RECORDS ADMINISTRATION

LRI 590505

WSRC-TR-90-391

A Suite of RS/1 Procedures for Chemical
Laboratory Statistical Quality Control and
Shewhart Control Charting (U)

Kirk L. Shanahan

QONSIBIL
* 5
e Ve
&om - R )
Westinghouse Savannah River Company S - aa S 2
Savannah River Site AN =W »
Aiken, SC 29808 SAVANNAH RIVER SITE

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY UNDER CONTRACT DE-ACO089-39SR18035



——s

WSRC~TR-90-391
uc-705

RKeywords:
Quality Control

Retention Period:
Permanent

A Suite of RS/l Procedures for Chemical Laboratory
Statistical Quality Control and Shewhart Control Charting (U)

Kirk L. Shanahan

. 27 4
C. E. Coffey, Manager
Analytical Development Section

Publication Date: September, 1990

Westinghouse Savannah River Company
Savannah River Site
Aiken, S.C. 29808



Y4945
Rectangle

Y4945
Rectangle


ABSTRACT

A suite of RS/1 procedures for Shewhart control charting in
chemical laboratories is described. The suite uses the RS
series product QCA (Quality Control Analysis) for chart
construction and analysis. The suite prompts users for data in
a user friendly fashion and adds the data to or creates the
control charts. All activities are time stamped. Facilities
for generating monthly or contiguous time segment summary
charts are included. The suite is currently in use at
Westinghouse Savannah River Company.

r’r'

=)



i

CONTENTS

Introduction 5
Summary £
Background ‘ 6
Overview of the Suite 7
General Modes of Use : 8
Specific Advantages of RS/l as Applied t6 s5QcC 9
Software Qﬁality Assurance 10
Implementation 14
Appendix I. Documented Source Code, Example Output, and
Internal Tables AI.l
Appendix I1I1. Software User Manuals AII.l
Appeﬁdix II1I. Setup Instructions for ’'Standard’ _
Methods : AIII.1
Appendix IV. Instructions for Procedure Modification AIV.1




..

A Suite of RS/1 Procedures for Chemical Laboratory
Statistical Quality Control and Shewhart Control Charting {(U)

Introduction

This work was primarily motivated by the need for very strict
process control of the Defense Waste Processing Facility
(DWPF) process. The current process control scheme includes
the use of laboratory data on feed stream composition directly
in the process control function. This leads to the desire on
the part of the chemical laboratory charged with the actual
analysis to be able to provide accuracy and precision
estimates on any routine sample analytical method. This in
turn is a natural application of the field of Statistical
Quality Control (S5QC).

Further motivation for this work was provided by the
requirements placed on the chemical laboratories here at
Westinghouse Savannah River Company (WSRC) in the area of
Quality Assurance .(QA). QA reguires complete documentation of
quality control (QC) plans and implementations, and a well
developed SQC program represents the best way to satisfy QA
and QC requirements simultaneously.

Today, SQC (and the related area of Statistical Process
Control (SPC)) are viewed by most businesses as competitive
necessities. This is because the methodologies used in these
fields have continually proven valuable. Because of this, )
software packages that implement parts or all of standard
8QC/SPC techniques abound. This work has centered on the use
of the software package called R5/1 and its options and
related packages. This choice was dictated by already
available hardware and software, and by the fact that the RS
series of software offers distinct advantages in the areas of
data analysis and sharing. These characteristics will become
more important as the QC program progresses into the
trouble-shooting phase.

Sunmary

A suite of ten modules has been constructed which customize
standard RS/l quality control packages for use at WSRC. This
suite has been installed in the analytical chemistry
laboratory facilities in the DWPF, the DWPF pilot plant
facility (TNX), and the Savannah River Laboratory (SRL). The
package is menu-driven and performs the following tasks:

- Prompts technicians for data entry
- Timestamps all activities

- Creates'and/or médifies the Shewhart Contreol Charts and
separate data tables




- Conducts statistical trend analysis
- Produces hardcopy output of charts and tables

- Produces summary charts and tables (primarily for QA)

The suite focuses on user-friendliness throughout, and
attempts to automate the control charting process as fully as
" possible. In the DWPF application, data entry actually will
occur on a Laboratory Information Management System computer,
and automatic data transfer to the QC package has been
demonstrated.

Most of the users of this package (technicians, chemists, and
management) were unskilled in computers and/or control
charting, so extensive training was undertaken. Additionally,
a Quality Circle was formed to serve as a forum for discussion
of operating experience with the package and related topics.

Future plans consist of continued training of the Quality
Circle members in other types of control charting (CUSUM,
EWMA, etc.), computer use and data sharing concepts, and
general quality contrel. Possible formation of more localized
Quality Circles is also being considered. Also, integration of
this effort into site Total Quality plans is underway.

Background

Statistical Quality Control is a very old field. Original work
in the area began in the 1920’'s, and manuals and books were
published on it in the late 1940’s and early 1950's. The
technique of control charting however, was until more recently
generally considered to be a Process rather than Quality
control technique. With the advent of severe Japanese
competition in the 1970’s and 1980’'s, control charting became
recognized as one part of a good laboratory quality control
program.

The Shewhart control chart was the earliest variety. It has
the advantage of simplicity. Data is plotted directly on a
graph in the order it is generated, and is compared
statistically to pre-defined acceptance limits., These
statistical tests include searches for trends (such as linear
drifts) in the data. When a statistically unlikely event is
detected, a control flag is generated, and pre-defined control
actions are taken to correct the problem.

Depending on the nature of the data and the acceptance limits,
the Shewhart chart may not be sensitive to certain events. For
this reason, other types of charts were proposed and
implemented. The primary disadvantage of these charts is that
in most cases the data is transformed mathematically before it
is plotted. Thus, one loses the ability to look at the chart
and intuitively understand it. In addition, the nature of the
transformation can be quite complex, leading to a multitude of

6

‘m



‘..’}

L

EX

i

charts being generated from one data set. Understanding and
using these charts is usually beyond the ability and desire of
most operators and technicians, and the latest successful
applications of quality control almost always emphasize the
involvement of the operator or technician in the quality
process. ‘

The RS software series, produced by BBN Software Products
Corporation, is an integrated data management and analysis
software package that consists of the core package RS/1, and
several add-on options and expansions. These add-on options
range from experimental design packages to serial data input
packages to quality control and an expert system shell. The RS
series software is primarily aimed at use on Digital Equipment
Company computers {Vax, MicrovVax), but major parts also run on
IBM PC's under DOS. The software package described in this
report specifically uses features of standard RS/l and the QCA
(Quality Control Analysis) optional package.

Overview of the Suite

The suite of software procedures consists of the following
modules:

- MENU (top level procedure in typical application)
- MAKE_QC_CHART (primary procedure)

- ADD_POINTS_TO_QC_CHART (primary procedure)

- MAKE TEMP_ DATA (sub-procedure)

- BUILD _QC_ CHARTS (sub-procedure)

- QC_Y AXIS SETUP (sub-procedure)

- QC HARDCOPY {sub-procedure)

- IBMPC FIXUP {sub-procedure)

- SUMMARY _QC_CHART (primary procedure)

- MULTIPLE COMPONENT_QC_CHART (primary procedure)

Primary procedures are stand-alone procedures that require nc
arguments in the call statement. Sub-procedures are called by
the primary procedures and receive passed arguments.

MENU is a BBN supplied procedure for presenting a suite of
procedures via a menu. The programmer fills in user
instructions and the related procedure calls. The user simply
calls the menu and then makes choices from it.

MAKE_QC_CHART (MQC) constructs the Shewhart charts from
operator input once only, when the chart is first started. It
also fills in customization parameters on the charts which
stay with the chart from that time on.

ADD_POINTS_TO_QC _CHART (AQC) adds new data to existing charts.

MAKE TEMP DATA is a sub-procedure used by MQC and AQC for
technician data entry and correction.

BUILD QC_CHARTS (BQC) is the sub-procedure that takes the data
and makes or modifies the charts.

7



QC ¥ Axrs SETUP is a sub-procedure used by BQC that sets the
iow and high of the control chart’s Y axis so that all data
and messages will be seen.

QC_HARDCOPY is a sub-procedure that produces hardcopy output
of the charts and associated data tables.

IBMPC_FIXUP is a sub-procedure that is used to temporarily
bypass display problems encountered with the use of the free
terminal emulator, RSTERM, which BBN supplies for use on IBM
personal computers. ,

SUMMARY QC_CHART is a procedure that extracts either a monthly
summary or a contiguous data block summary, primarily for QA
documentation purposes.

MULTIPLE COMPONENT_QC CHART is a procedure that is used when
multiple component standards are used. It presents a more
efficient data entry routine and does not require a graphics
display of the Shewhart charts.

General Modes of Use

A typical user of this suite of procedures will use it in one
of three general modes., First the user could be making or
modifying single method/single component standard Shewhart
charts. In this instance, the user (technician) has run a
standard through an analytical method and produced a result
{or results if the standard was run in duplicate or triplicate
for example). The user then calls up the menu and selects
either MAKE a chart or ADD TO a chart. The procedure prompts
the user for the data and allows correction of typing
mistakes, modifies or creates the chart(s) and data table,
trend analyzes the data for statistically significant events
(marking those for identification), asks the user if hardcopy
is desired, makes hardcopy if requested, and returns the user
to the menu. The key to this mode is that the analytical '
method is for single component standards. Multiple component
standards are more efficiently handled by the second mode,
described below. Data for a single run or multiple runs can be
entered at one time,.

The second use mode is for the case of multiple component
standards. In this case the user has run a multiple component
standard, perhaps in duplicate or triplicate, and has data for
each component which must be charted separately. The user
selects the MULTIPLE COMPONENT choice from the menu and the
procedure asks the user for which multiple component method he
will be entering data. (The information concerning the method
is entered separately by a chemist or supervisor. See the
instruction manual in the Appendix for more details.)

After selecting the method, the procedure prompts the user for
the data and allows corrections if required. It then adds
points to (or creates) the charts and tables, trend analyzes

8

*)

*

ar



8

K

5

[

re

the data, and checks for out-of-control indicators. It
produces a report table which is displayed for the user. An
empty report table indicates no out-of-control indicators,
while entries for the data and rule violations are entered
when an indicator is noted. With this mode, only single runs
can be entered at a time.

The third use mode is generation of summary charts and tables.
The presumption behind the suite is that all data for a
method/component will be entered into a single Shewhart chart
and data table and will be kept on-line for at least two years
(five years is preferable). This necessitates the capability
to produce summaries of regions of interest. These summaries
are obtained by choosing that option from the menu. The
procedure prompts the user for which method/component a
summary is desired and for which type of chart is desired (a
complex and busy form with lots of information or a cleaner
form with a little less information). It then generates the
appropriate chart and displays it. Upon confirmation it prints
a hardcopy of the chart and the related data table (if
requested). The procedure then asks if the user wishes
another. When the user is finished, he is returned to the
menu.

In some cases, laboratory management may wish to exercise more
control over control limits. This software allows the
definition of ’standard’ methods. A ‘standard’ method in the
context of this suite is a method for which certain
information has been stored on-line. This information is
accessed each time a technician enters data, and replaces
actual technician entry. This information is also required to
use the multiple component standard procedure. A full
description of how to create a 'standard’ method and allow it
tc be used for a multiple component method is included in
Appendix III.

Specific Advantages of RS/1 as Applied to SQC

The primary advantage of using RS/1 as the package for daily
gquality contreol is data sharing and networkability. The suite
of procedures stores data tables and charts in a ‘grouphome’.
A grouphome is a special area on the computer that can be
accessed by anyone with the appropriate privileges. These
privileges are assigned as part of the user’s computer
account. Thus the technicians, cheaists, supervisors, and
gquality control personnel can share access to the quality
control records on-line. In fact, with the use of wide-area
and local-area networks, these people can be in physically
different locations and be examining and discussing the exact
same data, as soon as it is entered into the computer.

This is a very powerful advantage to quality control
trouble-shooting. The experts in the method need not be
physically present to examine data, and substantial time
savings can be had by allowing the technician to call the
expert directly instead of going through a circuitous chain of

9




command.

An additional important advantage to the grouphome method of
data sharing for laboratory management should be mentioned.
With good quality control records and programs, the laboratory
is in an excellent position to answer questions immediately
regarding the state of health of a particular method. This
also is a time saver, in that time that would have been wasted
digging information out of hardcopy records and notebooks is
replaced by a quick logon and lock-see. Further, performance
reports can be generated automatically at appropriate time
periods for inclusion in quality control reports, which can
provide answers to such questions before they are even asked.

The latest versions of RS/1 have routines for data transfer
between RS/1 and Lotus or SAS or even ASCII files. Thus the
data can easily be transported to faverite software for more
extensive analysis in familiar environments. However RS/1
itself has extensive statistical analysis capabilities and it
is anticipated that analysis of the data within RS/1 will be
the preferred operation mode. Also, the data tables can be
used to create other standard control charts such as CUSUM or
Exponentially Weighted Moving Average charts, which are also
part of the RS/1 QCA optional package.

Software Quality Assurance

This document is intended to serve as the basis of any
software quality assurance requirements that might be placed
on the chemical laboratory with regards to the suite of
procedures described herein., In order to do that, the
procedures must be listed, documented and tested with
documentation of the test results. This is done below.

Documented versions of the procedures are included in Appendix
I. Noted in the comments are creation dates, installation
dates, and dates of major modifications. Several of these are
noted as trial installation of these procedures was instituted
at TNX, with subsequent revision based on technician and other
user feedback. It is expected that some customization of the
code will occur in each area in order to accommodate local
needs. All subsequent changes to the code should be documented
in the code comments, with any major revision being reported
separately,

Two sets of data were constructed to test the software. The
first set consisted of 37 data points of the single
determination type. The data set was constructed to illustrate
a control flag for each of the ten rules. The data table is
shown in Table 1, and the resultant control chart is shown in
Figure AI-2. A total of fourteen flags are indicated. It is
important to note that four of these (on subgroups 2, 4, 10,
and 12) are included to illustrate that the "2 out of last 3"
and "4 out of last 5" rules trigger as soon as the condition
is satisfied, i.e., 3 and 5 points respectively are not
required for a flag to be inserted.

10

ay



5

L

=

The second set of data consists of 35 data points of the
multiple determination type. Again the data set was
constructed to illustrate one control flag for each rule, but
in this case, one point was also constructed to test the
standard deviation flag for exceeding the control limit. The
data table is shown in Table 2, the means control chart is
shown in Figure AI-3, and the standard deviation control chart
in Figure AI-4. The RS/l software calculates the mean and
standard deviation from the raw data {(shown in Table 2), and
this calculation was verified by hand calculations.

11



Table 1. Test Data for Individuals Control Chart

-—————————— — — — ——— T — {——— ——— ey il il

.—l
OWO O b=

—
[

-
=N

e
~1 0

[ SIS I ol ot
O W o

STDVALUE

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

RANGE
% of STD

[oaBne e e B0 e R R e e T T e N R e O O e O T N N R . O O O O . R R W O

12

DATE

01-JAN-90
02-JAN-90
03-JAN-90
04-JAN-90
05-JAN-90
06-JAN-90
07-JAN-90
08-JAN-90
09-JAN-90
10-JAN-90
11-JAN-90
12-JAN-90
13-JAN-90
14-JAN-90
15-JAN-90
16~JAN-90
17-JAN-90
18-JAN-90
19-JAN-90
20-JAN-90
21-JAN-90
22-JAN-90
23-JAN-90
24-JAN-90
25-JAN-90
26-JAN-90
27-JAN-90
28-JAN-90
29-JAN-90
30-JAN-90
31-JAN-90
01-FEB-90
02-FEB-90
03-FEB-90
04-FEB-90
05~-FEB-90

VALUEL

100
100

103
97
103
103
97
g7
97

“ay

S,



Table 2.
Test Data for Multiples Control Charts
(Including Calculated Means and Standard Deviations)

1

MEAN ST DEV STD RANGE DATE VALUEl VALUE2
VALUE &% of STD
1 104.5 4.949747 100 6 0l-JAN-90 108 101
2 104.0 1.414214 100 6 02-JaN-90 105 103
3 102.5 3.535534 100 6 03-JAN-90 105 100
4 101.5 2.121320 100 6 04-JAN-90 103 100
5 101.0 2.828427 100 6 05-JaN-90 103 99
6 100.5 0.707107 100 6 06=-JAN-90 101 100
7 100.5 0.707107 100 6 07-JAN-90 101 100
8 100.5 0.707107 100 6 08-JAaN-90 101 100
9 93.0 0.000000 100 6 09-JAN-90 93 93
10 96.0 1.414214 100 6 10-JAaN-90 95 97
11 97.5 3.535534 100 6 11-JAN-90 95 100
12 98.5 2.121320 100 6 12-JAN-90 97 100
13 99.0 2.828427 100 6 13-JAN-90 97 101
14 99.5 0.707107 100 6 14-~JAN-90 99 100
15 99.5 0.707107 100 6 15-JAN-90 99 100
16 99.5 0.707107 100 6 16-JAN-90 99 100
17 100.0 0.000000 100 6 17-JAN-90 100 100
18 100.0 0.000000 100, 6 18-JAN-90 100 100
19 100.0 0.000000 100 6 19-JAN-90 100 100
20 100.0 0.000000 100 6 20-JAN-90 100 100
21 100.0 0.000000 100 6 21-JAN-90 100 100
22 100.0 0.000000 100 6 22-JAN-90 100 100
23 100.0 0.000000 100 6 23-JAN-90 100 100
24 100.0 0.000000 100 6 24-JAN-90 100 100
25 100.0 0.000000 100 6 25-JAN-90 100 100
26 100.0 0.000000 100 6 26-JAN-90 100 100
27 100.0 0.000000 100 6 27-JAN-90 100 100
28 98.0 0.000000 100 6 29-JAN-90 98 98
29 102.0 0.000000 100 6 30-JAN-90 102 102
30 102.0 0.000000 100 6 O01-FEB-90 102 "102
31 98.0 0.000000 100 6 02-FEB-90 98 98
32 98.0 0.000000 100 6 03-FEB-90 98 98
33 102.0¢ 0.000000 100 6 04-FEB-90 102 102
34 98.0 0.000000 100 6 O05-FEB-90 98 98
35 102.0 0.000000 100 6 06-FEB-90 102 102

13




This test scheme is adequate because of the modular design of
this suite of procedures. BUILD QC_CHARTS (BQC) is the primary
workhorse for chart construction and is used by MAKE_QC_CHART
(MQC), ADD_POINTS _TO_QC_CHART (AQC), and MULTIPLE COMPONENT
QC CHART (MCC). Arguments passed with call statements are used
as flags to tell BQC which primary procedure called it. The
logic inside BQC then performs the appropriate tasks based on
the calling routine and data type (individual or multiple
determinations). MAKE TEMP DATA is used by MQC and AQC for
manual data entry and correction. MCC performs that function
itself, but uses BQC for the charting.

ey

QC HARDCOPY is a separate module because each computer has
separate printing facilities. QC_HARDCOPY represents one of
the major customization points in this suite. IBMPC_FIXUP
likewise is hardware specific. SUMMARY QC_CHART is essentially
stand alone, except that it also uses QC_HARDCOPY for
printing. These routines are verified by use. Hard copy
produced by SUMMARY QC CHART is included in Appendix I for
comparison.

