Contract No:

This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM).

Disclaimer:

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1) warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2) representation that such use or results of such use would not infringe privately owned rights; or
- 3) endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

MAXINE: A SPREADSHEET FOR ESTIMATING DOSE FROM CHRONIC ATMOSPHERIC RADIOACTIVE RELEASES

Tim Jannik Evaleigh Bell Kenneth Dixon July 2017 WSRC-TR-2002-00360 Revision 1 Revision 0- August 2002 Revision 1- July 2017

SRNL.DOE.GOV

DISCLAIMER

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1. warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2. representation that such use or results of such use would not infringe privately owned rights; or
- 3. endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Printed in the United States of America

Prepared for U.S. Department of Energy

Keywords: Dose Determination, Atmospheric Release, Dose Model, Maxine

Retention: Permanent

MAXINE: A SPREADSHEET FOR ESTIMATING DOSE FROM CHRONIC ATMOSPHERIC RADIOACTIVE RELEASES

Tim Jannik Evaleigh Bell Kenneth Dixon

July 2017

Prepared for the U.S. Department of Energy under contract number DE-AC09-08SR22470.

OPERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

REVIEWS AND APPROVALS

Tim Jannik, Environmental Sciences and Biotechnology Date Evaleigh Bell, Environmental Sciences and Biotechnology Date Kenneth Dixon, Geosciences Date APPROVAL: Date

J.J. Mayer, Manager Environmental Sciences and Biotechnology

AUTHORS:

Date

EXECUTIVE SUMMARY

MAXINE is an EXCEL[©] spreadsheet, which is used to estimate dose to individuals for routine and accidental atmospheric releases of radioactive materials. MAXINE does not contain an atmospheric dispersion model, but rather doses are estimated using air and ground concentrations as input. Minimal input is required to run the program and site specific parameters are used when possible. Complete code description, verification of models, and user's manual have been included.

TABLE OF CONTENTS

LIST OF TABLESvii	i
LIST OF ABBREVIATIONS	ζ
LIST OF TABLESvii	i
LIST OF ABBREVIATIONS	ζ
1.0 Introduction1	L
2.0 Version Updates	L
3.0 MAXINE Methods 1	L
3.1 Nuclide Concentrations in the Atmosphere	2
3.1.1 Tritium and Carbon	2
Downwind atmospheric concentrations, χ_i , of tritium and carbon-14 are estimated using	2
3.1.2 Nobel Gases	2
Air concentrations of noble gases are estimated by,	2
3.1.3 Radioiodines	3
Radioiodine concentrations in the atmosphere are determined using,	3
3.1.4 Other Nuclides	3
3.2 Deposition	1
3.2.1 Radioiodine	1
Deposition rates, d _i , of iodine radioisotopes are estimated using,	1
3.2.2 Other Nuclides	1
3.3 Nuclide Concentration In Vegetation	1
3.3.1 Tritium	1
3.3.2 Carbon 14	5
3.3.3 Other Nuclides	5
The concentration of other nuclides in vegetation is determined using	5
3.4 Nuclide Concentrations In Meat And Milk	7
3.5 Shine Dose	3
3.5.1 Plume Shine	3
3.5.2 Ground-Shine	3
3.6 Inhalation Dose	3
3.7 Food Ingestion Dose)
4.0 Verification of Models	3
5.0 User's Manual	7
5.1 First Time User Instructions	7

WSRC-TR-2002-00360 Revision 1

5.2 Input Instructions	17
5.3 Output Files Generated	21
6.0 Conclusions	21
7.0 REFERENCES	

LIST OF TABLES

Table 1. Default Parameters used for Vegetation Concentration Estimates	6
Table 2. Default Parameters used for Meat and Milk Concentration Estimates	7
Table 3. Consumption Parameters.	10
Table 4. SRS Site Default Input Parameters.	10
Table 5. Comparing to MAXDOSE-SR Default Parameters.	11
Table 6. Input Parameters for Expanded Test Case.	12
Table 7. Results of Detailed Case.	16
Table 8. Comparision of MAXDOSE –SR Test Cases with MAXINE.	17
Table 9. Comparision of MAXINE with Hand Calculations	.17

LIST OF ABBREVIATIONS

SRNL	Savannah River National Laboratory
MEI	Maximally Exposed Individual
SRS	Savannah River Site
USNRC	U. S. Nuclear Regulatory Committee
USDOE	U.S. Department of Energy

