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MARK 22 REACTIVITY
 INTRODUCTION |

Calculations for reactivity held in control rods have -

underpredicted the observed Mark 22 reactivity by 100 (/B to 200 [/B.

Reactivity predi:tions by charge designers have accounted for this

by including large biases which change with exposure and reactor
region.

The purpose of the study described here was to thoroughly
investigate the methods and data used in the reactivity
calculations. The goal was to identify errors and improvements and
make necessary corrections.

SUMMARY

Several improvements in Mark 22 reactivity calculations have
peen identified and implemented. These improvements yvield
significantly better agreement between calculated and observed
reactivity held in control. The calculated change in reactivity
with increasing exposure now agrees with observed data. The large
difference in absolute reactivities for stage 1 Mark 22 operation
has been reduced by a factor of 3. A constant bias factor of
+55 /B can be applied to account for the remaining difference
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during single stage and stage 1 operation, and a constant bias
factor of -30 /B can be applied to account for the remaining
difference during stage 2 operation.

Thorough investigation of methods and data has failed to
obtain complete agreement between calculated and observed data.

The remaining difference is probably due to the following:

© Bias exists in measurement of target and control rod 61,1
contents.

o Nuclear cross section data, including recent improvements,
are still not adeguate.

¢ Methodology of the JASON code for calculating axial burnup
is inexact.

Routine application of the neutron transmission method for
measuring ®Li contents of standards was proposed in a previous
study.ls2 It is recommended that this proposal be
implemented and current standards be remeasured. An engineered
fac111ty for routine measurement using neutron transmission coudd
1m§rove the accuracy of ®6Li measurements by a factor of 2 to
3.

Investigation of input specifications normally used for GLASS
Mark 22 calculations revealed inadeguate nuclear data and incorrect
vertical leakage3. Corrections for these problems have included
developing improvements to SRL nuclear data and use of 40/B for
vertical leakage. Mark 22 GLASS calculations should be made using
improved data for 235y, 6Li, Al, and fis»ion products
described in this document. Mark 22 JASON calculations should use
a data library based on GLASS and the new data. JASON calculations
should be made using vertical leakage buckling of 40LEB.

Future improvements are planned for nuclear cross section data
and JASON methodology for calculating axial burnup. These
improvements should eliminate deficiencies in nuclear cross section
data and JASON axial burnup methodology.

DISCUSSION

GLASS Options

GLASS options were investigated to determine if the options
useéd by SRL and SRP are adeguate for Mark 22 calculations. These
options include transport method, resonance method, energy group
structure, geometric mesh point spacing, and subregion geometry.
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GLASS calculational options nominally used when generating
PLRMEQ libraries for use with JASON are integral transport and
CREEP resonance calculations. These options were compared against
state-oi- Lhe art Monte Carlo and RRR1DZ4 resonance calculations.

In a sample Mark 22 lattice buckling calculation integral transport
results were shown to agree very closely with Monte Carlo results.
The statistical error associated with the Monte Carlo calculation
is 11 4B at 95% confidence. A similar comparison of results from
the CREEP and RRR1DZ resonance treatments shows agreement within

10 /B, with CREEP being higher than RRR1DZ. Use of Monte Carlo and
RRR1DZ will not reduce the difference between observed and
calculated reactivity.

A 37 group energy structure is normally used for Mark 22 GLASS
calculations. An 84 group energy structure was used in a sampl
problem. Results from the 37 group structure agree with result
from the 84 group structure to within 1 UB.

T
L
e
s

A previous study> showed GLASS results for kefs depend
on mesh point spacing and recommended a spacing interval of 0.01 cm
for Mark 22 calculations. A buckling calculation was made with
0.005 cm mesh spacing; the result agrees with a 0.0l cm mesh -
spacing calculation to within 1 //B.

another GLASS option is the use of subregion to divide
_regions. Use of subregions provides a more detailed representation
of the flux gradient because the flux is averaged in each subregion
rather than over an entire region. Mark 22 GLASS calculations are
normally made with coolant and moderator regions divided into 2 or
3 subregions and all other regions not subdivided. Doubling the
‘numter of moderator and coolant subregions resulted in no change in
GLASS buckling results. Subdividing fuel and target regions into ¢
subregions along with doubling moderator and coolant subregions
also produced no buckling change.