One problem with the core RS/1 QCA procedure $MAKECHART (which
constructs a new chart) was noted when only a single point was
entered. The entry of just one point on a single chart is
unusual, and the programmers apparently did not anticipate
this case. SMARECHART adds an additional row onto the Shewhart
chart underlying graph table which is empty. The effect of
this is to cause the trend rule analysis to assume there is
one more point present than there really is. In certain
instances, this can lead to an erroneocus out-of-control
indicator. Since this case is so unusual, an administrative
solution to the problem should be implemented, rather than a
software solution.

Other minor problems were noted during programming. Each of
these was successfully addressed in the RPL code, and comments
were added to explain the relevant sections of code.

Implementation

The implementation of this software should be a phased one.
The first phase is characterized by using control limits based
on expectations. After accumulating at least twenty to thirty
data points, the first phase is completed by re-evaluating the
control limits in light of actual performance. At this point
the limits may have to be either lowered or raised, or may not
need to be changed at all. This phase lasts until this
re-evaluation occurs.

Now the second phase begins. Usually a method that has not
been subject to a statistically based quality improvement
program will show a non-random distribution of errors. The
second phase of the quality control implementation is the
elimination of ’'special cause’ events. ’'Special cause’ events
are typically those events that produce 'flyer’ data points.
The objective of the second phase is to eliminate flyers,

14

iy

»

o



7

-

i

thereby producing data that is randomly distributed. This
phase lasts until the effort needed to eliminate special

causes is invested, which can typically take from six to

eighteen months per method.

Random distributions should be considered the norm, rather
than the exception. When a method is in ’'statistical control’
it has a random distribution. This implies a certain number of
data points will fall out of the control limits, and. the
occurrence of that event should be considered normal. Only
when a disproportionately high number of such points occurs is
a quality problem indicated,

Besides the simple ’‘out-of-limits’ consideration, the RS/1
software tests for trends in the data by applying a total of
10 rules. These rules are listed in Table 3 below (the term
rsigma’ refers to the standard deviation of the data). Rules 1
and 5 are the standard ’‘out-of-limits’ rules. Rules 2,3,4,6,7,
and 8 check for consistent drift in the data. Rules 9 and 10
check for stratification (the condition where the method jumps
between two distinct sets of results randomly, or when there
is insufficient variation in the data as implied by the
control limits).

Table 3 also lists the occurrence probabilities for each event
described in the rule. These probabilities were calculated by
the method described in the ATST Statistical Quality Control
Handbook, pgs. 180-183. The cumulative probability of getting
a rule viclation is approximately .02, thus a natural
frequency of about 2 out of 100 ’out-of-control’ indicators is
expected. More than this would indicate a quality problem,
either with the method or with the control limits of the chart
(depends on the current phase of implementation).

The above rules should only be applied to randomly (normally)
distributed data. When dealing with 'Multiples’ type data, a
standard deviation control chart is also produced. In this
case however, only rules 1 and 5 are implemented, since
variances (the square of the standard deviation) follow a
chi-squared distribution. While occurrence probabilities for
the other rules could be calculated, the interpretation of the
event cause is extremely difficult.

The RS/l procedures use a restricted set of rules to check the
standard deviation chart. Since standard deviations are not
randomly distributed, the use of trend rules based on random
statistics is not advised. Instead, only rules 1 and 5 are
used (the standard ’‘out-of-limits’ rules). The restricted
rules are stored in a table whose name is hardcoded into the
source code "(usually RESTRICTED_ TREND_RULES). This table is a
subset of the table used to do the trend rule checking on
means and individuals data.

For completeness, a copy is shown in Table 4. The table holds
RS/l supplied procedure names ($QC TREND1l and 5) that check
for each rule’s condition. The codes "MA', MER', '"MES', etc.

15




refer to various kinds of charts that can be b
generated within

the RS/1 QCA package. Column 7 ('SA’) wa

these procedures. ) was added for use by

ghettpérs_implgmentation phase begins when a normal
istribution of errors is achieved. Now the ac

of the.method can be evaluated versus quality ;g:is?egﬁoiTgﬁge
of available resources, methods that do not meet the qualit
goals are examined and improvements sought. Techniques usedyin
tbls pha§e include designed experimentation, cause-and-effect
diagramming, and others. This phase should be an on-going one.

16



Table 3. RS/1 Trend Rules

Rule No. Rule Description Qeccurrence
Probability

1 1l point above 3 sigma .00135
2 2 of 3 points above 2 sigma .00151
3 4 of 5 points above 1 sigma .00267
4 8 points above center line .00391
5 1l point below -3 sigma .00135
6 2 of 3 points below -2 sigma .00151
7 4 of 5 points below -1 sigma .00267
8 8 points below center line .00391
9 15 points inside +/- 1 sigma .00325
10 8 points outside +/- 1 sigma .00010

Table 4. The Restricted Trend Rule Table Used on
Standard Deviation Control Charts

0 1 Rule 2 MA 3 MER 4 MES 5 IA
Number
1 1 $QC_TREND1 $QC_TRENDL $QC_TREND1 soc_TRsNbl
2 5 $QC_TRENDS $QC_TRENDS $QC_TRENDS $QC_TRENDS
0 6 1E 7 sAa
1 $QC_TREND1 $QC_TREND1
2 $QC_TRENDS  $QC_TRENDS

17



f;.'

(8,

"

k)

¥

APPENDIX I. Documented Source Code, Output, and Internal
Tables

Table of Contents

Documented Source Code
MENU
MAKE_QC_CHART
ADD_POINTS_TO_QC_CHART
BUILD_QC_CHARTS
MAKE_TEMP_DATA
IBHPC_FIXUP
QC*HARDCOPY
SUMMARY_QC_CHART
MULTIPLE_COHPONENT_QC_CHART
QC_Y AXIS_SETUP

Examples of Graphical Output

Figure AI-1l. Screen Display of Control Chart Illustrating
o Windowing to 30 Points (QC Format)
Figure AI-2, Full Individuals Test Data
Control Chart (QC Format)
Figure AI-3. Full Multiples Test Data Means
Control Chart (QC Format)
Figure AI-4. Full Multiples Test Data Standard
Deviations Control Chart {(QC Format)
Figure AI-5. Monthly Summary Printout of Individuals Test
Data Control Chart (QA Format)

Examples of Tabular Output Internal Tables

Table AI-1. The QC Menu

Table AI-2. TEMP_DATA, the teamporary data entry table

Table AI-3. TEMP_ROWS, an internal table used to define
regions of equal standard value

Table AI-4. TEMP DATA2, the temporary data entry table
used in MULTIPLE_ COMPONENT _QC_CHART

Table AI-S. REPORT TABLE, screen display resulting from

MULTIFLE _COMPONENT_QC_CHART

AI.1l



.')

PROCEDIRE 1. #ENJ (Supplied as part of QCA-I by EAN Software Products Corp.)

/* MBNU is the top-level procedure for the menu-driven demo */
/* vhich is included with the QCA software. The whole collection */
/* of procedures shows how you can use the QCA procedures with  */
/* other RS/l capabilities from within your own RPL procedures. =/
/* It is intended to be an example, rather than a part of the QCA */
/* system. You can copy the (QCA dem> procedures into your own  */
/* procedures table by typing "CALL SCOFY QC DEMO". */

procedure(menutab);
{

memitab=' $gemern’
firsttime = TRIE;

do vhile TRIE;
{
if empty(memutab) then
memitabegettable(™ame of meru table to use? ", , TRUE, "H$QOMENUM,
"Enter the name of a meru table of your own or use the default #QCMENU.");

if not($iswvatched(menutab)) then

£
if not(firsttime) then
call erase(true);
else firsttime = FALSE;
watch col O of table(menutab) nocolmmbers noheader colwidth 80;
}

action = getcolresp("Select an activity (by mmber): ",
FALSE, memutab, O, EMPTY, EMPTY, TRIE, ,
"To choose an activity, enter the number of activity from the memi.
Just press RETURN to exit from this menu.");

if empty(action) then
return;

act = row action col 1 of table(menutab);

if empty(act) then
donemt;
else if (caps(act) = "EXIT") then
doexdt;
else .
exec(act, , status);
)

Mlz



4

PROCEDURE 2. #MAKE_QC_CHART

/% This is a procedure to construct Individuals or Mean/St. Dev. QC charts. */

/k

Originator: Kirk L. Shanahan  Date: 8/14/89 */

/% Version 0 */
/* Version 0.01 Fixed data correction bug. 9/8/89 KIS */

/* Added version printout 9/8/89 KIS */

I* Fixed up bamner 9/8/89 KLS */ _

/% Version 1.0 Major revision - deleted grouphome subdirectories #/

I/ - added user input of control limits +/

/* - prettied up charts */

i - added timestamp of all data */

/* reprogramming by Kirk Shanshan - start 9/19/89 */

/% Major Revision - Began exclusive GROUPHME utilization */

/* - split part of procedure off into subroutine */
/* called BUILD QC CHARTS (BQC) */
/* - added a call flag so BQC would work with  */
/* MC and AQC. */
/% reprogramuing by Kirk Shanahan - start 9/25/89 */

/* */

/* Version 2.0 Major Revision - Changed call to BUILD QC CHARTS by adding */

/* DISPLAY FLAG variable (set to 0) for */

/% compatibility with MULTIPLE OOMPCNENT QC  */

i _CHART procedure. */

/7 Kirk Shanahan 3/1/90 */

/% */

/* This procedure constructs a Shewhart-type Control chart from either */

/* individual or muitiple determination data. It can use a list of ’standard’*/
/* tests that are stored in a CONIROL LIMITS table, or it can construct a  */
/* stand-alone chart for ‘non-standard’ tests. The CONTROL LIMITS table */

/* the folloving information: Name of test, Control Limit {3 sigm as a */
/* percent of the standard’s value), Units of the test (Y axis label), */
/* Table-type (individuals or multiples), a chart Title, and the mmber of */
/* points per line when the data is of the miltiples type. */
/% */
/* The procedure prampts the user for the name of the test via a direct */

/* ques
/* for

tion or via a listing of the standard tests, then prompts the user  */
the appropriate data (done in subprocedure MAKE TEMP DATA). Next, it */

/*eopmsmemhtatoﬂnmqiunemdmllsthesutpmoeﬂn(ﬂm */
/% QC_CHARTS) which constructs the graphs and does standard Vestern Electric */
/* trend analysis, and finally asks the user if hardeopy output is desired #*/
/* (achieved via subprocedure QC HARDCOPY). */

Vi

*/

/* The aorent implemetation of this procedure is via a memu system taken  */
/* from the QCA option to RS/1. The core chart building and trend amalysis */
/* procedures used in this procedure also came fram the RS/1 QCA option. */

/* */
/% */
/% START OF PROCEDURE MAKE QC CHART. CURKENT VERSION 2.0 */
/* */
erase;

/* Clear the screen */

W II";

/* This construct types a blank line. It is used for spacing on the screen. */
type "";

AL.3



nmn,
L

"welemn to the QC world. This is procedure MAKE QC CHART (MXC).";
"MOC wvill prompt you for new data and create a new data table.™:
M) will then create the appropriate QC chart(s).";

",
y

" Version 2.0";

",
*

%%%%%

ARk

",

/* Barmer - contains procedure name so user can verify he is in the right */
/% one. */
if tableexists(’temp data’) then delete temp data;

/* temp data is the temporary data table that this procedure uses for  */
/* data entry. It eventually is renamed to a permenent table in the */

/*  GROUPHOME. */
gemame:

/* This is a label used as a jump-in point from a later GOTO stmt. */
/% 1t is the starting point of the procedure. ‘ */

IF YESANSWER(‘Are you making a chart for a standard test?’) THEN

/* If the user answers "Yes" here, the procedure goes to the CINIROL LIMITS */
/* table and displays a list of standard tests for the user to choose from. */
/% A "No" sends the procedure to the section that gets a name directly from */
/* the user. */
{

type"";

type "A list of methods will now be displayed.";

type "You should locate the test you want and remember its row mnumber.";

type "You will be asked to enter the row rumber after the display is finished.";
type "If the test you want doesn’t appear on the list, it is not a ’'standard’™;
type "test. In this case enter a 1 (chooses NON STANDARD to go back to the start

“
1 4

tym "ﬂ
checkerl' if not ymr("Are you ready?") then go to checkerl;
/* The TYPE-CHEGKER] block above is meant to give the user a chnce to get  */
/* for the upeoming display. */
get_test name:
DIS 0oL 1 oF #ox CONTROL LIMITS;
/* The table in this statement is the QONTROL_LIMITS table. Here it is stored */
/* in a grouphome subdirectory and ‘personalized’ via the 'tnx’ designation */
/* for the Analytical Development Section QC effort. */
control row= GETNUMBER('Please choose which test by entering the mumber:’);
/* The user enters the row mmber of the test for vhich a chart is to be */
/* constructed. */
if control rowsl then goto getname;
/*'memvm.mrtablesmﬂdalvayslnverwloollbe"hmsm */
/* This allows the user the chance to go back to the begiming when needed */
/* via the GOTO above. */
dis row control row of col 1 of #tx control limits; '
if not yesanswer(‘Is this the test you wanted?’) then goto get test name;
/* Display the user’s choice and confirm it. */
chart_name = row control rov col 1 of #tnx_control limits;
table ' type = caps(rov control rov col 4 of : $onx_ control limits);
/* Get the stored Mo(HARI‘NmEarﬂTABLETYPEmme test from the QONIROL */
/* LIMITS table. _ */

AL.4

1)



i

‘£

std_flag-TRIE;

/% STD FLAG is a flag used in the subroutines to tell if the test is a */
/* 'stardard’ test. */
goto check group table;
/*Jmpmsttl‘nenextblodtbecm.zseitisfora ‘non-standard’ test. */
}
std flag=FALSE;
control row=0;

/* Since this section is reached only for ‘non-standard’ tests, the flag  */
/* indicating a ’‘standard’ test is set FALSE, and the OQINIROL ROW variable */
/% is set to 0, so that it will not cause problems later if left empty. */
chart name =GETTEXT("What is the name of the QC Chart you vish to make? "); '
/% (hart name is the variable that holds the core of the table and QC chart */
/* names. GETTEXT is an RPL funtion for terminal I/0 that gets a string.  */
/* Here the input string is assigned to ‘chart name’. */
gettype: '

/* A label used as a jump-in point for a wrong response to the next question.*/
/* The procedure returns here when the entered table type isn'tan Mor I. */
type nn,

type "Is this chart for Individual or Multiple determinations? ";

table type=gettext(" [Enter I or M please.]");

/% These statements type out a message and request mput of the form " x/

/* or "M", The string input is assigned to variable ’table type’. */

A vanableisusedasaflagforthemedtoeanﬂthepmcedmefor */
/* more data and an extra QC chart. */
tymﬂ“.

table_type=caps(table type);
/* The function CAPS capitalizes a string, so I am using all caps here. */

tym “l‘.
if tahle_type = "I" or table type = "M" then

goto check group table

else

begin;

type "I need either an I or an M.";

type "}

goto gettype;

end;
/* This section checks that the table type entered is one of the two */
/% acceptable types. If it is, the procedure goes on to the next line (from */
/* here). Ifmt,itprintsmerrorn'essagearﬂgoesmdctom */
check group_table:
/* The jump-in point from the ’standard’ test section above. */

gchart name = ‘#/.chart name;
/* Create the name of the grouphome table by attaching the #. */
/* Thig uses a grouphome subdirectory calied 'QC’. */
if tableexists(gchart name) then

begin;

erase;

type "";

type "That QC table is already in the grouphome.";

nit,

type "Please check the name and try again.”;

tm "I';

goto exdter;

end;
/* The IF tests to see if the core table is present. If it is, the procedure */

AI-S




/*pﬂntsanermrmssge,andgoestothelabelm */

/* (found at the end of the procedure) which stops the procedure. */
call #make temp data( chart name,table type, ‘M’, std | flag, control row);

/% The call to the interactive data entry subprocedure. */
/* the variable listed in the call have the standard meanings. The 'M’ is a */
/* call flag telling the subprocedure which routine called it. */

copy table(’temp data’) to table(gchart name);
/*Copi-mmTAto&npmvimlynmedfmldatatablemmm */

call #build qc_charts( chart name, table type, 'M’,std flag,control row,0);
/* Calls the chart building subroutine. Passes the data table name, the */

/* table type, and the call-flag value (heres'M’). */
if yesansver( "Do you want hardcopy? ") then call #qc hardcopy(chart name, 'M’);
/* The user answers "Y" if hardcopy is desired. */
/* The call flag 'M’ is again passed, since QC_HARDCOPY is used by other */
/* procedures, */
del temp data;

/* Clean up by deleting the temporary data table. : */
edter:type "All finished. See you next time.";

/* a final message to the user indicating the procedure is done. */

*

5



&

)

PROCEDURE 3. #ADD POINTS TO QC_CHART

/* Procedure ADD POINTS TO QC_CHART */
/% This is a procedure to modify Individuals or Mean/St. Dev. QC charts. */
/* Originator: Kirk L. Shanahan Date: 8/14/89 */

/* Version 0 */
/% Version 0.01 Fixed data correction bug. 9/8/89 KLS */

/* Added version printout 9/8/89 KIS */

/* Fixed up barmer 9/8/89 KIS */

/% Version 1.0. Major revision - deleted grouphome subdirectories */

/* _ - added user input of control limits */

/% - prettied up charts */

/* - added timestamp of all data */
VLA reprograming by Kirk Shanahan - start $/19/89 */

/* Major Revision - Began exclusive GROUPHOME utilization */

/* - split part of procedure off into subroutine*/

/* called BUILD QC CHARTS (BQC) */

/% - added a call flag so BOQC would work with */

/% MOC and AQC. */

/* reprogrammng by Kirk Shanahan - start 9/25/89 */

/¥ */

/* Version 2.0 Major revision - Modified call to BUILD QC CHARTS to include */
Vi DISPLAY FLAG variable (set to 0), for */

/* compatibility with MILTIPLE OOMPCONENT QC  */

/* _CHART procedure. */

/% Kirk Shanahan 3/1/90 */

/* */

/% Version 2.1 Major Revision - Modified to use a sub-procedure */

/* (QC_Y AXIS SETUP) to set Y axis low and */

/* high. 7/6/90 KIS */

/* */

/* This procedure modifies Shewhart-type Control charts, previously made via */
/% MAKE QC CHART, with either individual or multiple determination data. It */
/* can use a list of 'standard’ tests that are stored in a OONIROL LIMITS = */
/* table, or it can mxify a stand-alone chart for ‘non-standard’ tests. The */
/% CONTROL_LIMITS table has the following information: Name of test, Control */
/% Limit (3 sigma as a percent of the standard’s value), Units of the test */
/* (Y ads label), Table-type (individuals or miltiples), a chart Title, and */
/* the mmber of points per line when the data is of the multiples type. */
/e */
/* The procedure prompts the user for the name of the test via a direct */
/% question or via a listing of the standard tests, then prompts the user  */
/* for the appropriate data (done in subprocedure MAKE TEMP DATA). Next, it */
/*oopiesﬂnnewdatatotheg:u@meaxﬂmﬂsmesubpme(m */
/* QC_CHARTS) which constructs the graphs and does standard Westem Electric */
/* trend analysis, and finally asks the user if hardcopy output is desired */
/* (achieved via subprocedure QC_HARDOOFY). */
/% */
/* The current implemetation of this procedure is via a menm system taken  */
/* from the QCA option to RS/1. The core chart building and trend analysis */
/*proceduresusedintiuspmcedmeaJsocamfrmanS/l&‘Aoptim */

/% */
/% */
/% START OF PROCEDURE ACD POINTS TO_QC CHART. CURRENT VERSIN 2.1 */
/% */

AL.7



erase;

/* Clear the screen */

tym "N;

/* This construct types a blank line. It is used for spacing on the screen. */

.
'

",
’

fnm,
?

