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ABSTWCT

The governing equaticns for transient natural convection in

eccentric annular space a!resolved with two high–order accurate

numerical algorithms. Tk~e equation set is transformed into bipolar

coordinates and split into two one-dimensional equations: finite

elements are used in the direction normal to the cylinder surfaces;

the pseudospectral technique is used in the azimuthal direction.

Transient solutions of the entire flow field are obtained for

ld<Ra<106, 0.70<Pr<102,” with the inner cylinder near the top,

bottom, and side of the c)uter cylinder. Results are similar to

experimental and numerical values previously published for low Ra

numbers .

INTRODUCTION

Natural convection in concentric annuli has been studied for

many years. Numerous articles can be found in the literature which

describe both experimental and numerical results.1-4 Natural con-

vection in eccentric annlllar space, although not analyzed as exten–

sively, has begun to receive more attention over the last few



years . Natural convect iol~heat transf?r in eccentric annuli occurs

in many industrial situations. Such problems commonly occur within

the electric and nuclear energy fields, as well as in solar energy

and thermal storage systems. For example, the cooling of under-

ground electric transmission cables is significantly affected by

the position of the inner cable within the outer housing. Simi-

larly, the cooling of nuclear fuel and target tube assemblies

following irradiation must be carefully monitored in the event of

assembly burnout due to inner tubular eccentricities. Likewise,

natural convection cooling of casks containing nuclear waste can

exceed thermal ~nidelines if positioning becomes overly eccentric.

In this study free convection flow within an eccentric annulus is

numerically solved using bipolar coordinate transformation and one–

dimensional finite element and pseudospectral algorithms. Steady

state results are compared with existing theoretical and experi-

mental data.

Forced convection in eccentric annuli was investigated by

Trombetta5 using approximation methods and a least squares tech-

nique for various radius ratios and eccentricity. Similar studies

for laminar flow through an eccentric annulus was made by Guckes.6

Both Newtonian and non-Newt:onian fluid flows were calculated using

bipolar coordinates and a finite difference technique. An ana-

lytical study of free convection in eccentric annuli was conducted

by Yao,7 using perturbatior~ techniques with the eccentric space
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transformed into a unit circle. Analytical solutions were obtained

for slightly eccentric annuli with Ra<10 4 for constan~ cylinder wall

temperatures .

Bofh numerical and experimental studies of natural convection

and thermal conduction in annular regions was undertaken by Ratzel,

et ala A finite element procedure using isoparametric elements was

employed. Cylinder walls were held constant; the inner cylinder

temperature was also allowed to vary. Steady state streamline and

isotherm distributions in concentric regions were obtained for

3x102<Ra<9.7x104; eccentric annular distributions were obtained for

1.2x104<Ra<2.2x104 .

Free convection flow in eccentric annuli was modeled by

Projahn, et al.g using body-fitted curvilinear coordinate transfor-

uiations10 and the strongly implicit finite difference procedure.

Solutions were obtained in the half-plane for varying vertical

eccentricities. Results for both horizontal and vertical eccen-

tricities were com- pared with data obtained by Kuehn and

Goldstein. 11 Bipolar coordinate transformations have also been

recently used to calculate flow and temperature distributions

through an eccentric annular duct by Feldman, et al. ,12~13

following the work of Synder and Goldstein.14

Recently, Prusa and Yau15 numerically simulated eccentric

annular free convection between two cylinders for Gashof numbers

<16,900 and various vertical displacements of the inner cylinder.

The governing equations for steady laminar flow in polar coordi–

nates were nondimensionalized and transformed into a unit circle
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(the boundary of the inner cylinder becomes a pole at the center of

the unit circle). The transformed equations were solved for one-

half of the circular domain using finite differences with several

mesh spacings. Computation times ranged from 50 seconds to several

hours on a CDC 175 for 10-4 residual convergence. Results agreed

favorably with experimental data and analytical solutions obtained

using perturbation techniques at low Gr numbers. 7

Problem Analysis

The problem to be analyzed consists of free convective flow

developed in the cross section of an eccentric annulus, as shown in

Figure 1. The geometry and configuration lends itself readily to

bipolar coordinates, e.g., Synder, 16 E1-Saden, 17 and Redberger and

Charles.l[] Transformation frolnrectangular (x,y) to bipolar co-

ordinates ($,n) is obtained from the relations

c sinh nx=- (la)
(:oshn-cos$

Y
c sin 5=_ (lb)
coshn–cos$

where c=ri sinh~i=ro sinhno and ~i and denote inner -and outer annulus

surfaces defined

ni = cosh-l

no = cosh-l

with y=ri/ro and

no as

[

Y(1+A2) + (1-AZ)
2Ay 1

[y

(1-AZ) + (1+A2)
2A 1

~=e/(ro-ri).