GLASS options nominally used for Mark 22 calculations
(integral transport, CREEP resonance treatment, 37 group energy
structure, 0.01 cm mesh point spacing, moderator region
subdivision, and no subdivision of fuel and target) are therefore
sufficiently accurate. No substantial improvement can be gained by

more detailed calculations. Comparison of GLASS options is
summarized in Table I.

Nuclear Data

Good nuclear data are essential for accurate prediction of
reactor parameters. Several sets of nuclear data are available for
use with GLASS calculations. 1In addition newer data than that in
SRI, datasets are available. Evaluation of the adequacy of current
data is discussed in the following paragraphs.
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Nuclear data for 235U in the current JOSHUA.STD.MULTIGRP
dataset versions STANDARD and STD37 are based on ENDF/B-III
(Evaluated Nuclear Data Files B, Version III) of 1972 with SRL
modifications.® Nuclear data for 61i and Al are from data
prior to ENDF/B~III. Comparisons with more recent data were made
to evaluate the adeguacy of data for Mark 22 calculations. Recent
data (ENDF/B-V) for Al have a smaller epithermal neutron absorption
cross section. Recent 23°U data have different fission and

capture crossvﬁggtipns and IV values, leading to a higher value for

T (where = 52L%??- = number of neutrons emitted per neutron
£ VY
absorbed.)

At this time* SRL processing codes are not compatible with
ENDF/B-V data formats. ENDF/B-IV however was processed and
provides the same 61,i and Al data as does ENDF/B-V. ENDF data
for 235y was modified between version IV and version V. The
largest effect of this modification on_Mark 22 calculations is in
the increase inT). A modified set of 4°°U data, called
U235E4/5 was developed for temporary use with Mark 22 calculations.
The modified 235Uy data consists of pure ENDF/B-IV cross
sections anéd modified ENDF/B-IV DV data. The lV modification wasg
derived so thermal 77 of U235E4/5 is equal to thermal 7] of
ENDF/B-V. The effects of improved nuclear data on GLASS buckling
results are summarized in Table II. After update of SRL data

processing codes ENDF/B-V data will be processed for use with
GLASS.

P F o Y )

Results from a previous investigation3 into GLASS fission.
product data were used in this study. As discussed in i
documentation3 of that previous study, the SHIELD’/ system
offers an alternative to the fission product poisoning treatment in
GLASS. The SHIELD calculation is more detailed, requires more
computer time, and is usually not used when generating JASON
libraries. Comparison of GLASS and SHIELD fission product
poisoning indicated fission product data for GLASS was inadeguate
In particular the cross sections for 147pn, 148pm, and
148mpy in JOSHUA.STD were found to be incorrect and the long
term fission product treatment needed improvement. The corrected
147py, 148pm, and 148Mpm cross sections were obtained from W. E. Graves
and used in this study. - Data for a two-lumped fission product

treatment3, accomplished using two fictitious isotopes, were also
obtained from W. E. Graves and used.

*SRL has a program to update data processing codes to be
compatible with ENDF/B-V formats.
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Vertical Leakage

A vertical buckling of 60 /B has been traditionally used in
SRP lattice and reactor calculations to account for vertical
leakage. This value probably was derived from a calculation years
ago assuming a bare reactor. An accurate calculation includes
reflectors and observed Mark 22 flux shape. The result from such a
calculation3 for vertical leakage is 40 {/B. The 40 [/ B value was

used in GLASS and JASON calculations for this study.