1.0 Introduction

MAXINE is an EXCEL© spreadsheet used at the Savannah River Site (SRS) that estimates dose to exposed individuals following routine releases of radioactive materials to the atmosphere. MAXINE employs the methods contained in MAXDOSE-SR (Simpkins 1999). Both MAXINE and MAXDOSE-SR follow U.S. Nuclear Regulatory Commission Regulatory (U.S. NRC) Guide 1.109 (USNRC 1977a) which details how to estimate dose from routine releases. For specified air and ground concentrations, MAXINE will determine the potential dose to exposed individuals. Exposure pathways include 1) inhalation; 2) ground and plume shine; and 3) ingestion of meat, milk, and vegetables.

Verification of MAXINE includes comparisons with the verified code MAXDOSE-SR as well as hand calculations. The MAXINE user's manual, including a complete description of the spreadsheet are included in this report.

2.0 Version Updates

For MAXINE Version 2017, the following changes were made based on Computer Program Modification Tracker number Q-CMT-A-00023.

- Updating default input parameters to Land Water Use Report (SRNL-STI-2016-00456, Rev 1)
- Adding additional nuclides Ar-37, Ar-39, Ar-42, Kr-81, Xe-127, Hg-194, and Hg-203 to the MAXINE 2017 library.

3.0 MAXINE Methods

The methodology basis for the dosimetry portion of MAXDOSE-SR and MAXINE is the GASPAR code (Eckerman et. al. 1980) which was written in 1977 by Oak Ridge National Laboratory for the U. S. NRC. The models in GASPAR calculate atmospheric concentrations, deposition rates, concentrations in foodstuffs, and radiation dose to individuals resulting from chronic releases of radionuclides to the atmosphere.

MAXINE needs the following relative air and ground deposition values for proper execution of the spreadsheet: 1) relative air concentration, χ/Q ; 2) relative air concentration decayed by 2.26 days, χ_D/Q ; 3) relative air concentration decayed and depleted for 8 days, χ_{DD}/Q ; and 4) relative deposition, D/Q. These can all be taken from MAXDOSE-SR output or derived using the methodologies contained within U.S. NRC Regulatory Guide 1.111 (USNRC 1977b). These concentrations are used to calculate concentrations in various media and ultimately dose. Concentrations in various media are determined differently based on the radionuclide of interest. The following discusses how the concentrations in each media are estimated.

3.1 Nuclide Concentrations in the Atmosphere

3.1.1 Tritium and Carbon

Downwind atmospheric concentrations, χ_i , of tritium and carbon-14 are estimated using

$$\chi_{i} = \frac{\chi}{Q} \bullet Q_{i} \bullet 10^{6} \frac{\mu Ci}{Ci} \bullet 3.17 \times 10^{-8} \frac{yr}{s}$$
(1)

where

$$\chi_i$$
 air concentration, $\frac{\mu Ci}{m^3}$

 $\frac{\chi}{Q}$ Relative air concentration, $\frac{s}{m^3}$

 Q_i release amount by radionuclide, $\frac{Ci}{vr}$

Since both tritium and carbon-14 have relatively long half-lives, radiological decay is not taken into account when estimating downwind concentration for these nuclides.

3.1.2 Nobel Gases

Air concentrations of noble gases are estimated by,

$$\chi_{i} = \frac{\chi}{Q} \bullet Q_{i} \bullet 10^{6} \bullet 3.17 \times 10^{-8} \frac{\text{yr}}{\text{s}} \bullet e^{-\lambda_{i} t}$$
(2)

where the exponential accounts for radioactive decay during transit to the receptor. The parameter t is the average time required for the effluent to reach the receptor and all other terms have been previously defined. The decayed χ /Q is obtained by assuming the effluent is radioactive with a half-life of 2.26 days (USNRC 1977b). The value of t is found by solving the radioactive decay equation used to calculate a 2.26-day decayed relative air concentration,

$$\frac{\chi_{\rm D}}{Q} = \frac{\chi}{Q} e^{-(112 {\rm yr}^{-1})t}$$
(3)

where the value 112 yr^{-1} is the decay constant for a 2.26 day half-life. The plume travel time (in years) is then,

$$t = \frac{\ln\left(\frac{\chi_{\rm D}/Q}{\chi/Q}\right)}{\left(\frac{\ln 2 \bullet 365d}{2.26d \bullet 1\rm{yr}}\right)}$$
(4)

