimated discharge rates to Upper Three Runs, Fourmile Branch, McQueen Branch, 

and Crouch Branch and predicted seepage faces within the model domain are consistent with 

field observations. Simulated hydraulic heads, vertically-averaged over the entire thickness of 

the upper UTR, lower UTR, and Gordon aquifer zones, agree well with potentiometric maps 

based on measured heads. Simulated flow directions vertically-averaged over the entire thickness 

of the aquifer zones further agree with conceptual models of groundwater flow. 

4 Application of the Bayesian Framework to the GSA as Simulated by the FACT Code 

4.1 Numerical Bayesian Uncertainty Updating 

The three-dimensional conductivity fields and the two-dimensional recharge rate field are 

the dominant uncertain inputs to the saturated flow model for the analysis considered in this 

work. This is consistent with the earlier uncertainty analysis of the area (Balakrishnan et al., A 

Comparative Assessment of Efficient Uncertainty Techniques for Environmental Fate and 

Transport Models: Application to the FACT Model, submitted to Journal of Hydrology, 2003). 

Each zone is heterogeneous and five key uncertain variables for the GSA simulated by the FACT 

model were taken to be the vertical hydraulic conductivity field (Kv) values for the Gordon 

Confining Unit (GCU) and the Tan Clay Confining Zone (TCCZ), the horizontal hydraulic 
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conductivity field (Kh) values for the Lower UTR Aquifer Zone (LAZ) and the Upper UTR 

Aquifer Zone (UAZ) and the groundwater recharge rate (RECH). 

As in the previous uncertainty analysis, the problem was simplified, by individually 

assigning a global multiplier to each of the three-dimensional conductivity field variables as well 

as one to the two-dimensional recharge rate field. The global multiplier ensures that relative 

spatial variations dictated by characterization and subsequent model calibration are preserved, 

while the mean value of the field is perturbed (Flach and Harris 2000). The main output variables 

monitored were the simulated hydraulic head values in the various aquifers (which are direct 

model outputs) and the stream baseflows in the main discharge regions (Fourmile, Crouch and 

McQueen Branches and the Upper Three Runs) which are model post processed results.  The 

uncertainty updating task for the GSA as simulated by the FACT code essentially consisted of 

fusing (via numerical Bayesian inference) the information contained in the measured values of 

hydraulic head data with the model simulated values and the prior uncertain distributions, in 

order to obtain updated model and data consistent input parameter distributions. Hydraulic head 

field measurements were available for a total of 667 well locations which were divided into three 

groups according to their corresponding aquifers. The three groups have 79, 173 and 415 wells 

located in the upper UTR, lower UTR and the Gordon Aquifers respectively (a total of 667 

wells).  The vector of these measured hydraulic head values dk,l, corresponds to the observed data 

d, as specified in our development. In this and further expressions, the subscript k will be used to 

index the set of observed well locations ( { }1, 2, ,667k∈ … ). The subscript l, is uniquely 

determined by k, and is used simply to specify which of the three aquifers the kth well is located 

in ( { }1,2,3l∈ ). 
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The expert opinion based prior distributions derived from measurements and traditional 

model calibration for global multiplier variables were the same as those used in the previous 

uncertainty analysis study, namely independent random variables with the distributions shown in 

Table 2 (Note: the Log10normal(µ,σ) distribution refers to a random variable whose Log (base 

10) of the distribution results in a Normal distribution N(µ,σ)). 

These priors were used as the input distributions for the application of the SRSM. 

Collocation points were generated based on these input distributions, the full model was run at 

these specified points and results were collated in order to obtain the coefficients of the SRSM 

polynomials for each of the outputs under consideration (all 667 well hydraulic head values and 

stream baseflow rates). Both second and third order SRSM expansions were fit to the full model 

outputs requiring only 51 and 191 simulations, respectively. The convergence of the resulting 

output distributions obtained by SRSM polynomials of second and third order revealed that 

second order SRSM polynomials were sufficient for the representation of this system. Note that 

we employed the heuristic method advised in Isukapalli (1999) for this decision, i.e. that the 

order of SRSM expansion was determined as the lower of two successive orders (second and 

third order in our case ) of SRSM expansions whose output probability distribution functions, as 

estimated by the SRSM polynomials, were deemed visually convergent. Figure 5 shows the 

resultant second and third order SRSM polynomial based probability distributions obtained at a 

particular well location (for its hydraulic head value) and a stream baseflow (for the discharge 

rate). In order for the reader to gauge the accuracy of the expansions, also shown on the plots are 

the probability distributions estimated via a Monte Carlo sample (of 1000 realizations) from the 

prior distribution. Thus, a second order SRSM approximate model for the GSA as simulated by 