SE Measured Buckling

Several Mark 22 lattice buckling measurements® were made in
the Subcritical Experiment (SE) in the early 1370's. The
measurement resulis can be compared with GLASS results to get an
indication of the accuracy of the nuclear data and GLASS methods
(Table III). The calculated buckling is from 25£IB to 55U B low.
An uncertainty of this comparison is the target °Li content of
the measured assemblies (see Appendix A). The buckling differences
between calculations and SE measurements are consistent with
differences between calculated and observed start-of-cycle buckling
in control. This indicates an error of about 50 B in the -

calculation of reactivity for an unirradiated Mark 22 lattice.

JASON Code Changes

Two coding errors in JASON, one in the GRIMHX module and one
in the XGRIM module, were discovered in this study. Both errors
affect calculations that flatten to average fuel powers. The .
GRIMHX error occurs when determlnlng average powers of clusters
‘with vacant pos1tlons. This error leads to incorrect gang power
when vacant positions exist within the gang, such as gang 3 in
cycles C-2 and C-3. Since gang power influences reactivity held in
control, this coding error adversely affects the radial buckllng
shape calculated hu JASON for charge da:lcnq with vacancies in

L = - Ve LQllva o

control regions. The XGRIM codlng error occurs in subroutine GRASP
where a flag is set according to the flattening option chosen. The
error causes JASON to flatten power using maximum fuel powers when
the user specifies average fuel powers. The average fuel power
option is nominally not used by RTD charge designers, so their past
-JASON results are probably not affected. A corrected version of
JASON was used for calculations in this study. The corrected
version of JASON will be made the production version using the
procedures for such a change.

Summary Of JASON Input

TACQAN rvaocoarn + s
JASON presents the user se
in

.important are options concern
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structure, and axial exposure weighting. In future Mark 22 charge
design it is recommended that:

© Patch structure be used for control zone breakup.

o JASON flattening option No. 4 (cluster power is maximum
assembly power, control zone power is average cluster
power) be used.

© No radial power shape be specified
© No axial weighting be used.

Further discussion of these JASON options is contained in
2ppendix B.

Vertical leakage is specified in the INPUT.REX.JASON.SPECS
record. The record in the JOSHUA.STD dataset contains a value of

-i o b Al WL W A wma Ll = =it a2 Lddi2 & v LWwo WMo

60 B. For Mark 22 calculations an INPUT.REX.JASON.SPECS record
should be created in the user's data set with value 40 UB.

Three different JASON libraries were utilized during this -
study. Results reported here were calculated with JASON using a new
library?d with all nuclear data improvements discussed earlier.

This library will be placed in the JOSHUA.STD dataset for future
use with Mark 22 calculations.

Summary Of JASON Calculations

Present JASON reactivity calculations give better agreement
with observed rezuctivity in control than past results (Figure 1).
Past Mark 22 JASON calculations have greatly underpredicted
buckling held in control necessitating large biases be added to
calculated results. Biases, obtained from analysis of Mark 22
operating data, have in the past varied between reactor gangs and
varied with exposure.

Results from current reactivity calculations were compared
with observed data for Mark 22 cycles C-2.1, C-2.2, C-3.1, K-6.1,
and K-6.2. Present calculated results are about 100 B higher than
past calculated results though absolute agreement between
calculated and observed data is still not attained. Present
results (Figure 1) show the change in reactivity as a function of
subcycle exposure agrees with observed data. A constant bias
factor can be applied in each subcycle to account for the absolute
difference. In fact for all calculations other than final charge
predictions a +55 UB bias can be used for all gangs in stage 1 and
a -50 B bias for all gangs in stage 2. Application of these bias
factors gives excellent agreement between calculated and observed
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reactor-averaged reactivity (Figures 2-4) and acceptably good
agreement on a gang-wise basis.

Discussion of Remaining Difference '

Thorough investigation of methods and data failed to obtain
complete agreement between calculated and observed data. The
reactivity difference for stage 1 operation is not the same as the
reactivity difference for stage 2. The stage 1 and 2 differences
will be discussed separately.