3.1.3 Radioiodines

Radioiodine concentrations in the atmosphere are determined using,

$$\chi_{i} = \left\{ \frac{\chi}{Q} \bullet (1 - F_{I}) + \frac{\chi_{DD}}{Q} \bullet F_{I} \bullet e^{31.62t} \right\} \bullet Q_{i} \bullet e^{-\lambda_{i}t}$$
(5)

where

- χ/Q relative air concentration, s/m³
- χ_{DD}/Q decayed and depleted concentration, s/m³

F_I fraction of iodine that is elemental, unitless

The factor in brackets calculates a weighted relative air concentration accounting for the deposition of the elemental fraction. The positive rate coefficient (31.62) negates decay from the generic 8-day half-life that was already applied to the decayed and depleted χ/Q . An exponential term is also included in this equation to account for the actual radioactive decay during plume transit.

3.1.4 Other Nuclides

Air concentrations of the remaining nuclides (those not considered above) are calculated using

$$\chi_i = \frac{\chi_{DD}}{Q} \bullet Q_i \bullet 10^6 \bullet 3.17 \times 10^{-8} \frac{yr}{s} \bullet e^{(31.62 - \lambda_i)t}$$
(6)

where all terms have been defined previously. Again, the positive rate coefficient in the exponential term (31.62 yr⁻¹) negates the decay from the 8-day half-life that was already applied to the decayed and depleted χ/Q . The decay term in Equation 6 ($e^{(31.62-\lambda_i)t}$), results from combining $e^{31.62t}$ and $e^{(-\lambda_i)t}$.

3.2 Deposition

Deposition rates are estimated from relative deposition values based on the type of radionuclide.

3.2.1 Radioiodine

Deposition rates, d_i, of iodine radioisotopes are estimated using,

$$d_i = \frac{D}{Q} \bullet Q_i \bullet F_I \bullet 10^6 \bullet e^{(31.62 - \lambda_i)t}$$
(7)

where

D/Q	relative deposition value, $1/m^2$		
Q_i	radionuclide release rate, Ci/yr		
F _I	fraction of iodine assumed to be elemental, unitless		
λ_{i}	nuclide-specific decay constant, yr ⁻¹		
t	plume travel time from the source to the receptor, yr	•	
	(21.62, 1.).	21 (2)	()

The decay term in Equation 7 ($e^{(31.62-\lambda_i)t}$), results from combining $e^{31.62t}$ and $e^{(-\lambda_i)t}$.

3.2.2 Other Nuclides.

Deposition rates for all remaining nuclides are determined using

$$\mathbf{d}_{i} = \frac{\mathbf{D}}{\mathbf{Q}} \bullet \mathbf{Q}_{i} \bullet \mathbf{10}^{6} \bullet \mathbf{e}^{(31.62 - \lambda_{i})t}$$
(8)

where all parameters have been previously defined. Deposition is modeled for all radionuclides, except for tritium, carbon-14 and noble gases. The decay term in Equation 8 ($e^{(31.62-\lambda_i)t}$), results from combining $e^{31.62t}$ and $e^{(-\lambda_i)t}$.

3.3 Nuclide Concentration In Vegetation

3.3.1 Tritium

A specific activity model describes the uptake of tritium in vegetation. Tritium concentration in vegetation is determined directly from the concentration of tritium in atmospheric moisture. Equilibrium is assumed to be achieved in a short time relative to an annual release. The concentration of tritium in vegetation, C_T^V , is determined by

$$C_{\rm T}^{\rm V} = \frac{\chi_{\rm T} \bullet 0.75 \bullet 0.5}{\rm H} \tag{9}$$

where

C^{v}_{T}	concentration in vegetation, $\mu Ci/g$
χ_{T}	atmospheric concentration, $\mu Ci/m^3$
0.75	fraction of plant mass that is water, unitless (UNRC 1977a)
0.5	concentration ratio of plant tritium to atmospheric
	tritium, unitless (Hamby and Bauer)
Н	annual average absolute humidity (12.9 g/m ³ for SRS) (Kabela 2011)

Previous Studies (Bauer and Hamby 1993, Hamby 1993) have shown that dose estimates for the vegetation consumption pathway are sensitive to the parameters in this model. Therefore, a site-specific value was determined for the plant-tritium-to-atmospheric-tritium model (Hamby and Bauer 1994).