FACT was obtained, i.e. expressions of the form y2,k(θ) (based on equation 5). MCMC 
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simulation using the Metropolis-Hastings algorithm was subsequently implemented on the 

SRSM reduced model as follows; the probability model utilized was: 

 , 2,( ) ( )k l k ld y ε= +θ θ  (7) 

i.e., the observed well hydraulic head value dk,l(θ) is modeled as the sum of y2,k(θ), the SRSM 

approximated hydraulic head value and εl ∼N(0, σl), a normally distributed random error with 

zero mean and variance σl.  Three independent error models were utilized for each of the three 

output groups corresponding to each aquifer ( { }1, 2,3l∈ ), as we expected the magnitudes of 

random error to be similar only within each aquifer.  This often used Gaussian probability model 

lends itself to easy interpretation, in that we assumed that the outputs the SRSM model provided 

were consistent and unbiased at any set of inputs, but that each actual observation itself was 

likely to be correct only to an approximation due to independent normally distributed random 

errors (which can be interpreted as due to effects such as measurement error, noise etc.).  

The priors for the uncertain variables (global multiplier values) were chosen as described 

previously, with each aquifer error model variance σl, set as a parameter to be estimated by the 

Bayesian inference process (non-informative/flat priors were used for these quantities). Thus, the 

final vector of parameters for Bayesian inference θ, consisted of the five uncertain global 

multiplier variables and three unknown probability model variances σl. The proposal 

distributions Jt(θ*|θ(t-1)) were each chosen to be Gaussian with the evolving MCMC parameter 

realization values as their mean values and variance set at 20% variance of their corresponding 

prior (enabling the direct application of the symmetric proposal distribution acceptance 

probability given in equation 1). The Gaussian probability model in equation 7, then simply 

determines the likelihood value P(d|θ), via the expression: 
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( ) ( )( )
667

, 2,
1

| | ,k l k l
k

P d yϕ σ
=

=∏θ θd  

where ϕ is the Gaussian density function (which can be easily evaluated given any realization of 

the parameters, θ, and the measured hydraulic head values, d). 

Sets of highly overdispersed values were chosen as initial points of the MCMC 

simulation and 4 chains were successfully run for 10,000 iterations. After confirming 

convergence, the final joint posterior distribution of the input parameters P(θ|d), was obtained 

after discarding the initial burn-in (the first half of the converged chain) for the chain with the 

least variance in the most variables. 

4.2 Final Uncertainty Analysis 

Subsequent to obtaining the converged joint posterior distribution of the input 

parameters, two further stages of analysis were carried out in order to obtain the final output 

variable distributions (the stream baseflow rates and the well location hydraulic head values). 

First, in order to validate the accuracy of the reduced model for the purposes of the final 

uncertainty analysis, the full model (GSA as simulated by the FACT code) was run on the largest 

practically feasible subset of the converged joint posterior distribution of the inputs (which 

consists of 5,000 realizations of the MCMC simulation). Current computational limitations 

placed this constraint to about 1,000 full model simulations, and hence, the joint posterior 

realizations of the chosen chain (5,000 realizations) were sampled at every fifth location for a 

final sample size of 1,000 realizations. 

The second stage of analysis was then carried out wherein the output distributions for the 

converged chain were computed at every location of the chosen converged chain (at each of the 
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5,000 realizations using the SRSM second order approximation to the full model). Note that this 

allowed for direct comparison of the accuracy of the SRSM reduced model of the GSA as 

simulated by FACT, as both the full model and reduced model output values were available at 

the same input parameter values. 

Upon successful validation of accuracy of the reduced model, the complete joint posterior 

distribution of the inputs obtained via the MCMC simulation was fully utilized for the 

uncertainty analysis task by the computation of SRSM approximated values of the ouputs in 

order to obtain the final output distributions of the system variables. 

5 Results and Discussion 

The four MCMC simulations performed with the SRSM second order reduced model of 

the system, converged to practically identical joint posterior distributions. Convergence 

characteristics of the chains were confirmed via two well-known MCMC multiple chain 

convergence criteria, Gelman and Rubin (1992) and Brooks and Gelman (1998). The maximum 

value of the Gelman and Rubin’s R  metric was found to be 1.007 over all the parameters. The 

maximum Potential Shrink Rate Factor (PRSF) value (used by the Brooks and Gelman criteria) 

over all the parameters was found to be approximately 1.01 (in both cases, values close to 1 are 

deemed convergent). 