(2a)

(2b)
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The inner surface, as depicted in Figure 1, is assumed to be

heated tclconstant temperature, Ti. The out?r surface is held

constant at a lower temperatllre, To, thus establishing a tempera-

ture differential which leads to free convective flow.

Tne governing equations are defined in bipolar coordinates

(Appendix. A) as

= PrD~2w+ PrRa (B~+~)

A aT aUT aUT__BavT -avT——
%- a$

— -
‘Ban as an

D72’T

i2Y=-;w

(3)

(4)

(5)

az ~ a2
where 72 = ——— —

a 52
w is vorticity, T is temperature, Y is

a~2’
streamfunction, A = c/(sin$ sinh~), B = (1 - cosh~ cos$)/(sin$

sinhrl), a,ldD = (coshrl- cos$)2/(c sin$ sinh~), Pr is the prandtl

number, and Ra is the Ray Leigh number. The velocities, u and v,

are defined as:

u
[

= -~ (1 - cosh~ cos~) ~+ sinhq sin$ ~
c 1

v
[

= ~ sinhq sin$ ~- (1 - coshq COSS) ~
1

The boundary conditions associated with Equations (3-5) are

T(~i> $) = 1> T(~o> $) = 0> T(~j - ~) = T(~, T)

Y(~ij $) = Y(~oj 5) = 0> ‘(~, - ‘) = ~(~j ‘)

D a2’y
w(Tli, s) =W(no,$) = -— — W(ri, - Tr)= W(n, Tr)

A a~2,

(6)

(7)

(8)

(9)

(lo)
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Numerical Solution Technique

Application of bipolar coordinates results in :“~.?,l~?TT5ical

plane beirlg transformed into a rectangular domain,~~~:g as shown

in Figure 2. A finite element recursion relationzo and a pseudo-

spectral n~thod21>22 are used to solve Equations (3) and (4).

Equation (5) is solved by cyclic reduction.23

The problem is strongly governed by the non–periodic ~ bound–

ary conditions, for which the finite element technique is well

suited. The pseudospectral method is ideal for periodic boundary

value pro~lems, as established by the conditions at $ = -n, n.

Cubic spline techniques and other compact operators are also viable

alternatives to solving the equation set.

Equations (3) and (4) are solved in a fractional sequence,

allowing the equation set to be solved with basic one-dimensional

algorithms . The resulting equation system is solved sequentially

in each coordinate direction. The advantages of using these

methods over more conventional finite difference methods lie in

their high order accuracy, equivalent computational speed, and ease

of implementation.

Application of the techniques is straightforward. For

example, Equation (3) is first split into two equations

(ha)

(llb)
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where W* denotes intermediate vorticity values. A similar sequence

is performed for Equati,>n (4) . For a one-dimensional uniform ele-

ment lengl:h, the basic recursi~n rzlation for the n direction (llb)

is written as20

+ $i(”i-l - ‘i+l )

_l-2ui)

(12)

where Ui is the velocity at node point i, $ is either vorticity

.
or temperature, @ denotes tiletime derivative, k is either

Prilor D according to the equation being solved, and Q is the

temperature gradient term (or zero).

!1simple tridiagonal algorithm is used to solve the equation.

The time derivative terms are expressed as new and old values using

Crank-Nicolson time averaging.

are expressed by assembling the

element, i.e., the boundary and

Boundary relations at ~i and no

element expression over one

first interior node. 20

Upon solution of the one dimensional transport equation in the

n direction, $ is solved in the $ direction by a one-dimensional

pselldospectral technique. The :ime dependent Fourier components

A (~,t) in one–dimensional spectral space are determined

from the distribution of $ in physical space, i.e.,

~(k,t) ‘~; $ exp(ik~) (13)

where N is the number of ~sh points spanning the $ coordinate

direction, i is ~, t is time, and ~ is the wave number

defined as
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(14)

where nj ass’~nes integer values as ‘W/2<nj<X12. After the

Fourier cornponel.tsare obtained, the derivatives are evaluated

directly by the relations

(15a)

32+— := ~ -k2A(i,t)exp(it5) (15b)
~$2

i’

These transforms are evaluated using a Fast Fourier Transform

algorithm.24 ?eriodicity of the boundary conditions, as i[~posed by

Equation (10), is easily accommodated by the pseudospectral tech-

nique. Equation (ha) is solved using the values obtained for the

spatial derivatives and forward-in-time differencing.