. tm “Il

type’ "Ueleam to the QC world. This is procedure ADD POINTS TO_QC CHART (A0C).";
type "a0C will prampt you for new data and modify the old data table.";

type "AQC will then modify the appropriate QC chart(s).”;

",
!

type " Version 2.1%;

",
’

L {}

tYI:E"":
/*Bamer-omtajmproeedmemnesousercanverifymminmeri@t*;
/* one *

if tableexists(’temp data’) then delete temp data;
/* temp data is the temporary data table that this procedure uses for %/
/* data entry. It eventually is renamed to a permanent table in the */

/*  GROUPHOME. */
getname:

/% This is a label used as a jump-in point from a later GUTO stmt. */
/% 1t is the starting point of the procedure. : */

IF YESANSWER('Are you adding points to a standard test?’) THEN
/% If the user ansvers "Yes" here, the procedure goes to the CONIROL LIMITS */
/* table and displays a list of standard tests for the user to choose from. */ :
A "No" sends the procedure to the section that gets a name directly from */ A

/* the user. */
{
type™;

type "A list of methods will now be displayed.™;
type "You should locate the test you want and remember its row mmber.";
type "You will be asked to enter the row number after the display is finished.";
type "If the test you want is not on the list, it is not a ’'standard’ test.";
type "Enter a 1 (choose the NON STANDARD choice) to go back to the start.";
type "";
chgckerl: if not yesanswer("Are you ready?") then go to checkerl;
/* The TYPE-CHEOER] block above is meant to give the user a chance to get */
/* for the upcoming display. */
/* The table in this statement is the CONTROL LIMITS table. Here it is stored */
/* in a grouphome subdirectory and persmalized’ via the 't designation */
/* for the DNPF Amalytical Lab QC effort. */
get_test name:
DIS COL T OF #tox CONIROL LIMITS;
/* Displays the list of test names. */
control rows GEINUMBER(’Please choose vhich test by entering the rmumber:’);
/*Theusermtersthemwruberoft}etatforwuchadm'tistobe */
/* constructed. */
if control rowsl then goto getname;
/*nnmmwhﬂnﬂdalwylevemlmllbemmm' */
/* This allows the user the chance to go back to the begimning when needed */
/* via the GUTO above. */
dis row control row of col 1 of #trx control limits;
if not yesanswer(’Is this the test you wanted?’) then goto get_test name;

Al.B



&

L7

£

-

/* Display the user’s choice and confim it. */
chart name = row control_row col 1 of #om control limits;
table  type = caps(row cﬂltml rov col 4 of #tnx control _limits);

/* Get the stored infoCHARI'NA!-ﬂEarﬂTABIETYPEm the test from the CONIROL */

/% LIMITS table. */
std_flag=TRIE;

/*Sﬁ)FLAGisaﬂagusedmtlEsubrwtmestotellifthetestisa */

/% 'standard’ test. */
goto check group table;

/% Jump past the next block because it is for a ‘non-standard’ test. */

}

std_flag=FALSE;

control row=0;

/* Since this section is reached only for 'non-standard’ tests, the flag  */
/* indicating a ‘standard’ test is set FALSE, and the CONIROL ROW variable */
/* is set to 0, so that it will not cause problems later if left empty. */
chart name =GETTEXT("What is the name of the QC Chart you wish to modify? ");
/* Chart name is the variable that holds the core of the table and QC chart */
/% names. GETTEXT is an RPL funtion for terminal 1/0 that gets a string. */
/* Here the input string is assigned to ‘chart name’. */
gettype: .
/* A label used as a jump-in point for a wrong response to the next question.*/
/* The procedure retums here vhen the entered table type isn’t an M or I. */
type "";
type "Is this chart for Individual or Multiple determimations? ";
table type=gettext(" (Enter I or M please.]");
/* These statements type out a message and request input of the form "I" */
/* or "M". The string input is assigned to variable ‘table type’. This  */
/* variable is used as a flag for the need to expand the procedure for  */
/* more data and an extra QC chart. */
type nn,
table type-caPS(table type);
/* The function CAPS capitalizes a string, so I am using all caps here. */
type "";
if table_type = "I" or table type = "M" then

goto check group_table;

else

begin;

type "I need either an I or an M.™;

type "";

goto gettype;

end;
/* This section checks that the table type entered is one of the two */
/% acceptable types. If it is, the procedure goes on to the next line {from */
/* here). If not, it prints an error message and goes back to GEITYFE. */
check group_table:
/* The jump-in point from the ’standard’ test section above. */

gehart name = '#'.chart name;
/% Create the name of the grouphome table by attaching the #. */
/* This uses a grouphome subdirectory called ‘QC’. */
if not tableedsts(gchart name) then

begin;

erase;

tm Il";

type "That QC table isn’t in the grouphome.”;

type "";

AL.9




type "Please check the name and try again.";

tym "";

goto exiter;

end;
/* The IF tests to see if the core table is present. If it isn't, the */
/* procedure prints an error message, and goes to the label EXTTER */
/* (found at the end of the procedure) which stops the procedure. */
if table type='1’ AND lastcol(gchart name)>11 then

({

erase;
tm "H;

type "The table type you supplied and the table itself don’t match.";
tym ll“;

type "Please check the name and/or table and try again.”;

type "";

goto exdter;

)
if table type='M’' and lastcol(gchart name)=1l then
{ .
erase;
w llﬂ;
type "The table type you supplied and the table itself don’t match.";

type

type"Pimsed‘nckﬂnmemﬂ/ormblemﬂtryogain.";

type "";

goto exiter;

}
/* The above section checks to make sure the user has not confused two tests. */
/* It checs the grouphome data table to verify that the entered and actual  */
/* table-type are the same. If they are, the procedure goes on, othervise it */
/* prints an error message and goes to the end of the procedure (label */
/* EXTTER). */

call #make_temp data( chart name, table type, 'A’, std_flag, control row);
/* The call to the interactive data entry subprocedure. The variables have */

/* implied meaning. The ’A’ is a call flag that lets- the subprocedure know */ -

/* vhich procedure called it. */
add rows to table(gchart_name) from temp data;
/* Adds the new rows to the old grouphome data table. */

call #build qc charts( chart name, table type, '’ ,std_flag,control row,0);

/* Calls the chart building subroutine. Passes the data table name, the */

/* table type, and the call-flag value (here=’A’). */
if yesanswer( "Do you want hardcopy? ") then call #qc_hardcopy(chart name,’A’);
/* The user answers "Y" if hardcopy is desired. */
del temp data;

/* Clean up by deleting the temporary data table. */
exiter:type "All finished. See you next time."; '

/* A message letting the user know the procedure is dane. */

AL 10

M



L]

PROCEDURE 4. #BUTLD QC_CHAKTS

procedure(chart name, table type, call flag,std flag,std row,display flag);

/* This procedure builds Shewhart-type QC charts from a data table TEMP DATA. */
/* The data in TEMP DATA can be either add-on data to a pre-existing group- */
/* home data table, or totally new data. The procedure searches TEMP DATA for */
/* each unique region. A unique region is defined by a unique set of standard */
/* value and control limits. It then piecewise adds (creates if the first */

/* time) regions to the QC chart. It sets X and Y axis parameters in an */
/% attempt to optimize display, and creates messages and ticks containing */
/% information about the regions. It then performs trend analysis. */
/* Passed parameters: */
/% chart name - actual data table in grouphome */
/% table type - "I" or "M" */
/* callﬂag-"&"or“ﬂ”depaﬂirgmcallirgrwtim */
/% std ﬂag TRIE or FALSE, indicates if chart is for ’standard’ test */
I stdmw rov in the CONTROL LIMITS table holding the info on the */
/% ‘standard’ test ' */
/% display flag - A flag that skips graphical display vhen it = -1 */
/* */
/* Originator: Kirk L. Shanahan version 0. Date: c¢. 10/10/89 */
/% Installed as BUILD QC CHARTS in ADS GROUPHOME 11/20/89 */
LIk */
/* Modified to add DISPLAY FLAG variable for multiple component standards */
/* procedure - 3/1/9% Version 1.0 now */
/* */
/* BEGINNING OF SUB-PROCEDURE BUILD QC CHARTS. VERSION 1.0 ‘ */
/* */
erase;
/* Clears the screen. */

gchart nameo’#’.chart name;
/* Constructs the name of the grouphome data table. HBere a subdirectory is #/

/* used. _ */
type "Working...";
/% A message indicating entry to this sub-procedure. */
table type = mPS(table type);
if table  type='I' then

(

chart_type='IA’;

datacol-B;

}
else

(

chart_type='MA

datacol=1;

}
/* Set up of some parameters used in the call to the QCA procedures */
/% SMAKECHART and SADDPOINTS. */
/* See the QCA maruml for an aq:lamtim of the parameters. */

qc_graphl = gchart name.’_gc_chart’;

qc_graph? = gd'a.rtm qccl'artstdw

iftabletypeuu'tlch_graplﬂ qc_gmﬂﬂ.'m"
/* Here I create two variables that have the core data table name as their */
/* first letters, and QC CHART as the next letters. QC GRAPHI llbemed */
/* for the name of the INDIVIDUALS QC chart. QC GRAPH2 will be used for the */

AL.11



/* name of the STDEV QC chart (for 'Multiples’ data). */
/* For 'Multiples’ data, the letters " MEANS" are added to identify the */
/*tabletypeindredisplayofaDIRoammﬂ */
if tableexists(’temp rows’) then delete table temp_rowvs;
allocate table temp rows 1 row by 1 col;
/* The table TEMP HIUS is used to hold information required to build the */
/% the QC charts and put messages an them. */
a= rov 1 col 4 of temp data;
b=rou100150f tenpdata.
/* A and B are used as checkpoints. Each row of the data table is checked */
/* for different control limit characteristics against A and B. */
/* TEMP ROWS will have 1 row for each region on the chart. A region is */
/* defined by differing control limits. The first region is always the */
/* started by the first row of the data table, thus the control limits and */
/% start point in the data table TEMP DATA is stored. */
/% TARGET in col 1, RANGE in ool 2, region starting row mmber in col 3. */
rovw 1 col 1 of temp rows = a;
/* Standard’s value */
row 1 col 2 of temp rows = b;
/% Standard’s range */
rov 1 col 3 of temp rows= 1;
/% message x position and new region start point */
row 1 col 5 of temp rowse
'SID = ‘8. +/- b7
/% Message text */
row 1 col 6 of temp rowsa(a-3*b) -
1.1*chars(row 1 col 5 of temp rows)/2;
/% Message Y position */
temp rowal;
/*Mmmﬂmrwirﬂa:ofmetahlemm */
do i= 1 to lastrow(’temp data’); : '
/*mismloopnudnd(everyrwofm_MAtofizﬂm&amsin */

/* control limits ocours. */
if ( (row i col 4 of temp data=a ) AND (row i col 5 of temp data = b) ) then
donext;

/* If the standard’s value and range are unchanged, go an to next row. */
else
begin;
temp row = temp row + 1;
a= rov i col 4 of talpdata,
b= row i col 5 of tenpchta,
rov temp row col 1 of temp rows = a;
/* Standard’s value  */
rov temp row col 2 of temp rows = b;
/* Standard’s range */
row temp row col 3 of temp rows= i;
/* message x position and new region start point */
rov (temp row-1) col 4 of temp rows = (i-1);
/* Previous region’s stop point */
row temp row col 5 of temp rowss
'SID = ’.a.’ +/- ".b.'%";
/* Message text */
row temp row col 6 of temp rows=(a-3*b) -
1.1%chars(row 1 col 5 of temp rows)/2;
- /* Message Y position */
/* This block is executed only vhen a change in standard’s value or range is */

AI-].Z

A



&

[¢]

/* encountered. When this is found, first the row comnter is incremented, */
/% then the test variables A anb B are reset to the new values. Then the new */
/* test values are stored in the new row of TEMP ROWS, and fimally the stop */

/* point oftheold region is stored in col 4 of the previous row. */
end;
/* Bnd of DO loop. */

row lastrow(’ teq) rows’) col 4 of temp_rows = lastrow(’temp data’);

/* The very last stop point entered intommwinalmysbemelast */

/* row of TEMP DATA, even if TEMP RONS only has 1 line. */

a= lastrow(gd\art name) - lastmw(’telp data’);

/* If there was an old chart, a >0, otherwise a0 */

if ( (row 1 col 1 of temp rows = row a col 4 of table(gchart name)) AND
(rawleolZoftetpmws-rowacol&oftable(gdmtm)) ) then

rowlcolSoftexprous-enpty,
/*RwOistexts,wﬂlmteqmlamnber */

/* Blank the message if not needed. */
maker:
if chart_type= ‘SA’ then qcgraph= qc_graph?;
else . graphl;
/% The following section of code is used twice for 'Multiples’ data, Thus %/
/% the graph name is generalized to QUGRAFH for that purpose. */

ATICRS = OCGRAPH. ' @XTTCXS! ;
BMSGS = GUGRAPH. '@MSGS’;
DATA TABLE=QCGRAFH. ' @DATA’ ;

/* Construct some names of the graph’s underlying tables. */
if objSexists(data table) then last date= lastrow(data table);
else
last data =0;
/* A count of previous data is used below. It is obtained from the LASTROW */
/* finction on the graph’s data table (if it exists). */
if objSexists(qegraph) then
{
start rov = 1;
goto adder;
/% If the graph exists, no call to SMAKECHART is required, thus the procedure */
/* skips to AIDER. */
}
else
{
start_rows 2;
cal;

d-mwlcollooftalprms,

lot id=rows c to d of col 7 of temp data;
vl-rwlcolloftelprows,

v2 = vI*row 1 col 2 of temp rows/300;

v3 = rov ¢ to d of col datacol of temp_data;

ViaEMPTY;
/% initially set up for 'IA’ type */
/% See the QCA marmumal for an explamation of the parameters. */
if chart type= "™MA" then
/* Change the setup for a ‘Multiples’ type chart. */
/* See the QCA mamm] for an explanation of the parameters. */

{
v2 = row 1 col 3 of temp data;
v4 = vl*row 1 col 2 of temp _rows/300;

AI.13



)

if chart_type= "SA" then
/* Change the setup for a ‘Multiples’ type standard deviation chart. */
/* See the QCA manual for an explanation of the parameters. */

{

vl = row 1 col 3 of temp data;

v2 = row ¢ to d of col datacol of temp data;

v3 = rov 1 col 1 of temp rows*row 1 col 2 of temp rows/300;

vh = B‘IPI'Y;

}
call Smakechart( qcgraph, lot id, chart type, vl, v2, v3, v4, EMPTY, FALSE);
/* The noninteractive call to the RS/1 QCA package procedure SMAKECHART. */

/% See the QCA marual for an explanation of the parameters. */
call obj$setvalue(qegraph, "dismods", ‘box nokey’ );
/* Sets up the graph’s display modifiers permanently. */

if d=1 then row 2 of table(data table)=row 1 of table(data table);

/*BlINJIE!H&Iimhsaﬂylpomtiswtinﬂnc}nrtbym */
/* however, SALDPOINTS assumes at least two are to be present. SMAKECHART */
/* adds a second row to the chart’s data table. Unfortunately, SMAKECHART */
/% doesn’t completely fill that second row and SAIDPOINTS needs it filled, */

/* Therefore I do it for SMAKECHART. */
if lastrow(’temp data’) <= 5 then xpos=2; else xpos«d;

/% XPOS will be the X position of the curve labels. */

/* Ve are still in the SMAKECHART section here, and we are preparing to  */

/* add messages and ticks to the graph. */
XpoSl-empty;

do i = 1 to lastrow(’temp rows');
if row i col 4 of temp rows >= xpos then
{
Xpos2= i}
doexit;

}
end;
if xposZ=empty then xpos2 = 1;
/* This loop finds the row in TEMP ROWS, representing a region on the QC %/

/% chart, that contains the ’default’ positions for the control line */

/* messages. This row is then used to set the Y positions of the messages */

/* in the following lines of code. */
row 1 col 1 of table(bmsgs)='UPPER LIMIT';

/* Enter the first message into the message table. */

if chart_type © ‘SA’ then
rov 1 col 3 of table(bmsgs)=
row xpos? col 1 of temp rows*(1 + rov xpos2 col 2 of temp rows/100) -
1*(rw:q:oszeolloftelmrows*rw>qns2c0120f terprws/l(l)),
else
row 1 col 3 of table(bmsgs)=
1.7%row xpos2 col 1 of temp rows*( row xpos2 col 2 of temp_rows/300);
/* Calculate the first message’s Y position, based on table type. */
/* The 1.7’ in the ELSE part of the statement comes from the way QCA draws */
/* control lines on the "SA" type charts. Found in a QCA marmal appendix.  */
/* There is a little offset from the mamml value, so the message is not */
/* written over the line itself. The other part of the IF uses a direct */
/* caleulation of the cantrol line position and lowers the message by 10% of */
/% the difference between the mean and upper limit lines. ‘ */
row 2 col 1 of table(bmsgs)='SID VALLE';
/* Enter the second message into the message table. */

Al.14



&

£

if chart type < 'SA’ then
rov 2 col 3 of table(bmsgs)= row xpos2 col 1 of temp_rows -
.1*(row xpos2 col 1 of temp rows * row xpos2 col 2 of temp_rows/100 );

rov 2 col 3 of table(bmsgs)=
.85*rov xpos2 col 1 of temp rows*( row xpos2 col 2 of temp_rows/300};
/* Again, the Y position of the second message is calculated, with offsets, */

rov 3 col 1 of table(bmsgs)='LOVER LIMIT';
/* Enter the third message into the message table. */
if chart type © ’SA’ then
row 3 col 3 of table(bmsgs)=
row xposZ col 1 of temp rows*(l - row xpos2 col 2 of temp | rows/100) -
.1* ( row xpos2 col 1 of temp_rows*rovw xpos2 col 2 of temp rows/100 );
else
row 3 col 3 of table(bmsgs)=.1;
}
/* bgain, the Y position of the third message is calculated, with offsets. */
row 1 to 3 of col 2 of table(bmsgs)= xpos;