Subsequent analysis of the joint posterior distribution was based on the final 5,000 

realizations (discarding the initial half of the chain as burn-in) of the converged chain whose 

variance in the most input parameters was found to be minimal, namely chain 4. It serves to note 

though, that the choice of the chain has an insignificant effect on the remaining analysis and 
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results, based on the convergence of all the chains to a practically identical joint distribution of 

parameters. 

The uncertainty in the posteriors, when compared to the priors, as evaluated by Shannon's 

( )E In p    metric (Shannon and Weaver 1964), was found to decrease for all the variables, as 

indicated by the positive value of information gain, which is defined as 

( ) ( )( )0 *IG E In p E In p   = − − −     where p0 and p* are the prior and posterior probability 

density functions, obtained in the case of each uncertain variable (Figure 6). The computed 

values of IG were 2.18, 1.62, 3.37, 0.8 and 6.93 for the GCU Kv, LAZ Kh, TCZ Kv, UAZ Kh and 

recharge rate global multiplier distributions, respectively. Thus an uncertainty reduction has 

indeed been achieved by the Bayesian “fusion” of the field observations and the model 

predictions as approximated by the SRSM expansions. 

This fact was further corroborated by running the full model with the global multiplier 

values set at the mean posterior parameter values and comparing the results of such a simulation 

to those obtained with the global multiplier values set at the mean prior parameter values (which 

was the nominal point of the expert opinion based analysis before the numerical Bayesian 

inference procedure). Results showed that the Root Mean Square (RMS) error for the hydraulic 

head values for all three groups had indeed become lower upon utilization of the selected 

posterior based parameter values (an overall drop from 4.65 to 4.56 for all the 667 well head 

locations). Corresponding reductions were also observed in the maximum deviations within the 

group and average deviations from the target observed well location hydraulic head values. 

Additionally, information about the possible correlations between the global multiplier 

model input parameters was also estimated from the posterior parameter joint distribution (based 
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on the responses monitored, namely, the well location hydraulic head values). Figure 7 shows the 

pairwise scatter plot matrix showing the joint posterior input distrubtion correlations obtained for 

chain 4.  

Finally, the uncertainty analysis of the outputs of the system was carried out in the two 

stage manner as stated in the previous subsection. For the 1,000 realizations subset of the final 

converged joint input posterior distribution, the full model and SRSM reduced model predict 

very similar output values for the quantities of interest, examples of which can be seen in Figure 

8 and Figure 9. Plots such as these and the low root mean squared error for the output quantities 

(representative values over the 1,000 realizations for the hydraulic head values of wells BGO 8A, 

BG 93 and BG 26 in groups 1, 2 and 3 are 9.8x10-6, 2.4x10-4 and 2.2x10-3 and those for the 

stream baseflows in the Fourmile Branch and Upper Three Runs are 5.5x10-4 and 6.38x10-4) 

highlight the accuracy of the reduced model on the posterior input parameter realizations and 

permit the computation of the output distributions based on the complete joint posterior 

distribution as approximated by the second order SRSM reduced model of the system. A set of 

final output distributions, are shown in Figure 10, showing representative distributions of the 

computed hydraulic head values for a well from each aquifer/group and the stream baseflow 

rates for the Fourmile Branch and the Upper Three Runs. 

Thus, the application of an efficient Bayesian framework of analysis has been 

demonstrated; this framework can aid practitioners in dealing with the task of the uncertainty 

analysis of complex computer codes in the presence of additional observational information.  

The framework was successfully applied to the steady state groundwater flow of the U.S. 

Department of Energy Savannah River Site GSA as simulated by the FACT model. Uncertainty 

in the posterior distributions generated by the numerical Bayesian inference procedure applied to 
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the statistically equivalent (SRSM) reduced model of the system was found to decrease and the 

final uncertainty analysis of the system was successfully completed. The work lends to easy 

extension in the form of various other algorithms for the MCMC procedure itself and for the 

future incorporation of model/structural uncertainty into this Bayesian framework. 
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Figure Captions 

Figure 1. The simplified conceptual model of the General Separations Area showing the various 

aquifer units, recharge/discharge areas and mechanisms (figure adapted from Flach and Harris 

2000) 

Figure 2. An isometric view of the General Separations Area model highlighting the model finite 

element mesh 

Figure 3. Flowchart outlining the typical steps involved in MCMC simulation 

Figure 4. Flowchart outlining the steps involved in the SRSM Procedure 

Figure 5. The convergence of the distributions for establishing the adequate order of SRSM 

expansion. Shown are representative probability distribution functions for (a) a well from the 