Results

Solutions to the transformed equation set were calculated for

102<Ra<10’;. Solutions were begun with w and T set to zero within

the computational domain for Ra<10. A 20x20 mesh was used with

A$=.331, ~.n=.040, and At=.OO1. Computations were made on an IBM

3081; an average of 500 iterations were required to achieve 10-3

Convergence fOr VOrticitY ((Wnew-Wo~d)/Weld). Studies were

conducted with the inner cylinder oriented near the bottom, top,

and side of the outer cylinder.

To assess model accuracy, a nearly concentric (A=.001) case was

simulated, and values of local equivalent conductivity, 25926 Keg,

vs. azimuthal location (S=e) compared with values obtained by
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Projahn, et al. ,9 and Kuehn a~d Goldstein 25 for Ra = 5 x 104, Pr=O.7,

and y=2 .6. A perfectly concentric situation is not possible using

bipolar coordinates as A=O causes the equations to becor,e degener-

ate. Figure 3a compares results from the present study with both

experimental and numerical data.9,23 The model predicts similar

conductivity values for the concentric case. Figure 3b shows com–

parisons for two eccentric cases, A=.652 and A=-.623. Ra values

for ~=.652 (near the top of the outer cylinder) and A=–.623

(bottom) were 4.8 x 104 and 5 x 104, respectively. The appearance

of a premature maximum in the outer cylinder for Keg and X = 0.652

at o = 40° was also observed by Prusa and Yao15 for Gr = 16,900.

This effect is due to flow inhibition between the two cylinder

surfaces; convection heat transfer decreases and conduction

increases as 3 + OO. Model predictions for Keg vs. o agree fairly

well in the remaining configurations with published data. 9>15925

Figure 3C shows equivalent conductivity values with the inner

cylinder offset laterally from the center of the outer cylinder for

A=.65 and Ra=104. Results from the present model are not in close

9 but appear toagreement with results obtained by Projahn, et al. ,

follow the same general trend and curve shape.

Streamline and isotherm plots are shown in Figures 4 and 5 for

Ra=102-106 with A=-.625 and A=.625, respectively. The flow field

and temperature distributions are essentially symmtric. Half-

plane results obtained by Projahn, et al.g are similar in appear-

ance; differences in values are principally due to boundary
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conditions and coordinate transformations e~ployed, ~esh size, and

the order of numerical accuracy between finite diff~rence and

Galerkin mthods. An increase in Rayleigh number creates an

increase in overall strength and circulation pattern for all

orientations of the inner cylinder. positioning the inner cylinder

towards the bottom of the outer cylinder increases the overall heat

transfer and flow strength, and supports similar conclusions

obtained in previous studies. 9,15,25 Solutions tended to be

independent of Prandtl number when ?r >10.

Velocity vector plots are shown in Figures 6a through 6C for

Ra = 104 and Ra = 105 with A = f0,325 and A = fO.625. Vectors

without tails denote very low velocities. Two large recirculatin~

cells appear witnin the annular space between the two cylinders, as

previously shown in Figures 4 and 5. As the fluid approaches the

cylinder walls, ‘Jelocity gradients become large and the local heat

transfer increases. The effect of ‘increasing the eccentricity is

shown by comparing Figures 6a and 6b for Ra = 104. An increase in

velocity (and cell strength) occurs as A increases from -0.325 to

-0.625. As the flow approaches the top of the inner cylinder,

buoyancy <:auses the fluid to become more vertically oriented. The

boundary layer decelerates at the top of the inner cylinder and

separates from the surface; the flow becomes entrained within the

thermal p~lume. Upon hitting the outer cylinder wall, the flow

cools very rapidly and travels downward. Conduction heat transfer

dominates between the two cylinders at the bottom of the inner

cylinder; convection becomes dominant as the flow travels around
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the inner surfac~. In this configuration the annular space is

sufficiently large enough to permit smooth deceleration of

velocity; this leads to the development of a strong vortex as the

flow returns to the heated inner cylinder.

Velocity vectors for the positive eccentric case also show

large velocity gradients near the inner and outer cylinder walls.

Conduction now becomes the dominant mechanism of heat transfer in

the annular space at the top of the inner cylinder. As the fluid

returns along the outer cylinder wall, the flow cools and

approaches a region of relatively stagnant fluid where convection

is wea’~. This region is also evident in Figure 5. The effect of

convection becomes more inhibited in the region between the inner

and outer cylinders for A = 0.625; this is understandable since the

upper region is now inadequate to permit rapid acceleration of

fluid motion around the inner cylinder.