The remaining difference for stage 1l or single stage
calculations is probably due to a combination of the following:

o Bias exists in measurement of target and contreol rod 6.1
contents

o Nuclear cross section data, including recent improvements,
are still not adeguate.

Much of the difference is probably due to uncertainty in 6Li
content of fabricated targets. Standards for the nuclear test .
gauge (NTG) have been calibratedls¢ with an estimated absolute
accuracy of +3%. An error in the standards will bias all NTG
measurements. A 3% bias in typical inner target contents will

produce 15 UB error for gang III targets and 25 B error for gangs I
and II. A 3% bias in typical outer targets will produce 20 [UB erro
in gang III and 25 UB error for gangs I and II. Thus a 3% .
uncertainty in 6Li target contents leads to about 45 [/B uncertainity
in reactor averaged reactivity held-in-control.

Bias may also exist in NTG measurements of 6ri in control
rods. The contents of control rod standards were determined in the
early 1970's with destructive analysis and have not been determined
with the neutron transmission method. The destructive analysis
technigue has a history of poor accuracy and comparisonl of
neutron transmission and destructive analysis results for Mark 22
inner targets show differences of 13% to 18%. A bias in control rod
contents would have an impact on the difference between observed and
calculated reactivity held in control.

The best available nuclear data (ENDF/B-V) for 235U cannot
be processed into a form suitable for GLASS because SRL cross
section processing codes are not compatible with new formats
universally used for data storage. Modification of the grocessing
codes is planned for the future. 1In lieu of ENDF/B-V 235U
data, data from ENDF/B-IV was modified and used. It cannot be
determined how much of the remaining discrepancy between calculated
and observed reactivity is due to nuclear data. This remains an
area for possible improvements.
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The stage 2 difference between observed and calculated
reactivity heléd in control is probably due to the items listed for
stage 1 and also due to JASON methodology for calculating axial
burnup. The methodology used in JASON to calculate axial burnup
effects is an approximation. Exposures for different axial regions
are averaged by JASON to determine assembly exposure. If desired
JASON weights the assembly averages with the axial power profile
specified by the user. Generally JASON assembly exposure does not
accurately reflect differences between flux in the central region
and flux near the top and bottom of the assembly. When no axial
weighting is used@ JASON overpredicts start-of-stage 2 reactivity
held in contrecl. When observed axial power is used to weight
assembly exposures buckling in control is close at stage 2 start
but becomes increasingly incorrect as exposure increases.

Three dimensional methodology is being developed to calculate
tivity held in control. The new methodology should provide
istage calculations with no relative bias between stages.
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BUCKLING COMPARISON OF GLASS OPTIONS

Nominal Input

Integral Transport
CREEP

37 energy groups
0.0 cm mesh spacing

3 moderator subregions
and 2 coolant subregions

No target subregions

3 moderator,
1 outer target, 1 inner
target, 1 outer fuel,
and 1 inner fuel

subregions

2 coolant,

_Change

Monte Carlo

RRR1DZ

84 energy groups
0.005 cm mesh spacing

6 moderator subregions
and 4 coolant subregions

2 target subregions

6 moderator,
-y P R
&~ Vil 4
target,
2 inner

4 coolant,
o Y s =X Ly ] q vy
LQLS:\—, FA ARy L R
2 outer fuel,

fuel subregions

DPST-83-992

<1
<l

<1

<1l
<1
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TABLE II

BUCKLING CHANGES FROM IMPROVEMENTS

Improvement ABzm, UB
61i Cross Sectibné 5-10
2741 Cross Sections 15-20
235y Cross Sections 65-75

Vertical Leakage 20

DPST-83-992
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TABLE III

MEASURED/CALCULATED BUCKLING COMPARISON

61 TARGETS, gm/ftd BUCKLING, LB
IRNER OUTER SE MEASUREMENT  GLASS CALCULATION
3.339 1.223 262 233
3.339 1.129 . 374 339
3.339 1 0.923 608 - 581
2.946 1.223 348 318
2.946 1.129 473 424
2.946 0.923 702 667
2.641 1.129 550 497

2.641 0.923 796 741 )

2 Corrections to NTG measurements have been applied to account for
calibration errors.




DPST-83-992

-13~

R. BUCKNER

M.