/* The X position of all three messages is set with this statement. */
/% This marks the end of the SMAKECHART section. */
adder:

/* The following section is where new regions are added to pre-existing QC  */
/% charts (vhich may have just been created above). */

do i= start row to lastrow(’temp rows’);
/* START ROV was set above. It is the row in TEMP ROWS vhere addition of */
/* other regions will start. Iftt'ledatabeingaddedismw,srmmﬂ 2, %
/% since the first row is used by SMAKECHART above. OthermseSrAKI‘HH=1 */
c=rovw i col 3 of temp rows;
dsrwicoléoftalpmws,
/% C and D are the starting and stopping data point for the current region. */
/* They are the row mmbers in TEMP DATA. */
lot1d=mctodofool7oftelpdata,
/% A tableportion stored in a variable, for use as a parameter in SADDPOINTS. */
/* See the QCA mamual for SADDPOINTS parameter definitions. */

if chart type = 'TA’ then
{
datacol-8;
al = row ¢ to d of col datacol of temp data;
al = B‘IPIY;
vl = row i col 1 of temp rows;
v2 = rov i col 2 of temp_rows*v1/300;
v3 « EMPIY;

)
if chart_type='MA’ then
{
al = rov ¢ to d of col datacol of temp data;
a2 = rows ¢ to d of col 2 of temp data;
vl = rov i col 1 of temp rows;
v2 = vl*row i col 2 of temp rows/300;
v3 = rov 1 col 3 of temp data;
}
if chart_type= 'SA’ then
{
al = row ¢ tod of col 2 of temp data;

AT.15



al = row ¢ col 2 of table temp data;

vl = rov 1 col 1 of temp rows*row i col 2 of temp rows/300;

v2 = tov 1 col 3 of temp data;

v3 = EMPIY;

}
/* Based on the chart-type, the above code sets up the SADDPOINTS parameters */
/* with the appropriate values. See the QCA mamual for explanations. */
call Saddpoints( qcgraph, "NEW", lot id, al, a2, EMPTY, vl, v2, v3, False);
/%* The non-interactive call totheSAlII’OmrSpmcedure Seethe(rAnanml */

/* for a description of the parameters. */

erd;

/* End of the DO loop that adds regions to the QC chart. */
allocate table table(aticks) 1 row by 1 col ;

/* Set up the XTIXS table. */
set mnits of x ads of graph(qegraph) to 1;

/* Set the units on the X axis to vhole mumbers enly. */

if lastrow(gchart name)> 30 then
{
low of x axis of graph(qcgraph) = lastrow(gchart name)- 30.25;
rows 1 to 3 of col 2 of table(tmsgs) = la.stmw(gc!nrt name}- 26.25;
do i = (lastrow(gchart name)-30) to 1 by -1;
if row i col 3 of table(data table) © empty then doexit;
end;
/* The IF statement limits the displayed part of the QC chart to the last 30 */
- /* points. It also moves the limit messages to 4 units in from the left. */
/% The D0 loop inside the IF finds the first non-zero entry in the control */
/% limits colum. When it finds a non-zero number, it exits, leaving the */
/* loop index I at that value. I is used in the next line. _ */
delta = (row i col 3 of table(data table)- row i col 4 of
table(data table))*.1;
/% DELTA is used below to reposition the control limit line messages in Y. */
row 1 col 3 of table(bmsgs) = row i col 3 of table(data table)-delta;
rov 2 col 3 of table(bmsgs) = row i col 4 of table(data_table)-delta;
rov 3 col 3 of table(bmsgs) = row { col 5 of table(data : _table)-delta;

/* Based an the value of [ELTA, the Y positions of the messages is */
/* recalculated. */
} .
else
low of x ads of graph(qcgraph) = .75
/* If there are less than 30 points, the Y axis lov is set to .75. */
LABEL OF X AXIS OF GRAPH(qcgraph)="DXTE"
/% Sets the label of the X axs. */

COLOR OF ORVES 2 OF GRAPH(qcgraph)="BLIE";
COL(R OF CLURVES 4 OF GRAPH(qcgraph)="BLIE";
/* Sets up some default colors for the control limit lines on the chart.  */
xhigh = (lastrow(gchart name)+.6);
/* Set up the XHIGH variable to give enogh room to display any STANDARD */
/* messages. : */
high of x axds of graph(qcgraph) = xhigh;
/* Set the X axis high. */
xlow = integer(low of x axis of graph(qegraph))+1;
/* The X axis LOW is set above to a fraction less than either 1 or some other */
/* value. The INTBGER function truncates the value, and then 1 is added to  #/
/* move the value back up to the first displayed point. */

xhigh = integer(xhigh);
AL.16

.



Iy

0

/% INTHERize the XHIGH value to get rid of the .6 added above. */
call #qc_y_a:ds_seulp(chmﬁh xlow, M);

/* Call the sub-procedure that sets the Y axis LOW and HIGH values. */
yhigh= high of y axis of graph(qcgraph);
ylow = lov of y axis of graph(qcgraph);

/* Get the new low and high values and save for later use. */
last data = lastrow(gchart name)-lastrow(’temp data’);
/* Calculate the old last row of data for later use. */

c= lastrow(aticks);
/* Get the current last row of the tick table in preparation for addirg 'NEW */
/% ST markers on the X axs. o */

if ¢ © 0 then
/* If COO, a previous tick table exists. Therefore the procedure needs to  */
/* check the last old standard against the new first standard. If they are  */
/* different, a new marker must be added. */

if ((row 1 col 1 of temp rows < row last data col 4 of table(gchart name))

(R {row 1 col 2 of temrwsOrwlastdatamlSof table(gd-artm)))

/* Testing for non-equivalence in the old last and new first standards. */

then

{
c=c+l}
row ¢ col 1 of table(aticks)e 'NEW STD‘;
row ¢ col 2 of table(aticks)= .5 + last data;

/* Bere is where the old last row of data is used in positioning a marker. */

row ¢ ool 3 of table(aticks)a G!ID‘,
rov ¢ col 4 of table{aticks)s ’
row ¢ OOL 5 OF TABLE{ATI(XS)=" 'VERI'.[QL"
/* aAdd a new marker by incrementing C and filling in the new row with the */
/* correct information. */
) .
do i= 1 to lastrow(’temp rows’)-1;
/% The index on this D0 loop is tricky. The actions of the loop drive off of */
/* C, vhich is incremented immediately, thus I only controls the incrementing.*/
c=c+l;
row ¢ col 1 of table(aticks)= 'NEW SID';
row ¢ col 2 of table(aticks)= rov i col 4 of temp rows + .5 + last data;
row ¢ col 3 of table{aticks)= 'GRID';
rov ¢ col 4 of table{aticks)= 'GREEN';
row ¢ Q0L 5 OF TABLE(ATICKS)="VERTICAL";
/* Add a new marker for each control limit region (each row in TEMP ROWS). */
ed;
do i= 1 to lastrow(’temp data’);
CaC+1;
rov ¢ col 1 of table(aticks)= row i col 7 of temp data;
/* Set the X tick labels equal to the dates from TEMP DATA. */
rov ¢ col 2 of table(aticks)= last data + i;
/* Set the X poistion of the ticks to the subgroup mmber. */
row ¢ OOL 5 OF TABLE(ATICKS)="VERTICAL";
/* Set the display attribute of the X tick. */
end;
Lr_msgs=lastrov(tmsgs);
do i= 1 to lastrow(’temp rows’);
rov (i+lr msgs) col 1 of table(bmsgs)= row i col 5 of temp_rows;
rov- (1+1r | ' msgs) col 2 of table(bmsgs)=
row 1 col 3 of temp rows+.25 + last data;
rov (i+lr msgs) OOL 9 OF 'I'ABlE(hJsgs)— "VERTICAL";

AL.17



row (i+lr msgs) OOL 10 OF TABLE(bmsgs)= "LEFT";
Eﬂ'

/* The above DO loop adds the 'STD-' messages to the chart by adding rovs to */
/* the MSGS table of the QC graph. */

yheight = 1.07 * (yhigh - ylow) /8.25;
/* 8.25 is the height (in inches) of the graph on paper, 1.07 = 1/2 of the */
/* height of the ’'SID’ message (in inches). . */
do i= 4 to lastrow(bmsgs);
‘row 1 OOL 3 OF TABLE(bmsgs)= ylow + 1.1%vheight ;
exd;
/* The above DO loop adjusts the centers of the 'STD=' messages according to */
/* the Y ads low. This DO loop allows the Y axis low to be set above without */
/* worrying about any new STD message. */
delete table(bmsgs) where col 1 = empty; :
/* Cleans up the MSGS table, if required(?). */

/* The next section does the TREND analysis of the QC chart. Full Western */
/* Electric rules for MEANS and INDIVIDUALS. Restricted set for SITEVS. */
culastrow(data table);

/* Get the end of the data to mark the region to TREND. */
GRAPHNUTES of graph(qcgraph) = empty;
/* Empty out any previous results. */
: if chart_type © ’'SA’ then
/% For MEANS and INDIVIDUALS, */

(

if call flag='A’ then delete curve 5 of graph(qcgraph);
/* If this is not the first time, delete the old trending info. */

call Strend( qegraph, 1, c, false);
/* The non-interactive call to sm. This starts at subgroup 1 and goes to */
/* subgroup C. One could start anywhere, but beware that there is a bug. */
/% BUGNOTE!!! STREND (possibly SCALIRULES alsc) */
/% SMAKECHART and SADDPOINTS do not totally £ill in the colum of data in the */
/* DATA table of the QC chart. They just fill in the start and stop points of */
/* a given region, leaving the lines in between empty. If the trend region  */
/* starts wvith ane of these empty points, STREND crashes. A fix would be to  */
/* add some code in your procedure to fill in the empty cells in the DATA */
/* table of the graph. This may also occur with the SCALLRIEES procedure. */

} .

if chart type = 'SA’ then

{

ifcallﬂag- then delete curve 5 of graph(qcgraph);

call $callrules( '#restricted trend rules’, qegraph, 1, ¢, false);
/*S(’Allmnmisﬂ':euﬂerlyﬁgpmeaiumtosm In STREND a special */
/* rules table is used. Here, I bypass STREND to apply a different set of  */

/* rules, the rules table is #restricted trend rules in the grouphome */
/* subdirectory. This trend analysis only marks points outside the control */
/* limits. */
)
if ©30 then

GRAPHNUTES of graph(qegraph) = "Qurrent screen display starts at subgroup”
. (c-30) .GRAPHNOTES of graph(qegraph) ;
/* Add a note to the graph note telling if display is windowed and vhere.  */
crlf=mm to ascii(13). mm_to_ascii(10);
/* (RLF holds the non-printable characters <GO<LF>. Tt is used belov for  */

/* spacing in text messages and notes. */
AlL.18



I3

label of curve 1 of graph(qcgraph) = ‘Data Points’.crlf;
label of curve 2 of graph(qegraph) = ‘Upper Limit’.crlf;
label of curve 3 of graph({qcgraph) = ‘Standard’.crlf.’Value’.crlf;
label of curve 4 of graph(qcgraph) = 'Lower Limit’.crlf;
label of curve 5 of graph(qcgraph) = ‘Out-of-Control’ .crlf.’Point’.crlf;
/* Set up the spacing and labelling of the graph key. */
if (std_flag AND chart_type < 'SA’) then graphtitle of graph(qcgraph)=
row std row col 5 of #x_control limits;
if (std_flag AND chart type = ‘SA’) then graphtitle of graph(gegraph)=
'Standard Deviation Control Chart to go with’.crlf.
rov std_row col 5 of #trx control limits; .
/* Sets the graph titles, according to chart type. */
label of y axis of graph(qcgraph) =
row std row col 3 of #tmx_control limits;
orientation of y axis of graph(qcgraph) = 'VERTICAL' ;

/* Set display characteristics of the Y axis. */
if display flag = -1 then goto skipped display;
/* This line skips the graphics diplay if DISPLAY FLAG is set at -1. */

c=ext ( 1, 5, caps ( global( TERMINAL') ) );
if ¢ = 'IBMPC’ then call #ibmpe_fixmp(aticks,qcgraph);
else dis graph( qegraph );
/* Get the RS/1 system variable TERMINAL and see if it starts with "IRMPC". */-
/* (This uses the GLOBAL function to get it, the CAPS function to capitalize */

_ /* it, and the EXT function to get the first 5 characters.) */
/* 1f it does, the user is using the RSTERM terminal emulator, which has a */
/* problem with displays. */
/* The subprocedyre IBMPC FDAP temporarily alters the display and displays */
/* the graph on the screen. Otherwise a simple DISPLAY suffices. */
checkerl: if not yesanswer("Continue? ") then goto checkerl;

/* The checkpoint for display. Display is non-optional. */
skipped display:

if chart _type = 'MA’ then
/% If the chart type is MA, this vas the first pass through on a "Maltiples’ */
/* type data set. A STDEV chart needs to be constructed also. The chart type */
/% and data colum number are reset to the appropriate values, and the */
/* procedure is sent back to the start to do it all over again an the */
/* standard deviation data. */

begin;

chart_type = 'SA’;

datacol = 2;

goto maker;

end;
delete table temp rows;
/* Cleans up after itself by deleteing the temporary table TEMP ROMS. */
end;

AL.19



PROCEDRE 5. #MAKE TEMP DATA

procedure(chart name, table type, call _flag, std flag, std row);

/* This subprocedure interactively prompts the user for the necessary */
/* information to construct a temporary data table, TEMP DATA, in the */
/*fomatusedinthe(x:pmeeduresmccmmmmmmrsmoc */
/* CHART, 'mepassedpamtersarezthecoretestm((m!{rM), */
/* the table type (I or M), a call-flag (A or M), a ’'standard’ test flag */
/* (SI‘DFLAG TRIE or FALSE), ard a row number in d\eOINMLL'D{I'I‘S table */

/* where 'standard’ test information is stored. */
/* */
/* TEMP DATA is eventually copied to or added to the grouphome data table. */
/* */
/* Version 0. - origimally an integral part of version O of MAKE QC CHART */
/* and ALD POINTS TO QC CHART. */
/* */
/% BEGINNING OF SUB-PROCEDURE MAKE TEMP DATA. VERSION 0. */
nev_flag=TRUE;
/*Alogicalﬂagusedtotelliftl'leprocedurestmldgetaﬂrstvalm */
/* for standards. */
gchart_name='#’.chart_name;

/* Builds the grouphome data table name. */
colno=8;

" if table_type="M" then

(

if std flag then colno = row std_row col 6 of #tmx_control limits7;

else

colno=getmumber ("How mary points per line? ")+7;

}
/* (OLND is the variable that holds the meximm data table colum mmber. */
/* 1f the table is for "Multiples" data, i.e. more than 1 determination per */
/* sample, the number of points per line is obtained via the GEINUMBER */
/* terminal I/0 function for a ‘nom-standard’ test, or from the ONIROL ~ */
/* LIMITS table for a ’standard’ test, and OOLND is adjusted appropriately. */
/% NOIE:: COLNO is NOT the last colum of the tablel! */
crifamm to ascii(13).mm to ) ascii(10);
/* (RLF is a text variable that holds the nonprintable characters <ROAF>. */
/* It is used in spacing the TEMP DATA col 5 header below. */
allocate table temp data 1 row by colno col;
row 0 col O of te:pdata-dnrt _name;
rov 0 col 1 of temp ) datas'MEAN ;
row 0 col 2 of taipdatae'Sl‘EV’
rov 0 col 3 of temp _ data’ COUNT” ;
rov Q col 4 of temp data:'SﬂJJAI.IE
row O col 5 of temp  data='RANGE’ c:rlf 'X of SID;
rov 0 col 6 of temp y datax’STD REF';
rov 0 col 7 of temp «  data="DATE' ;
row 0 col 8 of temp dataa’VALlEl
/* Allocates space for the temporary data table TEMP DATA and fills in */
/% colum headers. */
if colno>= 9 then

{

do j= 9 to colno;

rov O col j of temp data='VALLE'.(j-7);
/* This DO loop enters the rest of the colum headers for ‘Multiples’ data. */

AL.20



9

&

3

/* The header is the word 'VALLE’ with the value cont added on the end */
/* (i.e. VALIE2). It is only used if OOLNO > 8, wlﬂchslmldl'appmaﬂyif*/
/* ‘Multiples’ data is being entered.

end;

}
watch cols 4 to colno of temp data;
/* The RS/1 VATCH feature allows all changes mede to the TEMP DATA table to */

/% be displayed immediately. _ */
tym ll";
WFE llﬂ;

type "0.K., we are ready to go.";

ne,

llﬂ;
/% A banner indicating everything has worked so far. */
tenp rows();
/* A variable that is used to keep track of the mmber of rows entered. */
enter_data:
/* This label indicates the start of the data entry sectim. It is the */
/* entry point for a later GUTO, vhere the user has indicated more data is */
/% to be entered than was origimally estimated. */
row_mmber = getrumber("How many rows of data you will enter today? ");
/*Mlblmismedasﬂiemdexofamloop(follwirg)thatcmtmls */
/* data entry into TEMP DATA. */

- if row number < 1 then

Eype"";

type "Sorry I need a mmber greater than or equal to 1.";

goto enter data;

}
/* If the operater enters less than 1 here, I presume a mistake has been  */
/% made. I tell the operator so, and go back to the data entry point. */
get first standards:
if (call ﬂag ‘M’ AND nev_flag=TRIE )then
/* The subsequent section of code is only excuted for a totally new chart. */
/* Thus the call flag must be ‘M’ and the nev_flag must be TRIE. */

{

stdvaluesgetrumber(’What is the standard value for the first point? *);

if std flag then sd= row std row ool 2 of #tnx_control limits;

else sd=getrumber(

‘What is the size of the control limit as a percent of the standard? /);

/* These two varigbles will hold the value for the standard and its range. */
/* For a 'standard’ test the standard deviatian is derived from the OONTROL,_ */

/% LIMITS table entry. */
stdrefe
gettext(’Flease enter a notebook/pagenmber reference for the standard:’);
new_flag=FALSE;
/*Setmwﬂagsottatﬂﬂssectimismtmtda@in */
goto set_values;

} .
if (call flag='A’ and new flag=TRIE ) then
/% The subsequent section of code is only executed for an old chart on the */
/* first pass only. Thus the call flag must be ‘A’ and the new flag must be */
/* TRUE. */
{
stdvaluesrow lastrow(gchart name) col 4 of table(gchart name);
sd = row lastrow(gchart name) col 5 of table(gchart | name)

AL.21




stdref= row lastrow(gchart name) col 6 of table(gchart name);

/% If the call was from ADD POINTS... and this is the first pass, the */

/* standard’s mfoisderivedfrmthelastmof the grouphome data table. */
new_flag=FALSE;

/* Set newﬂagso that this section is not executed again. */

goto set_values;
)

stdvaluesrow lastrow(’temp_data’) col 4 of table(’ temp i data'),

sd = row lastrov(’ temp ¢ data’) col 5 of table(’ temp data’);

stdref= row lastrow(’temp data’) col 6 of table(’ temp data’);