The (effect of increasing the Rayleigh number is shown in

Figures 6b and 6c. In this instance, A = tO.625, fiile the

Rayleigh number is increased from 104 to 105. As expected, the

velocities increase significantly for both displacements, and the

velocity );radients become steeper near the cylinder walls. The

onset of i~small secondary vortex is just beginning to appear for

A = -0.625 immediately above the two large cells adjacent to the

inner cylinder. For A = 0.625, the increase in Rayleigh number

increases the flow velocity and cell strength; however, the two

large cel;ls shift slightly upwards and the bottom stagnant region

appears relatively unchanged.
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It i.sapparent that the mesh spacing near the cylinder walls

cannot accurately resolve the boundary layer development and local

flow behavior for problems where Ra >105. Although the =sh is

somewhat coarse, the numerical methods do p~ovide a reasonable

approximation to the bulk fluid motion and temperature pattern.

A plot of the overall Nusselt number, NU, vs. Rayleigh

number is shown in Figure 7 for y=2.6 and A=.325 with Pr=O.7 and

Pr=100. The average Nusselt number is based on the local values at

r=ri and r=ro.25

obtained by Kuehn

the inner Nusselt

(. -.

Results are in close agreement with values

and Golds tein.ll The transformed relation for

number (convection) is.

(16)

which is integrated to yield an overall

The integral in Equation (16) is solved

Nusselt number at ri.

by Simpson’s rule. A

similar relation is obtained for the value at r=ro. The mode of

heat transfer is essentially one of conduction at low Ra numbers

(<103). ‘TheNusselt number for conduction is obtained using the

equation8P 25

Nucd =

[

cosh-l (r~+~~-e2)/2r r
oi

1
me overall Nusselt number is calculated by the relation

(17)

[ 1
Nu = Nu~5 + NU15 1/15 (18)

Cv cd

where Nut,, in the averaged overall Nusselt number for convection.

Equa!:ion (18) is used to compromise the effects of both

conduction and convection in obtaining the overall Nusselt number.
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The exponential value of 15 was chosen by Kue;l;l~iliGolds tein25 t:]

fit experimental data, and was similarly used i> t;lisstud~: to

compare with their results.

The effect of pos~tion of the inner cylinder significantly

influences the local Nusselt numbers. A decrease in the inner

Nusselt number occurs when the inner cylinder is moved towards the

upper region of the outer cylinder; accordingly the outzr Nusselt

number increases. An increase in Prandtl number (<100) creates

only a slight increase in the overall Yusselt ntiv5er.

Conclusions

me solution of natural convection flow in the eccentric

annular space betveen two isothermal cylinders has been obtained

for 102<Ra<106 and .7<Pr<102. The transient equation set of

vorticity and temperature was transformed from rectangular to

bipolar coordinates and solved with two high order accurate one-

dimensional algorithms. A linear finite element recursion relation

was used [:0solve the transport equations normal to the cylinder

surfaces; a pseud~spectral technique was used to solve the periodic

equations tangential to the surfaces. Both algorithms are simple

to use and computationally efficient.

Computational damping and dispersion errors associated with

both mthods are low, (especially in the pseudospectral method).

The abilities of both methods to resolve steep gradients is well

documented in the literature. The use of one dimensional algo-

rithms keeps core requirements and computational time small; less
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t!lan100 k byte stora;: .{i~srequired for Ehe problems addressed in

t-hisstudy. Stzady-sta:z sol~tions -were achieved within approxi–

mately 1.5 minutes CPU for Ra >105 on an IBM 3081 computer.

Computational results support data previously published in the

literature. In negative eccentric displacements, heat transfer

rates are greater than in concentric configurations. }Ieat transf2r

rates are lowest when the inner cylinder is displaced upwards

toward the outer cylinder. In horizontally eccentric configura-

tions, local conductivities are nearly symmetric about each verti-

cal half-plane; streamlines and isotherms are displaced slightly

from the mid–plane axis.