AMN ‘ginsodx] 10008

006 ooy 00¢ 002z 00! 0
_ i _ ! 1 i 0
T@I0-NOSYF O
INISIHI-NOSVI X i O
03AY¥3ISHO Vv _mu
pusbe’
.. —-00) O
aaaaaaaaaaaaaaa mu e
..... 0
a
|T
- /)
O
>
— <
— | _ _fooz &
ﬁ/))](JS(L ue
. - C
O
j# | &
u-
w 00¢ @
i -
7 9Bpyg } eBoyg 4 w
Av - 00V

SNOLY TNV INISF/1SVd 40 NOSIIVANOD

| AN




DPST-83-892

-14-

M. R. BUCEKNER

aMN .m‘_:m_oaxu 10)oD8Y

006§ ooy 00¢ 00¢ 001 0
| [} | : | | OO—
NOSVF Q3svig x
03AY3ISAO ¢ W// ®)
puabe N i 7_,U
0
®
_ - 002 m.
W O
~ B
/MWf/MVL()Sfbe hog
A J R
ﬁ e
00¢ W
=
«Q
Z 8bpjg { wmc_m Am :mu
v L ooy
SYIE HLUM NOLYINO VO INASdHd

¢ 34NoOid




DPST-83-992

-15-

M. R. BUCKNER

QMW .mr_:m_on_xu 10}0D6Y

00z oSl 0ol 0S 0
. _ | ! 0GZ
NOSVF d3svig X
03AY¥3ISA0 V
puabe ) 005
e %
s{/\(l/l()l(\ll :
: _0o¥
0S¥
005
SYig HLUM NOLVIND VO INASddd
€ NI

g77 ‘Buipong ‘Bay Jojopsy ¢




K—6 Reactor Avg. Buckling, uB

FIGURE 4

PRESENT CALCULATION WITH BIAS

500
400 - Stage 1 f\ Stage 2
300 -]
200 -
Legend

A OBSERYED

X BIASED JASON
100 f AR | 1 1

0 100 200 300 400 500

Reactor Exposure, kMWD

JINAONG "d "W

_9T—

Z66-€8-154d




m. R. BUCKNER -17- DPST-83-992

Appendix A - Historv of Mark 22 NTG Standards

Determination of fuel and target content is made using the
nuclear tfest gauge (NTG). Prior to July of 1979 the NTG operated
in a mode referred to as "full core." In July of 1979 it was
converted to a low-kgfs facility with smaller core size. The
accuracy of the NTG for determination of 6Li content is limited
by the method used for assaying 611 contents in calibration
standards. Prior to conversion to a low-Kkgff NTG, destructive
analysis was accepted as being representative of tube contents. 1In
the destructive analysis approach ring segments are taken from the
ends of the standard or from a companion tube. The lengths of the
segments are carefully measured and the segments are dissolved.
The total lithium content and lithium isotopic¢ ratios are
determined by various analytical procedures. The destructive
analyvsis technigue had a history of poor accuracy. After
conversion to the low-keff NTG, 61,i standards were assayed
using nondestructive thermal neutron transmission
measurements.lr2

At least three sets of standards have been used with the NTG for
Mark 22 assemblies. The first set was used during fabrication of
the first Mark 22 charge, RK-5 (1972}, and the second charge, K-8
{1974). During production testing of the K-9 second subcycle inner
targets, a difference between the calibration curves for the K~9.1
~and K-$9.2 subcycle inner targets was recognized.10,11 The
difference was caused by an error made in 1971 in 6Li chemical
analysis of the target standards. The error resulted from an
incorrect dilution of laboratory standard lithium solution. To
correct for this error NTG measurements of inner and outer target
0Li content should be increased 7% if the targets were fabricated
before the K-9.2 subcycle of 1974.