/* On all passes through this section, except the very first, the standard’s */
/% information iz initially derived from the previous line in TEMP DATA, */
set_values:

do {i= 1 to row rumber;

/* The DO loop that controls data entry. */
temp_row=temp row+l;
/% Increment the total number of rows entered. */

row temp rov col 4 of temp data = stdvalue;
ruwtemrwoolSof tarpdatau sd;
rwteiprwcol6of teq:(htaustdref
rowtemrwool?of temdatas
getdate("Please enter a date for this determination (example 1/1 or 3/10/89):
/* A DATE must always be entered. It is stored in colum 7 of TEMP DATA. %/
' a= getumber("Please enter the determinmation value: ");
/% A MMBER must alvays be entered. It is stored in colum 8 of TEMP DATA. */
/* However, the value can also indicate an end to data entry. If it equals */
/* -999, the following test deletes the current row, adjusts the total rows */
/* entered count, prints a message, and goes to the label MIREENTER, vhere */
/* the procedure asks if more data is to be entered. */
if aC-999 then row temp_row col 8 of temp data -a;
else

begin;

del rov temp row of temp data;

temp_rows temp row -1;

tym ll".

type "Ebcltim data entry section early.”;

type "";

goto moreenter;

end; '
/* The IF test on the determination value entered. TRIE results in the */
/* datum being stored in colum 8, FALSE means delete the row, etc. */
/* */
/* This IF statement is an attempt to handle the problem of a user over- */
/* estimating the amount of data to be entered. */

if colno <= 8 then goto get standards;
/* This IF skips the next couple of lines if ‘Individuals’ type data is  */
/* being entered (based on a test of the maximm colum mmber). */
do j= 9 to colno;
/* This DO loop enters the rest of the determinations for 'Multiples’ data. */
row temp row col j of temp data = getmmber("Please enter the determination
L
)i

/* 'n'us statement gets the next mumber and writes it into TEMP DATA. */
end;

/* End of the ‘Multiples’ data entry DO loop. */

get_standards:

AT.22

B H



£)

ifyesamswer( Is the current standard value (K? /,TRUE) then goto next_rov;
/* This IF statement allows the user to change the standard’s values if  */
/* desired. It presents a default answer of ‘Yes’, indicating no change, as */
/* this is the anticipated usual answer. */
else
{
row temp row col 4 of temp data =
getmmber(’Vhat is the standard value for this point? };
/* Get the new standard’s value. */
if not std flag then
sd=getrumber(’What is the control limit as a percent of the standard? /)
rov temp row col 5 of temp datax sd;
/* Get the new control limit, eitlnrfruntheuserorfmttn(INIRDLLDﬂ‘IS*/
/* table. */
row temp rov col 6 of temp data =
gettext(’Vhat is the notebook/pagemumber reference for the standard? ’);
/* Get the reference to vhere the new standard is documented. */
stdvalue = rov temp row col 4 of temp data;
stdref = row tenproweolt’:of te:pdata,

/* Saves the new values for the next line. */
}

next_row: type "";

/% Print a blank lim before the next DATE/VALIE(S) data entry block. */

S'd'

% Bnd of the data entry block. When the loop counter reaches the estimated */

/* count enterd above, the procedure goes on to the next statement below. */
moreenter:

/* MOREENTER label, used as an entry point for the GOTO above that skipped */
/* the 'Multiples’ data entry. */
if yesanswer("Do you need to enter more rows? ") then goto enter data;

/* This IF is-for when the user underestimates the rumber of data rows to  */
/* be entered. If more data is to be entered the procedure goes back to */
/* the ENTER DATA label above. */
datacheck:

/* The DATACHFCK label indicates the start of the data corection section of */
/* this procedure. The procedure gives the user the opportunity to change */

/% any data that is wrong. */
dis col 4 to lasteol(’temp data’) of temp data;
/* Display all the data typed in this session. */
/* The user should look at this display to locate incorrect data. */
if yesanswer{"Does this all look correct? ") then
goto ender;
/* If the data is all correct, the user answers """, and the procedure
skips to the label ENDER. */
else
/* If the data is not all correct the user enters "N" above and the */
/* procedure goes to the following section, which is marked with the label */
/* FDINUMBER. */
begin;
fixmmmber:
/* The procedure requires the user to enter the bad datun’s row and colum */
/* mumber, assigned to ‘a’ and 'b’, respectively. */

a=getmmber(’'WVhat is the row mumber of the bad data?’);
IF A> LASTROV(’TEMP DATA’) THEN )



TIPE "The row number you entered was to large. Please try again.";
checkerl: if not yesanswer(’Are you ready? ’,TRUE) then goto checkerl;
goto datacheck;
}
/* If the rov entered exceeds the existing mmber of rows, the user has made */
/* a mistake and should start over, */
b=getnumber ('What is the colum mumber of the bad data?’);
IF b> lastcol(’temp data’) THEN
{
m "ll;
TYPE "The colum number you entered was to large. Please try again.";
checker2: if not yesanswer(’Are you ready? ', TRUE) then goto checker2;

goto datacheck;
}
/* If the colum entered exceeds the existing mmber of colums, the user */
/* has made a mistake and should start over. */
if b= 7 then

rov a col b of temp data = getdate(’What should I put there instead? ’);
"else
if b = 6 then
rov a col b of temp data = gettext(’'What should I put there instead?’);
- else
if (std_flag and b=5) then
{
type 'Sorry, Changing the Limit is not allowed.’;
goto datacheck;
}
else
row a col b of temp data-getrumber(’What should I put there instead? ’);
/% If the datum’s colum rumber is 7, the datum is a DATE and the procedure */
/* looks for a DATE specifically, otherwise it checks to see if the data */
/* colum is for the std. ref. information. If so, it gets a text string, */
/* othervise it gets a NMBER to replace the bad datum. (However, it does */
/* first check to see if the user is trying to change a standardized control */
/* limit. If he is, the procedure types an error message and goes back to  */
/* redisplay of the data typed in.) It then replaces the bad datum with the */
/* new rumber/text/date. */
display col (b-1) to (b+l) of rows (a-1) to (a+l) of temp data;
/* The procedure attempts to display a 3x3 section of the data table that is */

/* centered on the recently corrected datum. */
if yesanswer("Is this (K now? ") then goto datacheck;
goto fixrumber;
/* If the nev datum is correct, the procedure goes back to DATACHRCK ard */
/* to redisplay the data table (TEMP DATA) for final confirmation. */
/* Othervise it skips back up to FDNUMBER and asks for the row, colum, and */
/* correct value again. */
/% THIS OQULD BE USED AS A SBORT-CUT IN DATA CORRECTION IF THE USER WANTS  */
/* TO SKIP THE REDISPLAY. */
end; )
/* End of the logical block of the IF statement. */
erder:

/* The label ENIER marks the end of the data entry phase of the procedure. */
/* After here, the procedure begins doing the chart building, and user input */

/* is used only to get optional printouts and graphics displays. */
if lastcol('terp_data')>8 then
/* This IF statement is used only for ‘Multiples’ data. The D0 loop */

AL.24

A



G

&

ot

/% immediately belov calaulates the mean, standard deviation, and count for */

/* each data table row. */
do i= 1 to lastrow(’temp data’);

./*IDfora]lof'I‘EHPD\'rA */

if count of row i of cols 8 to lasteol(’ temp data’) of temp data >1 then

/% On the off chance the user has circumvented this procedure and */

/* accidentally deleted some data, this IF checks to make sure a standard  */

/* deviation can be calculated (requires at least two data points. */

rov 1 col 1 of temp data=
mean of row i of cols 8 to lasteol(’ tep data’) of temp data.
/* MEAN is stored in colum 1. */
rov i col 2 of temp data =
stdev of row i of cols 8 to lastcol(’ temp data’) of temp data;
/* STIEV is stored in colum 2. */
rov i col 3 of temp data =
count of row i of cols 8 to lasteol(’temp data’) of temp data;

/* QOUNT is stored in colum 3. */
end;
/* End of DO loop. */

oper = strip(Sgetiobinfo("username™));

/* This is a call to WS for the username. MsmIPfuntimrmnves */
/% trailing blanks. */
colno=colno+3;

/* Increase the last colum muber in preparation for time amd operator %/

- /* stamping. */

do i= 1 to lastrow("temp data™);

rov i col (colno-2) of temp data-date();

rov i col (colno-1) of temp data=time();

rov i col colno of temp datacoper;

end;

/* The DO loop time, date, and operator stamps the data table. %/
rov O col (colno-2) of temp data = 'ENIDATE’;

rov O col (colno-1) of temp ¢  data = ‘ENTTIME';

row 0 col colno  of temp data = 'OPERATOR';

/* These statements label the data table colums */

erd;




PROCEDIRE 6. #IBMPC FIXUP

procedure(aticks,qcgraph);

/* This procedure temporarily suppresses the DATE display on the X axis of */
/* a QC chart. This is required when using the free BBN terminal emilator */
/* RSTERM. RSTERM prints the dates at standard height, leaving no room for */
/* the chart to be displayed. Therfore, the dates are temporarily replaced +*/

/* subgroup rumbers, the graph displayed, and the dates replaced. ) */
/* This procedure should only be accessed when the TERMINAL variable begins */
/* with the letters 'IBMPC’. */
/% */
/% Version . Originator: Kirk L. Shanahan Date: ¢. 9/20/89 */
/* Installed in ADS GROUPHOME as IEMPC FTXUP on 11/20/89. */
/* */
/* BRGINNING OF SUB-PROCEDURE IEMPC FDXUP. VERSICN 0. */
/% */

if tableexists(’temp store’) then delete table(’temp store’);
make table temp store from col 1 of table(aticks);
/* TEMP_STORE will temporarily hold the tick labels (col 1 of tick table). */

do i= 1 to lastrow(aticks);
if row i col 1 of table(aticks)="NEW ST’ then
rov i col 1 of table(aticks)='N’;
- else row 1 col 1 of table(aticks)=rov i col 2 of table(aticks);
end;
/* This DO loop sets the tick label to a mumber unless is is one of the */
/* special ticks "NEW SID", in which case it abbreviates it to 'N’. */

dis graph( qegraph );
/* A non-optional display. The user should always see the trended QC chart. */

type "DATE DISPLAY SUPPRESSED. DATES WILL SAOW IN HARDODPY.™;
/* This types a message to the user that the date display has been suppressed.*/

col 1 of table(aticks)=col 1 of temp_store;

/% Restores the old tick labels. */
delete table temp store;

/* Cleans up the TEMP STCRE table. */
end; '

AI|26



@

at

PROCEDURE 7. #QC_HARDOOPY

procedure(chart name, call flag);
/* This procedure generates hardcopy output of QC charts, summary QC charts, */
/* or QA report charts. The passed variable CALL FLAG distinguishes this. */

/* */
/* Origimator: Kirk L. Shanahan Date: c. 9/20/89 VERSI(N 0. _ */
/% Installed in TNX GROUPHOME as QC_HARDOOPY 11/20/89 */
/* */
/% BEGINNING OF SUB-PROCEDURE QC_HARDCOPY. VERSION O. */
/% */

gchart_name='4#'.chart nam.
/* Construct the grouphome data chart name. Here a subdirectory is used. %/

tm "ll.
type "Uoridrc
type "";

if call flag & 'S’ then

(

qc_graphl = gdnrt_mre.'_qc_chart';

qc_graph? = gchart name.’ qc_chart stdev’;

if lasteol(gchart name)>11 then qc _graml qc_graphl.’ means’;
/* Here I create two variables that have the core data table name as their */
/* first letters, and QC CHART as the next letters. QC GRAPH1 will be used */
/% for the name of the INDIVIDUALS QC chart. QC GRAPH2 vill be used for the */
/* name of the SIIEV QC chart (for 'Multiples’ data). */
/* Adding ' MEANS’ to QUGRAPHL for M type tables is required. */
/* This construct is duplicated in BQC, so the charts are named the same.  */
/* This section of code is for calls from MAKE... and AID... procedures. */

}
else

qc_gra.phl "SUMMARY '.chart_name.’ QC CHART';
qc_graph? = Sl.I'HAM’ dartnam (ECHARI‘STIEV,
if lasteol(gd'nrt_m) > 11 then qc__gza[hl qc_graphl.’ MEANS
sunry name= ‘SUMMARY ‘.chart name.’ DATA’;
/* Construct names for summary chart and graph(s). Used vhen called from */

/* SUMMARY. .. */
}
printer=’In031’;
/* Set the PRINIER system varijable to the appropriate printer type. */
/% In this case a [EC INO3 printer in landscape mode. */

- printout graph(qc_graphl) at (.05,.05) vidth .9 height .9 on file ’print.mp’;

/* Create a WS file (print.tmp) in the GROUPHOME (not absolutely necessary) */

/* containing the information RSPRINT needs to create a printable file. */
/* Note that this file (print.tmp) is not yet printable. */
/* The display modifiers slightly shrink the graph and position it with */
/% margins. */

if objSe&sts( qc graph? ) then
begin;
printout graph(qc_graph?) at (.05,.05) width .9 height .9
AL.27




on file ‘print.doc’;
chain "append print.doc print. tmp";
/* Create a second WS file with the second graph and attach (append) it to */
/* the first. Same display modifiers. */
end;

if yesanswer(’Do you need a printout of the data table? ’) then
begin;

if call flag © 'S’ then '
printout table(gchart name) HEIGHT .8 VIDIH .7 AT {.15,.15)
on file ’print.doc2’;
else .
printout table(sumry name) on file ’print.doc2’
HEIGHT .8 VIDIH .7 AT (.1S,.15);
/* The display modifiers here were needed to prevent a wrap-around problem */
/* experienced with some IND3's. In those cases the last colum of data */
/* printed would be wrapped to the first colum, and would overvrite the */
/* next line of data. */
chain ‘append print.doc2 print. tmp’;
end;

chain ‘rsprint -o print.six print.tmp’;
/* RSPRINT translates the RS/1 output into something the printer ean */
/* understand. The -0 flag indicates that the next name on the commnd line */
/* is the name of the WS file that will hold the printable data. The last */
/* name an the line is the WS file that has the information RSPRINT will #/

/* be translating. */
get printer:

/* The lable GET PRINTER marks the start of the section that asks the user #*/
/* where printout is to be directed and then prints there. */
type "";

type "Which printer? Please enter 3 for Sample Receiving.";
a= getrumber(’Number? ’);

/*Aicsdntserﬂmebmtstoprintaﬂgetsm’sm. */

if a =1 then

/% The following code allows me to print in my offic by limiting printout */

/* 1o people working under my username (hopefully just me. */
begin;

if (strip(Sgetjobinfo("usenm")) = '"TRIRS’ ) then
chain ’copy print.six slkls::txab:’;
else
begin;
type "";
type "Sorry, that’s not installed yet. Please use #2";
type "";
goto get printer;

]

end;

if a = 2 then chain ' print/nofeed/queue=IND3 704 1T print.six’;
/% If ‘option "2" is selected, printout is directed to C101 */

if a = 3 then chain 'print/nofeed/quene=IN03 772 T print.six’;
AL.28



w

/* If option "3" is selected, printout is directed to 772 t */

chain ’'delete print.*;*/;

/* Clean up all the files (possible prior versions as well).

end;

AI.29

*/




PROCEDURE 8. #SUMMARY_QC_CHART

/% SMMARY QC CHART - This procedure creates a either a QA report chart, */
/* kept permanently in GA records, or a QC chart, for trouble-shooting */
/* purposes, by modifying display parameters of pre-existing QC charts */

/*(creatednammcmkrormdiﬁedbyﬁmmnﬂ'STOQCM) */ .
/* */

/* Version 0 Originator: Kirk L. Shanshan Date: Oct. 6, 1989 _ */

/* */

/* This procedure asks the user to select a QC chart, either from a list  */ .

/* of ‘standard’ tests or by entering the test name. It then gives the */
/* user the option of producing a 0A report chart or a QC sumary chart. */
/% Further, it gives the user the option of producing a monthly summary or */
/* a general sumary (vhich could include the whole chart). Ihrdcopyofme*/

/* chart is automatic. Hardcopy of the data is optiemal. */
/* ’ */
/* BEGINNING OF PROCEIXRE SUMMARY (C_CHART. VERSION O. */
/* */
erase;

/* Clears the screen, ' */
tym "N

/* 'I'his construct types a blank line to the screen (used for spacing only). */
"ll
x nn.
type "Ue.leane to the QC world. This is procedure SUMMARY QC_CHART.";
type "It will ask you for the table, month, and year to use, and ";
type "will then make a summary QC chart (or charts).";
$ ﬂ'll; o«
type " Version 0.0";
type "";
/* Barner - Lets user lmow vhich procedure he/she is in. */
crlf=mm to ascii(13).mm to ascii(10);
/* (RLF s a text variable containing the non-printable characters RO, */

/* It is used below to space out the chart key and notes. */
getname:

/* This is a label used as a jump-in point from a later GOTO stmt. */
/* It is the starting point of the procedure. i */

sum_chart _type=gettext(

*Do you want a QA (A) report chart or a (C (C) summary chart?