As the Prandtl number increases, heat transfer rates increase

slightly; the recirculation center tends to shift slightly upwards

for Pr>10 in concentric and negative displacement ?ositions. A

multicellular flow regime begins to develop for vertical

eccentricities when Ra=105; flows appear to be nearly symmetric

within the entire plane. At Ra=106, a multicellular flow regime is

developed but no flow oscillations occur, although the flow is

slightly asymmetric. Appendix A

The governing equations for free convection flow can be written

in rectangular coordinates and non-dimensional variables20 as

aT aT aT_ = 72T
E+u%+vay

(1A)

(2A)

T2Y = -w (3A)
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‘*here w i;ivort icity, T is temperature, Pr is the Prandtl number,

Xa is the Rayleigh number, Y is stream function, and u and v are

the velocity components defined as

(4A)

(5A)

Transformation of Equations (1A-3A) to bipolar coordinates are

performed by use of the chain rule and Equations (1) and (2) in the

text . First -derivative terms are transformed readily by employing

where J-l

e Jacobian mtrix (J-l)

= J-l

is defined as

s Uch that

J-l=l

[

-sinhn sin$ l-cosh~ COS$
c cosh~ COS$-l -sinhq sin$ 1

(6A)

(7A)

Second derivative terms come from repeated application of the chain

rule and Equation (7A). ~us, ~?.becomes

V2 =
(

cosh~-cos$

)
2 72

c
(8A)

Temperature is held fixed at r=ri and r=ro. Calculations

involving the Nusselt number require temperature gradients normal

to the two cylinder surfaces, i.e. , ~ me derivative ~
ar/ri,ro” ar

is transformed by the relation
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(9A)

and ernploymeat of Equation (6A); thus, Equation (9A) becomes

( )

aT _ cos$-coshn aT
z’ m

(lOA)
c

A prclliminary transformation of the equation can be made if the

inner cylinder is horizontally displaced (rotated) in the y direc–

tion. A simple axis rotation of the rectangular coordinates can be

made pric~r to transforming to bipolar coordinates, i.e.,

(11A)
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Nomenclature

= c/(sin$ sinhn)

= (1-t:oshn cos$)/(sin5 sinhn)

.
‘i sinh Vi = r. sinhno

= (coshn-cos$)2/(c sin$ sinh~)

= eccentricity, X*–Xi

= acceleration of gravity

= heat transfer coefficient

= Jacobian

= PrD or D

= wave number

;<eq= local equivalent conductivity

L = cavity gap

Nu = Nu~sel~ number

Pr = Prandtl number, v/a”

Q = temperature gradient components of vorticity
eq[lation

q = heat flux, 2~hi (Ti--To’)

r = radial direction

Ra = Ra:yleigh number, g6(Ti0-To-)L3/va’

‘i = radius of inner cylinder

=0 = radius of outer cylinder

t“ = time

T’ = internal temperature

Ti” = temperature of inner cylinder wall



Nomenclature, Continued

To” = temperature of outer cylinder wall

u’ = velocity component in the x direction

v“ = velocity component in the y direction

w’ = vorticity

x’ = ver~ical direction, rectangular coordinate

Y’ = horizontal direction, rectangular coordinate

a = angle of rotation of x,y axis

a“ = thermal diffusivity

d = thermal expansion coefficient

Y = ri/ro

A = gria interval

$ = bipolar coordinate, normal to ~

n = bipolar coordinate, normal to $

9 . azimuthal direction (=$)

A = e/(ro-ri)

v = kinematic viscosity

y“ = Streamfunction

6 = time dependent variable

V2 = ~2/;)2 + a2/ay2

F = a2/;]S2 + a2/a~2



170ndimensional Variables

t = ci”L’fL2

T = (TO-To”)/(To-Ti’)

u = u“Lla”

v = v“L/a”

w = L2W”IV

x = X’IL

y = y“/L

Y “f’/La”

Subscripts

cd = cond~lction

Cv = convection

i = inner cylinder wall

o = outejt cylinder wall

a = rotated x,y axis



FIGURE 1. Eccentric Annular Cross-Section

FIGURE 2. Transformed Eccentric Annulus

FIGURE 3. Local Equivalent Conductivity vs. Angular Position

a. Concentric Displacement (A = .001), Ra = 5X104, Pr=0.7

b. Vertical Eccentric Displacement

c. Horizontal Eccentric Displacement, A(H)=.65, Ra = 104, Pr = 0.7

FIGURE 4. Streamlines and Isotherms for Ra = 102-106, ro/ri = 2.6, A = -.625

FIGURE 5. Streamlines and Isotherms

rolri = 2,6, A= .625

FIGURE 6. Velocity vectors for Ra =

FIGURE 7. Overall Nusselt Number vs.

for Ra = 102-106,

104-105 with A = *0.325 and A = tO.625

Rayleigh l:unibelfor A = -.325
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FIGU~ 2. Transformed Eccentric Annulus
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