LAZ aquifer (Well BGO 8A) and (b) a stream baseflow (the Fourmile Branch). Each plot shows 

the Monte Carlo (MC) and SRSM approximated distributions (both second and third order), 

which are visibly convergent 

Figure 6. Comparison of the expert opinion based prior distributions and the post-MCMC 

analysis based updated posterior marginal distributions for the uncertain variables in the system  

Figure 7. The pairwise scatter plot matrix of chain 4 highlighting the joint posterior model input 

distribution correlations. The diagonal shows the marginal distributions of the variables  

Figure 8. Comparison of the full model (GSA as simulated by the FACT code) predictions vs. 

the SRSM reduced model predictions of the hydraulic head values of Well BG 26 (in the Gordon 

Aquifer) at the 1000 (every fifth sampled) input points of the joint posterior distribution 
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Figure 9. Comparison of the full model (GSA as simulated by the FACT code) predictions vs. 

the SRSM reduced model predictions of the stream baseflow discharge rate of the Fourmile 

Branch at the 1000  (every fifth sampled) input points of the joint posterior distribution 

Figure10. Final marginal probability distributions obtained after the uncertainty analysis based 

on the SRSM approximated outputs with the joint posterior distribution (obtained after the 

MCMC simulation) as input. Shown are the marginal distributions for a representative well from 

each aquifer (top row left to right) and the stream baseflow rates in the Fourmile Branch and the 

Upper Three Runs 
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Tables 

Table 1. Representation of common univariate distributions as functionals of normal random 

variables 

Distribution Type Transformation 

Uniform (a, b) 






 +−+ )2/(

2
1

2
1)( ξaba  

Normal (µ, σ) σξµ +  

Lognormal (µ, σ) )exp( σξ+µ  

Gamma (a, b) 3

9
11

9
1









−+

aa
ab ξ  

Exponential (λ) 






 +− )2/(

2
1

2
1log1 ξ

λ
 

Weibull (a) 
ay
1

 

Extreme Value )log(z−  
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Table 2. Distributions of the uncertain inputs (global multipliers for the conductivity fields and 

recharge rate field) for the uncertainty analysis study 

Variable Units Distribution Type Parameters (µ, σ) 

GCU Kv ft/d Log10normal -5, 0.75 

LAZ Kh ft/d Log10normal 0.9685, 0.15 

TCCZ Kv ft/d Log10normal -2.2, 0.5 

UAZ Kh ft/d Log10normal 0.9823, 0.15 

RECH in/yr Normal 18, 3.1 
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Figure 1. The simplified conceptual model of the General Separations Area showing the various 

aquifer units, recharge/discharge areas and mechanisms (figure adapted from Flach and Harris 

2000) 
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Figure 2. An isometric view of the General Separations Area model highlighting the model finite 

element mesh 
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Figure 3. Flowchart outlining the typical steps involved in MCMC simulation 
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Figure 4. Flowchart outlining the steps involved in the SRSM Procedure 
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Figure 5. The convergence of the distributions for establishing the adequate order of SRSM 

expansion. Shown are representative probability distribution functions for (a) a well from the 

LAZ aquifer (Well BGO 8A) and (b) a stream baseflow (the Fourmile Branch). Each plot shows 

the Monte Carlo (MC) and SRSM approximated distributions (both second and third order), 

which are visibly convergent 
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Figure 6. Comparison of the expert opinion based prior distributions and the post-MCMC 

analysis based updated posterior marginal distributions for the uncertain variables in the system  
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Figure 7. The pairwise scatter plot matrix of chain 4 highlighting the joint posterior model input 

distribution correlations. The diagonal shows the marginal distributions of the variables  
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Figure 8. Comparison of the full model (GSA as simulated by the FACT code) predictions vs. 

the SRSM reduced model predictions of the hydraulic head values of Well BG 26 (in the Gordon 

Aquifer) at the 1000 (every fifth sampled) input points of the joint posterior distribution 
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Figure 9. Comparison of the full model (GSA as simulated by the FACT code) predictions vs. 

the SRSM reduced model predictions of the stream baseflow discharge rate of the Fourmile 

Branch at the 1000  (every fifth sampled) input points of the joint posterior distribution 
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Figure 10. Final marginal probability distributions obtained after the uncertainty analysis based 

on the SRSM approximated outputs with the joint posterior distribution (obtained after the 

MCMC simulation) as input. Shown are the marginal distributions for a representative well from 

each aquifer (top row left to right) and the stream baseflow rates in the Fourmile Branch and the 

Upper Three Runs 

 