Please enter an Aor a C: ');

/* This is vhere the user designates which type of summary chart he wants. */
sum_chart_type= CAPS(sum chart type);

/* Capitalize the chart type. */
if not (sum chart_type = A’ (R sum chart type = 'C’ ) then goto getname;

/* Making sure a correct answer vas entered. */
type "";

IF YESANSVER('Are you summarizing a standard test?’) THEN

/* If the user answers "Yes" here, the procedure goes to the CONIROL LIMITS */
/* table and displays a list of standard tests for the user to choose from. */
/% A "No" serdds the procedure to the sectmn that gets a name directly from */ -
/* the user, */
type "A list of methods will now be displayed.”;

AI.30



type "fou should locate the test you vant and remember its row rumber.™;
type "You will be asked to enter the rov mmber after the display is finished.";
type "If the test you want doesn’t appear, it is not a ’'standard’ test";
type "In that case, enter a 1 (chooses NON STANDARD) to go back to the start.";
WFE II!I;
checkerl: if not yesanswer("Are you ready?") them go to checkeri;
/* The TYPE-CHBOTER] block above is meant to give the user a chance to get */
/% for the upcoming display. */
get_test_name: ’
DIS OOL 1 OF #trx CONTROL LIMITS;
/* The table in-this statement is the CONTROL LIMITS table. Here it is stored */
/* in a grouphome subdirectory and ‘personalized’ via the 'trx’ designation */
/* for the Analytical Development Section QC effort. */
control_row= GEINUMBER(’Please choose which test by entering the mmber:’);
/* The user enters the row mmber of the test for vhich a chart is to be */
/* constructed. */
if control_row=1 then goto getname;
/*IheGNmOLLDETtableshmﬂdalways}avemwlcollbe"Wsm
/* This allows the user the chance to go back to the begiming when needed */
/% via the GOTO above. */
dis row control row of col 1 of #trx_control limits;
if not yesanswer(’Is this the test you wanted?’) then goto get_test mn'e,
/* Display the user’s choice and confimm it. */
chart_name = row control row col 1 of #tnx _control limits;
table : type = caps(row omtrol rov col 4 of ¥t control . limits);
/* Get the stored infoaiARI‘NAHEandTABlETYPEmﬂntest from the OONTROL */

/% LIMITS table. */
goto make  names;
/* Jump past the next block because it is for a ‘non-standard’ test. */
J :
control row=0;

/*SetsﬂevariablemmtOOtomidpmblmwithmM\mlm */
/* later on, set to O since to reach here, a ‘non-standard’ test is implied. */
chart name -GETTEXT("What is the name of the QC Chart you wish to summarize? ");
/% Chart_name is the variable that holds the core of the table and QC chart */
/* names. GETTEXT is an RPL fumtion for terminal I/0 that gets a string. . */
/* Here the input string is assigned to ‘chart name’. */
make names: -
gdnrtraEa'#'dnrtm,
/*&eateﬂxemofﬂegxmﬂmtabhtyatmthe# */
if not tableexists(gchart name) then

begin;

type "That QC table isn’t in the grouphomm.”;

type "";

type "Please check the name and try again.®;

type "";

goto exdter;

end;
/* The IF tests to see if the core table is present. If it is, the procedure */
/* goes on. If not, it prints an error message, and goes to the label EXTTER */
/% (found at the end of the procedure) which stops the procedure. */
qc_graphl = 'SUMMARY ’.chart name.’ QC CHART';
qc_graph? = SLHiARY clartnam QCCHARI‘S'EEV
if lastcol(gchart | name)>11 then qc gra;:hl-qc _graphl.’ MEANS';
SUNry name= SlHlARY'dartrram _DATA’;
chraliﬂ gda.rtnane mm

AI.31




qc_gra#i{. = gcmrt_m- '_m_fﬂm_sm ';

if lastcol(gchart name)>11 then qc_graph3=qc_graph3.’ MEANS';

msgs_namel= qc_graphl.’@msgs’;

msgs_name2= qc_graph?.’@msgs’;

/* Construct names for summary chart and graph(s) and the grouphome charts +/

/* graphs. */ .
if objSexists(qc graphl) then delete graph(qc_graphl); o
if objSexists(qc_graph?) then delete graph(qc_graph?);

if objSexists(sumry name) then delete table(sumry name); :

/* If the objects already exist, then delete them. */ -
if yesanswer(’Bo you vant a simple monthly summary?’) then goto month sum;

/% If the user answers "Yes", the procedure selects all unique month-year  */

/* combinations (NUTE: This assumes all data is in chronological order.), */

/* and displays them. The user chooses one and the procedure makes the */

/% chart just for that month’s data. */
/* A "No" implies the user wishes to select a contiguous block of data, not */
/* bourded by just dates, to display. */

¢ = (lastrow(gchart_name)-60);
/*‘I‘heva.riable013wedint|nfollwingtolimittl'ledisplayqfdata */
/* points to 60 max. It does not limit the selection of summrized data to */
/% the last 60 points. . */
if cQ then c=1;
/% Probably unnecessary, unless data table is messed up. */
get_rows:
dis rows ¢ to (lastrow(gchart name)) of col 7 of table(gchart name);
/* Displays the last 60 points by date only. */
type "";
a= getmumber('Vhich row should start the sumary chart? ’);
be getumber(’Which row should stop the summary chart? ’); -
/* Asks the user to define the block of data to be summarized by row mumbers */ ¢
/* in the data table. */
if a >= b then '
iy.pe "ﬂ'; :
type "Start point equal to or greater than stop point.";
type "Please try again.";
tym Illl;

/* This IF makes sure that the start point is before the stop point. */

goto copy_graphs;
/* Skips the following section of code, vhich does the monthly sumary stuff, */

month sum:

/* The next section of code searches the DATE entries of the data table and */
/* selects unique mnth/year combinations. It places the month and year in */
/*MmIAaﬂdmdisplaysﬂmresultmtmble.Mmerdmsdects */

/* vhich rov is to be sumarized. */
3=l

/* J 1s used to indicate the current row of TEMP DATA in the subsequent */
/* section. */

testmonth = monthpart( row j col 7 of table(gchart name) );
testyear = yearpart ( row j col 7 of table{gchart name) );
/* The functions MONTHPART and YEARPART extract the mnth and year froma  */
/* DATE. The values are mumeric (i.e. "RN" is not returned, but "6" is). */
/% TheSe values are stored in TESTMINTH and TESTYEAR. */

AL.32



®

£

rov j col 1 of temp data = testmonth;
row j col 2 of temp data = testyear;
rov j col 3 of temp data = 1;
J=j+1
/* The first data row is always unique, so the month and year are written
/* into TEMP DATA. The next write will be to the next row, therefore J must
/* be incremented up by one.
/* Colum 3 of TEMP DATA stores the row at which that month’s data sta:ts
/% Colum 4 will store the stop point. It is filled in later.
do i = 2 to lastrow( gchart_name);
/* This D0 loop selectes each row of the data table and tests the DATE for
/* uniqueness. I is the current row in the data table.
IF ( monthpart( row i col 7 of table(gchart name) )< testmonth
(R yearpart( row i col 7 of table(gchart name) )< testyear ) then
/* The condition of this IF is a logical (R. If either the month or year of

/* the aurrent row of the data table is unique, a new row must be written to

/* TEMP DATA.
/* Please note that this logic assumes the data table is sequentially time-
/* ardered.

*/
*/
*/
*/
*/

*/
*/

*/
*/
*/
*/
*/

begin;
/* The BEGIN marks the start of the section that writes the new unique month */

/* and year to TEMP DATA, and resets the test variables to the new values.
testmonth = monthpart( row i col 7 of table(gchart name) );
testyear = yearpart ( row i col 7 of table(gchart name) );

~ /* Resetting the test varisbles to the new unique values.

row j col 1 of temp data = testmonth;
row } col 2 of temp data = testyear;
rov 3 col 3 of temp data = i;

rov {j-1) col 4 of temp data = i-1;

j = j + 1

/*Vritingtlnmwmiquevallmtomeofthmm and then increasing

/* J by 1. Also writes the stop point in the previous row at colum 4.
end;

/% End of the IF BEGIN—END block.

end;

/* Bnd of the data check DO loop.

row lastrov(’ temp data’) col 4 of temp data = lastrow(gchart_name);

/* Fills in the final stop point for the table.

row O col 1 of temp datas’MNTH’;

row 0 col 2 of tmpdata-'YFAR,

/* Labeling the colums of interest in TEMP DATA.

get_the row:

/* GET THE ROW is the label that marks the start of the user interface for

/* obtaining which row represents the data to be summarized.

display cols 1,2 of temp data;

/% Display all the unique mnth/year combinations.

type "";

type "Please enter the row mumber of the table above that has";

type "the month and year you wish to summarize.";

month row= getmmber(‘Vhich row mumber? *);

/% Here the user is requested to enter the rov mmber of TEMP DATA that

/* represents the month the user wishes to sumarize.

display row month row of cols 1,2 of temp_data;

/* Display the selected row for confirmation of choice.

tm II!‘I;

if not yesanswer(‘Is this the row you wanted? ‘) then goto get_the row;

AL.33

*/

*/

*/
*/

*/

*/

*/

*/

*/
*/

.*/

*/
*/

*/



/* The procedure asks the user if the choice he made is correct. If it is, */
/*theprocedmegoesm,othemseltgoesbadcto@rmm */
a = row month rov col 3 of temp data;
b= rawnmthrowcolaof tenpdata,
/* Save the selected start and stop points in the grouphome data table. #/

n ll

type “Cl(, I'm working on it now.";

/* A success message. */
copy_graphs:

type - "Working. .
cow zraW(qc_gmptﬁ) to graph(qc_graphl);
/* Copies the grouphome QC chart to the user’s USERHOME, so that the */
/% grouphome QC chart is not altered. */

set lov of x axis of graph(qc graphl) to a-.25

set high of x axis of graph(qc graphl) to b+.75;
/* Set the low and high of the X axis according to the start and stop points */

/* in the underlying data table. Offsets are to allow display of "SID" */
/* messages. */
call #gc_y axis setup( qc_graphl, a, b);

/* Reset the Y axis low and high for the current display window. */

if tableexists(’temp data’) then delete temp data;

/% TEMP DATA is used below, so first it must be deleted. */
if sum chart _type='C’ then copy table(msgs namel) to table(’temp data’);

/* Copy the MSGS table of the graph to ‘m{P_DA'.l‘A for alteration if the */
/* requested summary type is for a 'QC’ chart. */
delete table(msgs namel);

/* Deletes the MSGS table of the graph. For a QA chart, no further action */
/% is taken. For a QC chart, the MSGS table is altered to account for the */

/* display windowing as TEMP DATA and then renamed. */
if sum chart type='A’ then goto next_step;
/* For a QA chart, the alteration of ' TEMP DATA is skipped. */

do i= 4 to lastrow(’temp data’);
if (rov i col 2 of temp data >= (a + .5) ) then
{

d=1i-1;
row d col 2 of teupdatasa+ .25;
doexd t;
}
else d=d;
end;
/* This DO loop locates the message that holds the SID info for the starting */
/* region of the summary chart. */
if d > 4 then delete rows 4 to (d-1) of temp data;
/* Deletes "STD" messages that are outside of the display window. */

rows 1 to 3 of col 2 of temp data = a+2;

/* Repositions the initial "SID" message to the start of the summary chart. */
rename table temp data to msgs namel;

/*Rem:m'mIPMAtotheHSS table of the graph, so that the messages can */

/* be seen. */
message=graphnotes of graph(qc graphl);
/*Foramclm't,tl'legraphmtﬁneedtobefmeduptodeleteany */
/* reference to previous display windows and to add current display window */
/* information. The variable MESSAGE is used to hold the text during */
/* alteration. */

AL.34



&

101

)

-ifmsageOaptyttm

/* The message should never be EMPTY, but just in case... */
{
if caps(ext(1,1,message))="C’ then
/* If the QC chart has been ‘windowed’ by ADD POINTS ..., a message vill %/
/% have been added starting with the word ’'Current’. This line needs to be */
/% deleted if present. The EXT finction gets the first letter of the graph */
/* note, then it is capitalized. The IF checks to see if it is a ‘C’. If yes */
/* the next section of code deletes the first line of the message. - */
(
i=2;
txt=tum_to_ascii(13);
/* TXT will be the new graph note. It is initialized to <F>. */
do vhile Sext line(message,i) < EMPIY;
/* The SEXT LINE function extracts a line from a text. The line extracted is */
/% given by I. The text is in the variable MESSAGE. ‘I’ was initialized to */

/* 2, thertys]dppirgthelimmwiﬂndtodelete,mﬂisimted */
/* below, as long as the extracted line is not EMPTY. */
- xt = txt. Sext_line(message,i).crlf;
/* pppends the non-empty line to the variable TXT. : */
i=3+1; }
/* Increments 1. */
end;
graphnotes of graph(qc graphl)= txt;
/* Set the graph notes of the QC chart to the new value. */
}
gramtes of graph(qc_graphl) =
Displayimsuhgrmps ‘.a." to '.b.’, inclusive.’.crlf.
grapinotes of graph(qe _smp'ﬂ);
/* ddds a first line to the graph notes indicating the window subgroup range.*/
next step:
QCDATA="@’ .QC_GRAPHL. ' @XTIKKS';
/* Construct the name of the XTI(K table. */

if sum chart _type = ‘A’ then

(

delete table{ gcdata ) where col 1 = 'NEW STD'; :

call obj$setvalue(qc graphl,’DISMODS’ ,’NOREADER NONDTES RIGHTIKEY BOX');
/* If the summary chart is a 'QA’ type, the XTI(KS table is deleted and */
/* the chart’s dispay modifiers are set with the OBISSEIVALIE function. */

}
c=ext (1, 5, caps ( global('TERMINAL') ) );
/* The GLOBAL fucntion gets an extermal global variable, in this case the  */
/* system variable TERMINAL. The CAPS capitalizes it. The Eiﬂ‘gets the first */
/* 5 letters, which are stored in variable 'C’. */
/% This is done to check if the terminal type implies the use of the RSTERM */
/* terminal emulator. RSTERM does not do date labels on the X axds well, and */
/* the XTI(KS display must be suppressed in order to see the graph. */
/* This suppression and reactivation is done in the subprocedure IBMPC FTXUP.*/
if c = 'IBMPC’ then call #ibmpe fixup(qedata, qe graphl);

else dis graph(qc_graphl);

/* The call to IBMPC FIXUP if the terminal-type implies the use of RSTERM. */
/* The call passes the name of the XTICKS table and the graph itself. */
/* If RSTERM is not used a simple display is done. TBMPC FIXUP does the */
/* display otherwise. */

if not yesanswer(’Is this 0.K.? '} then

AT.35




/% Confirm that vhat the user now sees is what he wants. If ’yes’ the */
/* procedure goes an. If 'no’ it deletes the summary graph and goes back to */
/* the beginning. */
[ .
delete graph(qe_graphl);
goto doanother;
}
nextgraph:
if objSexdists(qc_graph4) then
/% If a 'STIEV’ chart exists it must be modified the same way the HFMS */
/* chart vas modified. This is dane in this IF statement. */
/* The code contained within {...) is the same as above. */
{
copy graph(qc_graphé) to graph(qc_graph?);
set low of x axdis of graph(qc_graph?) to a-.25;
set high of x axis of graph(qc graph?) to b+.25;
if sum chart_type='C’ then copy table(msgs name?) to temp data;
delete table(msgs_name?);
if sum chart type-'A’ then goto next_step?;
row d col 2 of temp data = a+.25;
if &4 then delete rows 4 to (d-1) of temp data;
rows 1 to 3 of col 2 of temp data = a+2;
rename table temp data to msgs name?;
next_stepl:
if sum chart type = 'A’ then
{
qedata = ‘@'.qc_graph.‘@xticks’;
delete table(qedata)merecolla'wsm'
ca.'ll obj$setvalue(qc graph?, ’‘DISMIDS’,’NOBEATER NONOTES RIGHTKEY BOX' };

nmsagegra;tmtes of graph(qc_graph?);
if msageo empty then

if caps{ext(1,]1,mecsage))='C’ then
{

i=2;

txtamum_to ascii(13);

do vhile $ext _line(message, i) © BMPTY;
ot = txt. Sect_lim(-m.i) crlf;
i=i+ 1;

end;
?ra#mt of graph(qc_graph?)= trt;

}
gr.-a;irntes of graph(qc graph?) »

'Displaying subgroups ‘.a.’ to ‘.b.’, inclusive.’.crlf.
} graphnotes of graph(qc_gragh?);

/* Erd of the code to make a sunmary 'STIEV’ chart. */
make table table(sumry name) from rows a to b of table(gchart name);

/* Vake the summary data table for printout */

rov 0 col O of table(sumry ' name)='TimeStamp’ ;

row 1 col O of table(a.mry name)sdate();

row 2 col O of table(smy name)=time();

/* Place a timestamp in col O of the printout table. */
call #ge_hardcopy(chart name, 'S’);

M.%



©

<

a

/* Call the hardcopy subprocedure. Here the call flag is set to 'S’. The */
/* subprocedure uses this in the name-building section. */
delete table(sunry name);

delete graph(qc graphl);

if objSexdsts (qc_graph?) then delete graph(qc_graph?);

/* Deletes the printout tables and graphs from the USEFHOME area when hard */
/* coples have been made. */
/* The OBJSEXISTS funtion returns a TRUE value if the named object (first in */
/* the parameter list, CHRT1 above) exists. If it does exist, the above */
/* statement deletes it, */

/* The DELETE is done only if the graph exists. */
doanother:if yesanswer(’'Do you want to do another? ') then goto getname;

/* Gives the user of restarting the procedure to do another surmary. */
exdter: type "All finished. See you next time.";

/* Ends the procedure with a message. */

AL.37



PROCEDIRE 9. #MULTIPLE COMPONENT QC CHART
/* This is procedure MULTTPLE COMPCNENT (QC CHART. It is used to enter data */

/* from miltiple component standards as a block in control charts. */
/% Originator: Kirk L. Shanahan 2/21/90 Version 0. */
erase;

/% Clear the screen */

tm Iiﬂ;
/% This construct types a blank line. It is used for spacing on the screen. */

tYPE "ﬂ.
type "Uelcome to the QC world.”;

type 'Ihisisproeedm‘eunmrmmmom) "
type "MOC will prompt you for data and create or rrndifyadata table.";
type "™CC will then create or mdify the appropriate QC chart, and";

type "then display a table showing if all your components are in control.";

Hit,
!

type " Version 0.0";

tYFE ll";
. type "3
/* Bamner -.contains procedure name so user can verify he is in the right */
/* one. */
acgettext(’'Type Betum> to contime.’,,true);
/* This is a dumy statement that allows the user to read the bamer. */

if tableexists(’temp data2’) then delete temp data?;

/* temp data? is the temporary data table that this procedure uses for %/
/* data entry. It eventually is copied to a permanent table in the */
/*  GROUPHOME. */
if tableexdists(’report_table’) then delete report_table;

/* REPORT TABLIE is the table that will hold indicators of out-of-control pts. */

rt_row=0;
/*K['RW (abbrev. of report table row) is the current row of REPORT TABLE. */
ercollofreport table = ‘COMPONENT” ;
rov O col 2 of report table = ‘DATE’;
rov O col 3 of report_table = ‘DATA POINT';
row O col 4 of report_table = 'RULE VIOLATED';
row O col 5 of report_table = ’SID. VALLE';
title of report table = ‘Report Table for Multiple Component QC Charting’;
notes of report table ='If this table is empty, the test is in control.’;

/* Set up the colum headers, title, and notes of REPORT ' TABLE. */
get_mel col:
dis row 0 of #multiple component list;

- /% This table holds the comporent abbreviation list for the multiple */

/* compopent standard used. Row O holds the accepted overall name for the */
/* standard. */
mcl col=getrumber(’For vhich method set will you enter data (Please enter colum
mmber)? /);
/* Ask the user to choose the standard/method name and enter it. */
if ( mel col <= 0 (R mcl _col > lastcol(’#multiple companent list’) ) then

( _

tm "ﬂ;

AL.38



&

1]

type "Sorry, you must enter a colum number from the displayed list.”;

type rvplm try again.";

a=gettext('Type <Retwr> to contimue.’,,true);

goto get mel col;

}
/* Check to meke sure the entered mumber is acceptable. If not, try again. */ .
points_per line = row 1 col mel col of #multiple component list;
lc= points per line + 10;
/* Get the mmber of points per line from the master table. Calculate the */
/* mmber of columns in TEMP DATA by adding 10 to it. Store in LC. */
rovw 1 col O of temp datal- ‘DATE’;
do i =2 to lastrow(’#multiple component list’);
if row i col mcl col of table(’ Témiltiple ' component_list’ )=EMPTY then doexit;
row i col O of tmpdata.Z:rw:.colndcolof

table(’ #multiple  component_list’);

end;
/* Once an acceptable standard/method block is chosen, copy the abbreviations */
/* to the temporary table that will be used for data entry. Also add the DATE */
/* row, */

row 0 col 1 of temp data?-'Value’;
do i= 2 to points per line;
row 0 col 1 of temp data2='Value’.i;