Another set of standards was used during fabrication of the
third Mark 22 charge, K-4(1978). This set provided the samel?
calibration as the set for K-9, after correcting for the error i
K~-9.1 target measurements. A third set of standards was made for
conversion to the low-kgfg NTG. The standards for the
low~keff NTG_have been analyzed using thermal neutron
transmissionls2 with an absolute accuracy of about + 3%. The
K-4 charge was not irradiated until after conversion to the
low-keff NTG so some K-4 targets were rechecked in the
low-keff NTG. The low-keff NTG results for K-4 inner
targets are significantly different than full core NTG results due
to the new standards calibration. 1Inner targets originally thought
to have 2.20 gm/ft 6Li were found to have 2.60 gm/ft. Inner
targets originally thought to have 2.89 gm/ft 6Li were found to
have 3.26 gm/ft. Using this data a linear eguation can be derived
for the factor to be used when correcting full core NTG
measurements of inner targets.

-

-
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- 7.826 * ®Li content measured

2
n full core NTG

Full core NTG results for outer targets match low-kgsf NTG
results. Resultsl3 from fuel tube measurements however differ.
The differences are attributedl4 to the NTG calibration
technique, destructive analysis sampling methods, interpretation of
data, and uncertainties in the chemical analysis. The average
2357 content of inner fuel tubes were 3.59% lower and the
average 235U contents of outer fuel tubes 1.2% lower when tested
with the low-kgff NTG than with the full core NTG.

all correction factors discussed in this section were applied to
documented® SE contents (Table A-1) for the GLASS calculations. A
significant effort was given to researching the NTG history and all
pertinent facts are believed to have beén uncovered. However use of

NTG ®Li measurements made prior to 1981 should include large
uncertainty.
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TABLE A-1

SE MARK 22 ASSEMBLY CONTENTS

ISOTOPE NTG MEASUREMENT, gm/ft CORRECTED VALUE, gm/ft
235y-~Inner Fuel 117.8 113.6
235y-outer Fuel 131.3 129.7
6Li-Inner Fuel 2.094 - 2.641

2.385 2.946

2.783 3.339°
6Li-Outer Fuel 0.863 0.923

1.055 _ 1.129

1.143 : l1.223.
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APPENDIX B - JASON Calculations

Results
Results from JASON calculations we compared with observed
data for charges C-2.1, C-2.2, C-3.1, K 6 1, and K- 6 2., The

comparisons show there is still an unexplalned difference in
reactivity held in control. Generally it is recommended that JASON
calculations of Mark 22 charges be biased in each gang by +55 UB
for stage 1 and ~-50 B for stage 2. For special applications, such
as specifying final charge design parameters, separate bias factors
should be applied for each gang. These biases can be derived from
Figures B-1 through B-20 or from similar data current to the charge
being designed. Application of the biases above (Figures B-2l
through B-40) gives excellent agreement between calculated and
observed reactor-averaged bucklings and acceptable agreement on a
gang-wise basis.

Observed data was obtained using the Control Rod Production
(CRP) code.l® CRP calculates reactivity held in control rods
using the method and data in reference 16. Reactor-averaged
buckling is based on statistical weights calculated by JASON. -
Observed reactivity data (Figures B-1 through B-20) show various
control rod moves made during reactor operation. Spikes in
observed data indicate reactor scrams. The large initial decrease
in buckling held in control at startup is due to rods being
withdrawn as reactor power is increased and fission product poisons
build in. Curves labeled "JASON-2" are results using JASON
flattening option No. 2 and "JASON~4" are results using flattehing
option No. 4. Curves labeled "-GANG" are results using gang
control structure and specified radial power shape (lables B-1 and
B-2). Curves labeled "-PATCH" are results using patch control
structure and no specified radial power shape.