‘end;

/* This section of code writes colum labels into the temporary data table */

/* TEMP DATAZ. The following WATCH command will only work for pre-exising */
/* colums. */
vatch col 1 to points per line of temp data?;

/* Set up to watch the data as it is entered. */

tm Ill!,
rov 1 col 1 of temp data? = getdate(’What is the date for this set? ‘,,date());
type "";
/* Start by asking for the date of the data set. Assume default is TODAY. */

do i = 2 to lastrow(’temp data2’);

/* Under a DO LOOP, enter the data for each abbreviation. No EMPTY’s allowed. */
type "";
c = 'Vhat is the value for ’'.row i col O of temp data2.’? ’;

/* Here I construct the phrase that will appear at the user’s terminal from */

/* a standardized part amd a variable part, which is taken from the */

/% temporary data table. */
rov { col 1 of temp data? = getrmmber(c);

/* Ask the question requesting data, and put it in col 1. */

do j = 2 to points per line;
/* For miltiples-type data, redo the above code with a slightly different */
/* message, reflecting the fact that we are entering more data. */
type " .
c='ﬂ'atis the next value for ‘.row i col O of temp data2.’? ’;
rov i col j of temp data? = getmmber(c);
end;
end;
data check: .
/% Label indicating start of the data correction section. */
if points_per line>l then
/* If miltiples-type data, I will calculate a CheckSum value, the sum of the */

AIL.39




/* data in that row, to simplify data entry error detection. If the method */
/* capable, it will be set up to calculate a CheckSum for comparison to the #/
/% one calculated here. (Not all methods will have a CheckSum available.) */

{
do il=1 to lastrw('tenp_data?.');
/% DO for all the rows in the data table. */
rov 11 col (points per line+l) of temp data?= sum of cols 1 to
points_per line of rov ii of temp data?;
/% Enter in a new last colum the diedcmm\mlue, calculated via the RS/1  */

- /% SM hmetion. . %/

e—ﬂo
row O col (points per line+l) of temp data2-'CHECKSIM;
/* label the new colum. */
}
DIS TEMP DATA2;
/* Display the data table so that the user can check it over. */
if yesanswer(’'Is this all (K? ') then goto data ok;
/* If the data was entered correctly, skip over the next lines of code. */
get_row: a= getrumber('¥hich row has the bad data? ’);
/*Asktheuserwhichmwhast}nbadmtry : */
if a <1 (R a>lastrow(’ temp data2’) then
/* Make sure the row mmber given is a real mmber and not a mistake, */
Eymll";
type "That row mmber doesn’t exist. Please try again.";
type"";
goto get_row;
/* If the entered mmber is wrong, tell the user and give him another chance. */
}
get_col: be getrumber(‘Which colum has the bad data?’);

/*Askthemerwtuchcolumlnsthebadmtry */
ifb<1RRb> lasteol(’ temp data2’) then
/* Make sure the colum mumber given is a real number and not a mistake. */
Eym"ﬂ
type "That colum mmber doesn’t exdst. Please try again."
tym"ll
goto get col;

/* If the entered mumber is wrong, tell the user and give him another chance. */

}
if (a=l) then cagetdate('Vhat is the correct date? ’);
else

¢= getrumber(’Vhat should I put there instead? /);

/* Get the 'correct’ value, */
row a col b of temp data? = c;
/* Go and correct the value, */

if points per line>1 then delete colum 'CHECKSIM’ of temp ¢ dataZ,
/* If miltiples-type data, the CheckSum data colum must be deleted or it */

/* will be propagated miltiple times at the end of TEMP DATA2. */
goto data_check;

/* Go back to the begimning, redisplay the table, etc., etc. */

data ok:

if tableexists(’ tenp data’) then delete temp data;
allocate table temp data 1 row by 11 cols;

AL40

Sy



*

[£.1

/* The block of data will now be transformed into individual entries to */
/* separate GROUPHOME QC charts and data tables. The table TEMP DATA is used */
/* by the other QC procedures for holding data before it is put into the */
/* GROUPHME. Therefore, here I create that table, and fill it up below under */

/* a DO loop for each campmnent of the multi-component standard. */
do j= 2 to lastrow(’temp data2’);
/* MASTER CHART BUILDING LOOP */

/* Starts at 2 because row 1 holds the date. DO for each row. : */

do k= 1 to lastrow(’#tnx _control limits’); .

if row j col O of teupdataz-

rov k ool O of #tx_control limits then doexit;

end;
/* This short DO loop searches the (ONIROL LIMITS table for the row that */
/* corresponds to the element shown in the data table. The logic here assumes */
/* a match will be made. */

RW 1 OOL 4 OF TEMP DATA = ROW K COL 7 OF
TABLE(' #trx_control limits’);
/* Set col 4 of TEMP DATA equal to the standard’s value. */
ROW 1 QOL 5 OF TEMP DATA = ROW K COL 2 OF
TABLE(’ #tnx control limits’);
/*SetcolSof’IB{PMAe.}mltothestarﬂardscmtrollimitval).e */
MJIO)LﬁOFTBIP__MTA = RON K COL 8 OF
TABLE(' #trix control limits’);

/* Set col 6 of TEMP DATA equal to the standard reference’s value. */
MJIOJL?OFm-IP_m'rAsanlmLIOFM_DAIAZ;

/+ Set col 7 of TP DATA equal to the DATE fram the data table. - */
ROV 1 COL 8 OF TEMP DATA < ROV j OOL 1 OF TEMP DATAZ;

/* Set col 4 of TEMP DATA equal to the datum from the data table */
if LO11 then

/% 111 when miltiples-type data. Implies we need to move more data over, */
{
do i = 2 to points per line;
ROV 1 OOL (i+7) OF TEMP DATA = ROV j OOL i OF TEMP DATA2;
end;
/* Move the additional data from the data table to TEMP DATA. */
Mlﬂ.lwm_mm-motmlsetoﬁmmts_perlim)
of rov 1 of temp data;
Ml&l.ZO?MMA:stdwofthm(?mmts_perlim)
of rov 1 of temp data;
ROV 1 OOL 3 OF TEMP DATA = points per line;
/*FillincohmltoBofm‘IPm‘l‘Avl the smmn, gt. dev., and comt  */
/* info that the procedure needs. */

) ,

ROW 1 Q0L (1c-2) OF TEMP DATA = DKTE():

ROV 1 OOL (le-1) OF TEMP DATA - TDeE();

ROW 1 O0L (1c ) OF TEMP DATA = STRIP(SGETJORINPO("USERNAME"));
/% Fill in the time and ID stamp informetion. */

gctable = ‘# .row K col 1 of

TABLE(' #trx_control limits’); -

/* Construct the QC table name from the method neme. */
/* Note that QCIABLE is different from QC TABLE (used below in the CALL to */
/* to BUTLD QC CHARTS) because of the ‘4 prefix. To construct the table */
/*maImedﬂnprefix,whileBlﬂlDOCCﬁAlﬂSaddsititself */

table type = row K col 4 of TABLE(" #tm_cmtml_linﬁts')

M.al



/* Get the TABLE TYPE variable that BUILD QC CHARTS needs. */
stdvalue = rovw 1 col 4 of temp data;

/* Get the STIVALLE varisble that BUILD QC CHARTS needs. */
control limit = row 1 col 5 of tenp data;
/*Getthe(INIROLLDiITvanabletlntBUII.DOCGiARISneeds */
call flag='A’;
/* Set the ¢ CALL FLAG variable to ‘A’ (to indicate adding points). */
MOVE TO GRPHOME:
/* Label indicating start of code that copies the data to the grouphome and */
/* calls the chart building procedures. */
IF OBJSEXISTS(QCTABLE) THEN
/* Check to make sure the data table exists in the grouphome. */
{
ADD ROW TO TABLE(QCTABLE) FROM ROW 1 OF TEMP DATA;
/* If the data table is in the grouphome, add the new data to it. */
}
EISE
({
call flag-'M’;

rov O col 1 of table(qctable) = 'MEAN';
row O col 2 of table(qctable) = ’SI. [DEV.’;
rov 0 col 3 of table(qctable) = “COUNT’;
row 0 col 4 of table(qctable) = ’SID. VALUE’;
rov 0 col 5 of table(qctable) = "CINTROL LIMIT/;
row O col 6 of table(qctable) » ’STD. REF.’;
rov 0 col 7 of table(qctable) = ‘DATE’;
rov O col B of table(qctable) = 'VALLE';
if 111 then

{

do jj= 2 to points per line;

row o col (7+33) of table(qctable) = 'VALLE'.j3;

)

row 0 col (1c-2) of table(qctable) = 'ENTIRIE';

row 0 col (lc-1) of table{qctable) = 'ENTTIME’;

row 0 col 1c of table(gctable) « ’OPERATOR’;
/* If the table doesn’t exist in the grouphome, neither should the chart.  */
/* Therefore the CALL FLAG variable is reset to ‘M’ (indicating meking & new */
/% chart). Then the grouphome data table is created by filling in all the  #/
/* colum labels. */

GOTO MVE_TO GRPHOME;
/* Once the table has been created the procedure goes back to the code above */
/* and adds a row to it, just as if it had been there before. Note however, */
/* that the CALL FIAG variable’s value is now different, */

)

qc_table = row K col 1 of TABLE('#tr control_limits’);

/* Get the un-prefixed gouphome data table name for the CALL statement next. */
CALL #BUTLD QC CHARTS(QC TABLE, table type, call flag, true,k, -1);
/*'I‘heCAI..LtoEI[I.D(I)CHARI‘S The -1 parameter at the end of the list tells */
/* BQC to suppress the display. */

rt_rows rt_row+l;

/*RI'RD‘Jstarted at 0 above, now we are ready to check for out-of-control */
/* flags, so we increment RT ROW by 1. Any out-of-control flags will result */
/*inanmtrybangwnttmtothisrwofRMTABlE No flags means a */
/*blam(rcumREP(Rl‘TABlE */

AT.42

A



bl

]

A

1]

(&

] = '#'.qc_table.’ qc chart means@data’;
chart name2 = ‘#'.qc_ " table.’ _qc_t - chart . _stdev@data’;

chart namel = '§#’.qc_table.’_qc chart@data’;
/* Create the appropriate QC chart names for the current data row. */
ii = lastrow(chart_namel); .
/* Get the new last row of the data table underlying the QC chart. */
if row ii col 9 of table(chart namel) < empty then
/* If colum 9 is not empty, an out-of-control flag is present. */
( .
row rt_row col 1 of report table = rov j col O of temp data;
rov rt_row col 2 of report_ "table = row ii col O of ta.ble(chart namel);
row rt row col 3 of report “table = rov 11 col 2 of table(chart | _namel);
rowrttweol&of report table =
rov ii col "RULE #" of table(chart_namel);
row rt_rov col 5 of report_table = stdvalue.’ +/- O .control limit.’%’;
/* When an out-of-control flag is present, I write the component’s */
/* abbreviation into colum 1 of REPCRT TABLE, the data point’s DATE into  */
/* colum 2, the data point’s VALIE into col 3, the SPC rule violated into */
/* col 4, and a message indicating what the standard value and control limit */
/* were for the data point into col 5. */
}

if table type = ‘M’ then

/* If the chart is for miltiples-type data, the standard deviation control */
/% chart must also be checked. */
o
It_rov = rt_row +1;
/* Increment the row in REPORT TABLE for the new chart. */
if rov ii col 9 of table(chart name?) © empty then
(
row rt_row col 1 of report table = rov j col O of temp data2;
row rt roucol 2 of report_ "table = row ii col O of table(chart _name2);
row rt_ "row col 3 of report_ “table = row 11 col 2 of table(chart | _name2);
row rt rowcoll»of report_ "table =
rov 1i col "RULE #" of table(chart . name?);
row rt_row col 3 of report table = control “limit.rX;
/* Same logic as above except it iS now done on the STTEV control chart. The */
/* message in colum 5 is a little different to reflect that. */
}
-}
END;
del temp data;
del temp data?;
/* Clean up by deleting the temporary data tables. */
dis report table;
checker2: if not yesanswer('Finished?’) then goto checker2;
/* Display the report table for the user and wait till he is finished */
/* (indicated by answering 'YES’ to the question) before proceding. */
exiter: type "All finished. See you next time.";
/* a final message to the user indicating the procedure is done. */

AT.43



PROCEDIEE 10. #QC Y AXIS_SETUP

procedure( qegraph, xlow, xhigh);

/* This is subprocedure QC Y AXIS SETUP. It's purpose is to adjust the */
/* QC graph Y ads low and high to just include all necessary points, lines, */
/% and other information. It works from a ‘window’ specification given by  */
/% XLOW and ZHIGH in the arguments. QOGRAPH is the passed name of the graph. */

/* _ */
/% Originator: Kirk L. Shanahan 6/21/90 */
/* Version 0.0 ’ */
/* */
data_table=qcgraph. ‘@data’;

/* Construct the underlying data table’s name. */
J* */
/* The next section of code tries to determine what the Y axis high should be */
/% based on the data and control limits. */
/% */

/% BS/1 does not always fill in the control limit value colums of the data */
/* table if the data has been entered in blocks. This will cause a problem */
/% 1f the ends of the display window happen to fall wvhere no data is. The */
/* subsequent logic will fail due to EMPTY values. Therefore I check for a */
/% value in the lowest display window row in the control limit colums, and */
/* 1f they are not found, I go back till I fird one and £i11 it in at the */
/* low end of the display window. */
if row xlow col ‘UCL’ of table(data table)=empty then
/% The IF statement that checks for an empty control limit value at the */
/* lowest point of the display window. (The highest will always have an */
/* entry.) */
[ .
do loop = xlow to 1 by -1;
/* This do loop conts down fram the point just before the display window */
/* gtart till it finds a value (or it reaches the first row, vhich should */
/* alvays have 8 value in the control limit colums). */
if row loop col 'UCL’ of table(data table) © empty then
/* Check this rov for a non-empty value. If not found, do the next row back. */
(
row xlow col 'UCL’ of table(data table) =
rov loop col 'UCL’ of table(data table);
rov xlow col 'CL’ of table(data table) =
row loop col 'CL’ of table(data_table);
rov xlow col ‘LCL' of table(data table) =
row loop col ‘LCL’ of table(data table);

doesdit;
/% W¥hen a non-empty value is fond, set the display window lows equal to the */
- /* contents of this row (row LOOP), and exit the DO loop. */

/% The ‘CL’ colum value is set because the NEXT time this procedure is */
/% the [ELTA calculation far above will crash unless a value is in col 4. */
}

end;
/* End of the D0 loop. */
}
/* Bnd of the IF statement used to fill in the control limit colums. */
/* Now we are ready to find max and min of Y values. */

a= mdimm of rows xlow to xhigh
of col 2 of table(data table);

AT.44

e



e

-

/% Start vith the mdmm data point inside the display window. */
b = mudmm of rows xlow to xhigh of col 'UCL’ of
© table(data table);

/* Get the highest control limit within display window. */
if a>b then bea;
/* Use B to store the maximum. Here, replace it by A if A is larger. */
c=.1;

if b<1 then c=.01*b;
/* Now, define C to be the offset added to B (the Y high) for clarity of */
/% display. If b1, an offset of .1 units is used, but this is too large for */
/* b<l. It squeezes the plot down. Therefore, check if b<l and reset C to  */
/* 1% of B vhen b is small. */
HIGH OF Y AXIS OF GRAPH(gegraph)= b + ¢;
/* Set the high to the value determined above, with a little extra so that */

/% the line isn‘t drawn on top of the BOX of the graph. */
yhigh = b + ¢; :
/* Save the nev Y axis high for later use. */

/* The next section of code attempts to set the QC chart’s Y axis low value, */
/* This requires looking at the data, the lower control limit line, and the */
/* 'STD=’ messages. ' */

ylow = .97% minimm of rows xlow to xhigh

of col 2 of table(data table);
/* Start with the minimm data point inside the display window. (The .97 is */
/* for display offset.) */
ylow? = minimm of rows xlow to xhigh of col ‘LCL’ of
table(data_table);

/* Get the lowest control limit inside the display window. */

if ylow2 <ylow then ylow= ylowZ;
/* select between current y low or lowest data point (inc. new data) */

if ( (chart_type='SA') and (ylow < 0) ) then ylow=0;
/* check ylow for the "SA" case and adjust if needed */

yheight= 1.07%(yhigh - ylow)/8.25;
/% 8.25 is §" height of graph on paper, 1.07 = 1/2 of " of /SID msg. */

if ( (ylov © ylow2) AND (yhigh-ylow>l) } then

ylow = ylow - 2.5 * yheight ;

/* if ylow equals old ylow then don’t need to adjust ylow for msg spacing */
/* if not equal, need to lower ylow to allow for message space. Also, if the */
/* total Y axds height is < 1, the messages space adjustment done in the IF  */
/* will mess up the display, thus it is dope only for >1 height. */

LW OF Y AXIS OF GRAPH(qcgraph)= ylow;

/* Set the Y ads low. */
end; ‘

AL.45



I
¥

Shewhart Control chart for Individuals

UPPER LIMIT

O

0o ®

STD VALUE
b ¢
LGWER LIMIT

] &

-

Fo o~

106
1044

Figure Al-1

1024

[TES
964
924

-
L]

100

DZmMED

204

b4

| W@

@

I1HaE

Ima e

1tham

"™

Imam

L I ]

X ¥ 1

thagm

Imam

e XN ]

tm4m

Iham

I g

| »<i:

Ihage

[N N 8 ]

=R F

I age

IR

Screen Display of a Control Chart lllustrating

Windowing of Display to 30 Points (QC Format)

Al.46

DATE

r~
Q.
= QLS
o™
bl
Lo, PR
Qm~e
= s
[T I R
o
A ™M
[ IS
[2} o=
W3
PRl
“® o
M-y
d
n .-~
oN. . ]
oD e
T Ow
b oy
Q. o
nwon~
= 3~
T~
m™m
B o=t ey
L0
QD -
bt
U Q~—
unom
(SR
=
U Ow
=t —
i ey
-
Lo

2) 3(2) 4(3) 5(3) 8(4) 9(5) 10(6)

g

bt



?5
00®

w

duals
+

ivi
i

'l
L
£l o -
g
oom
-

==
Shewhart Control Chart for Ind
i

STD VALUE
2o

t
UPPER LIMIT
L%’ER LIMIT

B®
b
oo0®

-

-

-y WY

Tow

-

—+o e~

<o

— )

+mo

T

oo

g

“+n w0

“Fmn

-

=y

T ]

B s Y

+re

- A

-

-~

<+~

g W}

-y

e i PPy

b el

b Rkl

4o

-

“<+or

+oe

-

-t

“+aom

-+

106
1044
to24
1004
984
964
94+
924

=R E RN’

T Figure Al-2
| (QC Format)