JASON Options

The JASON code presents the user several options in the input.
Particularly important are options concerning weighted exposures,
structure for control zones, and power flattening. JASON divides
each asscmbe into axial layers {(the number of axial layers is
specified in JASON input) and determines assembly average exposure
by averaging the axial layer exposures. If the user desires JASON
will weight the axial layer exposures by the axial power profile
when determining assembly average exposure. It was found that no

axial weighting is the option for Mark 22 calculations that gives
best buckling agreement.




M. R. BUCKNER -21- DPST-83-992

JASON permits the user several options for control zone
structure and power flattening criteria. The patch and gang
control zone structures were investigated in this study. Two power

flattening criteria were investigated. The two flattening options
are:

1. To determine cluster powers from the average of all Mark 22
assembly powers within each cluster, and then determine
control zone powers from the average of all cluster powers
(denoted "JASON-2" in Figures B-1 through B-20). This is
flattening option No. 2 in the INPUT.JASON.SPECS record.

2. To determine cluster powers from the maximum Mark 22
assembly power within each cluster, and then determine
control zone powers from the average of all cluster powers
(denoted "JASON-4" in Figures B-1 through B-40). This is
flattening option Wo. 4 in the INPUT.JASON.SPECS record.

Observed radial power shapes (Tables B-1 and B-2) were
specified to obtain the JASON results presented here for gang
control zone structure (Figures B-1 through B-20}.

Use of gang control zone structure without specifying radial
power shape was investigated but found to give unsatisfactory
results. Studying Figures B-1 through B-20 and Table B-3 it is
concluded that JASON calculations with patch control zone structure

bk At oam o memde & e N A iz + 1 3 3
and flattening option No. 4 give the most consistent results., Bias

factors reported earlier were derived for this pair of options.




- M. R. BUCKNER -22- DPST—83*932

POWER SHAPES - FLATTENING OPTION NO. 2

RELATIVE PCOWER

CYCLE GANG 1 GANG 2 GANG 3
c-2.1 1.000 0.966 0.881
c-2.2 ) 1.000 0.983 0.897
c-3.1 1.000 0.997 ~ 0.831
K-6.1 1.000 1.006 0.876

K-6.2 1.000 1.001 0.874
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TABLE B-2

POWER SHAPES - FLATTENING OPTION NO. 4

RELATIVE POWER

CYCLE GANG 1 GANG 2 GANG 3
c-2.1 1.000 1.000 0.921
c-2.2 " 1.000 1.000 1.029
c-3.1 1.000 1.020 . 0.959
K-6.1 1,000 1.004 0.957

K-6.2 1.000 1.004 0.959




M. R. BUCKNER -24- DPST-83-992

FIGURE B-3

JASON/OBSERVED BUCKLING DIFFERENCES

AB2 (OBSERVED B2 - JASON B2.), UB
CR CR
CYCLE GANG CANG-2 GANG-4 PATCH-2 PATCH-4
c-2.1 1 . 58 60 39 58
11 53 : 67 48 65
11T - 63 ~112 48 | -26
RX 38 33 57 50
c-2.2 1 - 48 -110 - 66 50
11 - 21 93 - 63 -44
111 -168 -284 24 -58
RX - 65 - 64 - 36 _47
c-3.1 1 70 68 68 69
II 36 93 17 71
111 - 47 - 32 ' 181 64
RX 59 59 81 70
K~6.1 1 18 22 37 27
11 94 91 - 30 66
111 9 7 118 43
RX 37 37 43 42
R-6. 2 I -4 -4 - 48 -47
11 -1 -1 154 -50
111 -131 ~130 11 -74
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FIGURE B—-4
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Gang 2 Buckling, uB

FIGURE B-14
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K—6.2 BUCKLING IN CONTROL RODS
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Reactor Avg. Buckling, uB

K—6.2 BUCKLING IN CONTROL RODS
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FIGURE B—26

C—29 BUCKLING IN CONTROL RODS
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Gang 2 Buckling, uB

FIGURE B-30
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