Al.47

90+

884

861+

Full Individuals Test Data Control

Il mm@ g
| "dm@m |
| W@

I @M
| WMD)
ImgE

e
Imam)
Imgm )
PSR |
Inagm

| € E |
Imam
tea |
ImMSR |
tha4nm
oy
IraE )
Im4m
Iman
(X3 -
tam
IhLm )
Ire®B
tPamy
[N K § N
It
ItHam
Ihnam )
B |
1ham
e
t A E
Imgm

Inagm

1 'R 2

Chart

[ =]

o

L

L -]

h D

o

LB -

o

"ho

LN -

o

LR -

oo

"o

LN =

L]

DATE

2) 3(2) 4(3) 5(3) 8(4) 9(5) 10(6)

r~
Qu
= RN
oo
bt
[= T
L~
-y
V) =y
O
&+ o
[
2} =~
0« ;N
D
D
5~ N
L
W~
= 1]...]
2D —
® 0w
i -
. on
0L -
- S~
T U~
™
St
Q0O
O -
I o N
UG~
won
O
&
Yl o~
® Cw
12 S
SR
=R
0o



Shewhart Control Chart for MEANS

(1 i
¥ ¥ ¥ ¥ T OWw MDD (6o

O +

FOW | LMD o

O

T iIinMDIono

FO M I M@ | nO

00

TON Mm@ v

TO- | MR | 0o

0o

Mo I1NAE oo

NS I NMAE oo

TN I RdE | oo
-"NO.IH“IOO
TN I mdB IS
TN | hadB | o
TN, I B IS
TN I ndB I
T I B e
TGO IndE (oo
hpad BE-F ¥ BE ¥
el NE-E ¥ NN ¥
T 1hdRB I ro
T I NndW ivno
TN I hal 0o
e R E 5 SN Y-
T ™ B | o0

TN IR | o

+ = = TH~ I "B I
— -
+— |= TS ImMEE oo
- (=
+ =2 =1 B tooinaB 1o
+ ﬁ ﬁ J+oo ndm I ac
T & % TN I mMELB IO
= vl
+ Tow Indmimo
+ ten indm oo
T+ Towimamiono
+ a TomIimnam o
+ B Jorn Indm 1o
-é e f Hoo Jto\-ﬁofndwwmo
1 L [ [ 1 ' 1 L 1 i
1 ) L L] ] ) ) T T
- ~ (-] - o - ~N -] L ] "]
o (-] (-] -] -] -] -] L. - [ -]
- -t -
D2 MW

Figure Al-3 Full Multiples Test Data Means Control Chart
(QC Format)

Al.48

W+

1(1) 2(2) 4(3) 8(4) 9(5) 10(6)

DATE

group S
RULE)}

Current screen display starts at sub
N =2 ‘Out of Control Subgroups (
12(7) 16(8) 27(9) 35(10) .

| g



3 ] ] ] I 1 | [ L
- T 1 T | 1) L] L) L I L} Sw | hod o
4+ Bewinwa oo
1 Bevwinwm oo
1 Beminwa e
T Bentiwnumioo
+ Boem i nwm oo
+ Brme 1 nemioo
+ By inamioo
4 Brer ineBiao
4 Groe i nar a0
” + Brevinamioe
E i s Bre mnamioo
E + Hrom i naem oo
w
+ Benimcn oo
et
.2 + Brminemias
N + Breo imem oo
; + Bre i nem oo
6 + Breciner oo
_ + Beeinem oo
o]
bt + 0 +=w I magE OO
o
g 4 O +rn LD oo
&) + (] duw I madB IO
": -+ D Trm I NLE | v
_g + 0O ik Y
3 + O T4+ I mEB 100
- - =) -
0 + E | 2 —'-v-ﬁl"}q!lao
+ ) E Beod i nemniao
+ E) ald --eﬁ:n‘llae
+ & SE] --aSuu‘ulao
2 w1
T+ D Tew I m"4mio00
4 4 ten INEB oo
+ a Fow1ngE 100
1 D JOoOm | B IO
+ a tomnminee i
+59 “wEeaQ q oo -"-o\h'l's&?oo
i L [ 1 i H L ) l [
° " ° " o w o " ° & o
s - - - - ~ ~ - - e °
DZmEW0

Figure Al-4

Full Multiples Test Data Standard Deviations

Control Chart (QC Format)

Al.49

DATE

1(1})

Out of Control Subgroups (RULE)

Current screen display starts at subgroup 5

N = 2



Shewhart Control Chart for Individuals

t
t

imi
imi

Data Points
L
Qut-of-Cont

Standard
Point

a
Upper L
value
Lower

X

+

-

i
T
R

4

b
=

oo@®

oo®

T -

-+ o
o
i s
-+~
-+ e
4
<
™
e sakal
-
+~no
-
b gak. )
S~
+e
S0
[N S
-
= N
-
o

-+ o

o~

-+ n

tow

<am

“+omn

FO~

106
1044

Figure Al-5

102+

96-[‘

984
94
924

DZHEWwm

90-1

88—

B 64+

Monthly Summary Printout of Individuals

Control Chart QA Format)

"~ ALL50

Ina=s
1B
InaE
Ilhan
IndE
[N ]
Inee
Y]
IO E
1naEm
inaRm
InaE
Imam
I -]
InamE
1hae
Inam
Imem
Inge
1naE
inaE
Iham
Exy
BT ]
thaE
inam
ihee
X 3
Im4n
Y]
[N 3 ]

Test

[ K-]
[ K]
tono
e
- K]
(- % -]
oo
oo
loe
oo
(- X -]
oo
- -
[ - -]
(K- X-]
[
[ -
(- -]
tone
oo
1o
100
(- -]
loe
[ K- %]
oo
[ - N -)
oo

Data

DATE




Tt W

TABLE AI-1.
# QCMENU
Table used by the QC menu procedure as the
top-level entry point.

0 CHOICE 1 TASK

1 MAKE a New Chart call #make_qgc_chart
2 ADD POINTS to an 0ld Chart call
#add points_to_qc_chart
3 GENERATE a Summary Chart call #summary qc_chart
4 DO MULTIPLE COMPONENT QC Charts call
#multiple_component qc_chart
5 LOG OUT of RS/1 LOGOUT
6 EXIT to the # sign EXIT

The first ceolumn appears on the screen when the user enters
‘call #menu’ at the # prompt. The second column contains the
command to be executed when the appropriate choice is made.

TABLE AI-2.
TEMP_DATA
The temporary table used in data entry.

0 KLS_TEST_I 1 MEAN 2 STDEV 3 COUNT 4 STDVALUE 5 RANGE 6 STD
YOFSTD REF

1 100 6 REF #1
2 95 5 REF #2
0 7 DATE 8 VALUE 9 ENTDATE 10 ENTTIME 11 OPERATOR

1l 06-JUL-90 100 07-JUL-90 15:55:43 SHANAHAN

2 07-3uL-90 94 07-3UL-90 15:55:43 SHANAHAN

The user sees columns 4 to 8 only. All columns are copied to
the grouphome table before TEMP_DATA is deleted. This example
has two data points, each with It's own standard.

TABLE AI-3.
TEMP_ROWS
The table used by BQC to define regions in the new data.

1 1 STD=100 «/- 6% 73.2
2 95 5 2 2 STD=95 +/- 5% 73.2

Column 1 is the standard’s value, Column 2 is the standard’s
control limit, column 3 is the start point of the region in
TEMP_DATA (the row number), Column 4 is the stop point of the
region, Column 5 holds the message to be added to the control
chart when a new standard is entered, and Column 6 holds the Y
position of the message. A separate line will exist for each
unigue region of the. newly entered data.

AI.51



TABLE AI-{4,
TEMP_DATA2
The temporary table used for data entry in
MULTIPLE_COHPONENT_QC_CHART

0 1 valuel 2 value2 3 CHECKSUM
DATE 07-JUL~-90 07-JUL-90
B 100 101 201
Ca ) 50 48 98
Fe 23 22 45

This example shows the table produced on the screen for a 3
component standard run in duplicate, where B, Ca, and Fe
designate the components. Each row is used along with the date
to generate a l-row TEMP_DATA table for each component. The
CHECKSUM column is provided for those users that have a row
sum available as an aid in detection of data entry errors.

TABLE AI-S5.
REPORT_TABLE .
Screen display from MULTIPLE_COMPONENT_QC_CHART
that indicates any out-of-control indicators.

Report Table for Multiple Component QC Charting

0.1 COMPONENT 2 DATE 3 DATA POINT 4 RULE 5 STD.
VIOLATED VALUE

1 M 01-AUG-90 85.000000 5 100 +/- 5%

2 M 01-AUG-90  7.071068 1 5%

3 M2 01-AUG-90 62.500000 1 55 +/- 2%

1 1 2%

M2 01~-AUG-90 17.677670
If this table is empty, the test is in control.
This example indicates four out-of-control indicators, two

based on the data mean, and two based on the data standard
deviation, for two different standards.

AI.S52




Appendix II. Software User Manual

Included in this Appendix is a sample user’'s manual
distributed to DWPF laboratory personnel during initial
training in the use of these procedures. As such, it reflects
the installation at that time. Each installation will probably
be different in details, especially those concerned with hard
copy printing. ' '

AII.1l




Fd

Appendix IIX. Setup Instruction for ’'Standard’ Methods

Setting up a ’'standard’ method requires a basic understanding
of RS/l table editing. The relevant table is hard-coded into
the source code, but typically resides in the laboratory’s
grouphome and its name includes the words ’control limits’.
For example in the case of the TNX DWPT laboratory, the table
is $TNX_CONTROL_LIMITS. This table is shown in Table AIII-1.

TABLE AIII-1.
#TNX_CONTROL_ LIMITS 13R x 8C 01-AUG-90 14:33 Page 1

Control Limits and other information on TNX Standard Tests

0 1 METHOD 2 CONTROL LIMITS % 3 UNITS 4 TABLE
TYPE

1 NON STANDARD .

2 Kirk_test I 2 GARBONZOES i
iM Kirk_test_n 5 BOINGOS M

4 M2 Kirk TEST M2 2 Dbongos m

5 CHO2 CHO2 5 PPM I

€ NH4 NH{ 5 PPM I

7 CL CL 5 PPM I

8 FL FL 5 PPM I

9 C204 C204 5 PPM I
10 NO2 NO2 5 PPM 1
11 NO3 NO3 5 PPM I
12 pPO4 P04 5 PPM I
13 s04 S04 5 PPHM I

0 5 CONTROL CHART TITLE 6 POINTS/LINE 7 Std 8 std

Value Ref

1

2 This is a Shewhart Contr

3 This ia another junk cha 2 100 3

4 whoops! 2 55 aaa
5 Shewhart Control Chart £ 10

6 Shewhart Control Chart £ 20

7 Shewhart Control Chart f 2

8 Shewhart Control Chart f 1

9 Shewhart Control Chart £ 10
10 Shewhart Control Chart £ 10
11 Shewhart Control Chart £ 15
12 Shewhart Control Chart £ 10
13 Shewhart Control Chart £ )

This table has eight columns and thirteen rows. Column 1
contains the accepted method name. Column 2 has the control
limit (as a percent of the target value). Column 3 has the
units of measurement, which are transposed to the label of the
Y axis of the control chart. Column 4 has the table type, a

AIII.1l



variable that tells the RS/1 procedure if the method requires "
multiple data points per determination. 'I’' implies 1

point/line and 'M' implies several points/line. Column S

contains a chart title. This is clipped in Table AIII-1, but

can easily be up to 80 characters wide. Column 6 holds the

number of points per line if the method is of the type that

uses more than 1, Column 7 holds the standard’s value. Column

8 holds a reference to where (in a laboratory notebook) the

current standard was prepared or analyzed. .

To set up a ’'standard’ method, a row must be added to the
control limits table holding all the above information for
that method. To use a 'standard’ method in a multiple
component standard methed, Column 0 of the control limits
table must hold a mnemonic which will also appear in the
multiple component method list table, and which the technician
will see when entering data. This list table’s name is also
hardcoded into the procedure and is typically #MULTIPLE_
COMPONENT _LIST. An example from the TNX DWPT grouphome is
shown in table AIII-2.

To actually do the row addition, the RS/1 Table Editor can be
used. Using the /EXPAND command in the Editor allows the user
to expand the table with the cursor motion. Once a row has
been added in this manner, the /EXPAND function should be
disabled and then the row contents can be entered.

Table AIII-2.

#MULTIPLE COMPONENT_LIST B8R x 3C 01-AUG-90 14:51 Page 1

¢
\

MASTER TABLE FOR MULTIPLE COMPONENT STANDARD
QC CHARTING =
LIST OF BLOQCKS '

0 1 IC_CHO2 2 IC_FL 3 TEST M
1 1 1 2
2 CHO2 FL M

3 cL cL M2

4 NO2 NO2

5  NO3 NO3

6 PO4 PO4

7 504 S04

8 c204 c204

Table AIII-2 shows entries for three different multiple

component standard methods. The first two (IC_CHO2 and IC_FL)

are real methods for ion chromatographic determination of

formate (1) or fluoride (2}, chloride, nitrite, nitrate,

phosphate, sulfate, and oxalate ion. The third method is an ‘.
artificial test method.

Both of the IC methods assume ’'Individuals’ type of charts,

AIII.2



.

24

i.e. one determination per point. The test method (3) assumes
'Multiple’ type data and 2 points/line. This information is
entered on line 1 under the appropriate composite method. At
this time, composite methods with mixed data types are not
allowed.

On subseguent lines, the mnemonic for the component is
entered. The technician will choose the composite method based
on the entry in row 0 of this table, and will fill in data in
a table next to the mnemonic entered in the body of the list

table.

To create a composite method, a MULTIPLE COMPONENT LIST table
must be constructed (usually in the grouphome) that conforms
to the above example. The individual components must be listed
as 'standard’ methods in the CONTROL_LIMITS table, and a
mnemonic must be entered in column 0 of that table that
matches one in the list in the MULTIPLE_COMPONENT LIST table.

AIII.3




Appendix IV. Instructions for Procedure Modification

This Appendix is included to serve as a guide to programmers
who wish to modify the RPL code documented in this report.
There are some subtleties that need to be explicitly stated.

In the VAX implementations of this code, the procedures,
tables, and charts are stored in the grouphome. Changing the
procedures requires editing the grouphome procedures, but this
is not a straightforward process. RS/1 protects grouphome
procedures to a certain extent. In an IBM PC implementation,
the use of a grouphome is only indicated if one wishes to use
floppy disks to store all the grouphome data. In most
instances, the procedures will be 'normal’ RPL procedures,
meaning that a simple EDIT command will suffice to change the
procedure.

For safety’s sake, the programmer must always make and save a
copy of the old version of the code. The usual RPL editing
process does not do this, and thus if a change is detrimental,
the old version will have been lost. It will then be
impossible to restore the old version without reference to
hard copy source code,

To make a copy of a grouphome procedure, an RS/l procedure
must be used. That procedure is $GET_GROUP_PROCS. The
programmer types ‘call S$get_group _procs’ at the #, and enters
an interactive dialog that prompts him for the name of the
grouphome procedure to copy and the name of the userhome
procedure that will receive it. This name should be unique,
perhaps with a version number included in the name. If the
userhome procedure already exists, $SGET_GROUP_PROCS asks if
the programmer wishes to replace it. The name of the grouphome
procedure must be preceded by a # character.

Once a userhome copy of the procedure exists, the programmer
must save it in a second procedure in case it is needed later
to restore the old version. To do this the programmer must
create a new procedure that is exactly the same as the one
just created from the grouphome. The programmer could use
$GET_GROUP_PROCS a second time to create the historical copy,
or he can use a special RS/l variable-type called procedure
definitions. To use the second method, the programmer enters
'DEF OF new proc_name = DEF OF old proc_name’ at the #. This
automatically creates a compiled copy of the fold’' procedure
and gives it the specified name (new_proc_name).

Either the ’'0ld’ or the ’'new’ copy can serve as the historical
record copy. The programmer should note in a notebook or some
other permanent device the copy’s name.

Now a simple EDIT command (EDIT proc_name) will place the
programmer into the word processing editor with the source

code of the procedure. The programmer should now edit the code

and document any changes with comments. Properly exiting the
word processor will cause RS/1 to save the new version of the

AIV.l1



code. RS5/1 will then ask if the programmer wishes to compile
the code. The code will not execute unless it is compiled.

Testing the code can be accomplished in two fashions. First
the new code can be placed in the grouphome and tested by
normal use procedures. This method uses a function

$MAKE GROUP PROCS, described below. It also causes the old
grouphome version to be lost. If the programmer is unsure his
changes will work, he should utilize the more complicated
second method. -

The second test method consists of placing all relevant
procedures in the programmer’'s userhome, and editing them to
eliminate the use of grouphome procedures. Instead, they
should use the userhome versions. This is more complicated, as
the programmer usually will have to copy several procedures,
and edit each to eliminate calls to grouphome procedures. But
it is safer, as the original grouphome procedure will be
untouched until a tested new version replaces it.

To replace a grouphome procedure with a new one stored in the
userhome, the programmer calls SMAKE GROUP_PROCS. This
procedure also uses an interactive dialog, asking for the
userhome procedure name and the grouphome procedure name to
copy it to. If the grouphome procedure already exist,
$MAKE_GROUP_PROCS asks if the programmer wishes to replace it.
With SMAKE GROUP_PROCS, the grouphome procedure should NOT
have a 4 character at the front.

One potential problem a programmer may encounter when editing
grouphome procedures occurs when other users are using any one
of the grouphome procedures. In this instance the grouphome
table that holds procedures is ’‘locked’, and noone can write
to it. Thus a programmer attempting to copy a new version to
the grouphome will see a failure message stating that the
grouphome procedures table is ’'locked due to other users’. The
only solution to this is to wait until noone else is using the
grouphome procedures table. This is also why the use of the
RS/1 procedure SEDIT _GROUP_PROCS is not recommended.
$EDIT_GROUP_PROCS locks the procedures table and other users
cannot then use any group procedure.

Other RS/l grouphome management procedures exist and the
programmer is referred to the RS/1 manuals for their
descriptions, In general, if the instructions given above are
used, the other procedures are of minimal use.

To get hardcopy source code, the RPL code must be transferred
to a standard ASCII file., The RS/l procedure $PUTFILE is used
for this. The programmer types "$PUTFILE(DEF OF proc_name,
'VMSfilename’)" at the #. (Note the guotes around the VMS
filename.) The source code is then placed in the named VMS
file. The reverse process is accomplished with the SGETFILE
procedure. In this case the DEFINITION variable type must be
used. The command is: "DEF OF proc name = SGETFILE(
'VMSfilename’}". This procedure must them be compiled manually

AIV.2




o,

Ay

("COMPILE proc_name").

The ASCII file containing the source code can be edited as a
normal file. It can be sent via VAXMAIL or incorporated into

an All-in-1 mail message using the <GOLD>G function. (Select
the VMS menu option. The complete VMS filename should be used.
This is: COMPUTER"AcctName Password"::DISK:[DIRECTORY]

filename;version#.)

AIV.3