3.3.2 Carbon 14

The carbon-14 model for vegetation concentration is similar to the tritium model. The following equation is used to estimate the concentration:

$$C_{\rm C}^{\rm v} = \frac{\chi_{\rm c} \bullet F_{\rm t} \bullet 0.11}{0.00016}$$
(10)

where

$$\chi_c$$
 atmospheric concentration, $\mu Ci/m^3$

0.1 fraction of total plant mass that is natural carbon, unitless

0.00016 concentration of natural carbon in the atmosphere, unitless (USNRC 1977a)

3.3.3 Other Nuclides

The concentration of other nuclides in vegetation is determined using

$$C_{i}^{V} = d_{i} \bullet \left[\frac{r_{i}(1 - e^{-\lambda_{i}^{w}t_{e}})}{Y_{V}\lambda_{i}^{w}} + \frac{B_{i}^{v}(1 - e^{-\lambda_{i}t_{b}})}{P \bullet \lambda_{i}} \right] \bullet e^{-\lambda_{i}t_{b}}$$
(11)

where

di	deposition rate, Ci/m ² yr
r _i	fraction of the nuclide deposited that remains on the surface of the plant, unitless
$\lambda_i^{\rm w}$	decay constant representing both weathering and radioactive losses, 1/yr
t _e	crop exposure time, yr
$\mathbf{Y}_{\mathbf{v}}$	crop productivity, kg/m ²
\mathbf{B}_{i}^{v}	element-specific soil/plant uptake ratio, unitless
λ_{i}	radioactive decay constant, 1/yr
t _b	time over which the buildup of radionuclides occurs, yr. This value is taken to be 1/2 the operational period of the facility and is a simplified method of approximating the average deposition over the operating lifetime of the facility (NRC Guide 1.109).
Р	surface soil density, kg/m ²
t _h	hold-up time after harvest (allows for decay before consumption), yr

The first and second expressions in the brackets account for contamination via foliar deposition and root uptake, respectively. All iodines are assumed to be fully retained (r=1) while only 20% of the particulate nuclides are retained (r=0.2). The loss constant, λ_i^w accounts for losses through physical weathering (14 day half-life) and radioactive decay. Values of Y_v , t_e , and t_h vary depending on the type of crop and whether the vegetation is for human consumption or is to be used as fodder.

Concentrations in four types of vegetation are calculated in MAXINE. These four types along with their associated default parameter values are given in Table 1. These values are taken from Land Water and Use Characteristics (Jannik and Stagich 2017). Noble gases are assumed not to concentrate or deposit on vegetation.

Parameter	Other	Leafy	Pasture	Stored
	Vegetables	Vegetables	Grass	Feed
r (iodines)	1.0	same	same	same
r (particulates)	0.2	same	same	same
$\lambda_i^{W}(yr^{-1})$	$18.07 + \lambda_i$	same	same	same
$t_{e}(yr)$	0.192	0.192	0.0822	0.192
$Y_v (kg/m^2)$	2.2	2.2	0.7	0.01
B _i	element specific	same	same	same
λ_{i} (yr ⁻¹)	nuclide specific	same	same	same
t _b (yr)	scenario specific	same	same	same
$P(kg/m^2)$	240	same	same	same
$t_{h}(yr)$	0.00274	0.00274	0	0.247

Table 1. Default Parameters used for Vegetation Concentration Estimates

3.4 Nuclide Concentrations In Meat And Milk

Concentrations of radionuclides in meat and milk are determined from feed concentrations, fodder intake rates, and element-specific feed-to-meat/feed-to-milk transfer factors. The equations for meat and milk concentration estimates are essentially identical with the exception of feed transfer coefficient. Concentrations are estimated using,

$$\mathbf{C}_{i}^{\text{meat}} = \mathbf{C}_{i}^{\text{fodder}} \bullet \mathbf{F}_{i}^{\text{b}} \bullet \mathbf{Q}_{\text{F}} \bullet \mathbf{e}^{-\lambda_{i} t_{s}}$$
(12)

$$\mathbf{C}_{i}^{\text{milk}} = \mathbf{C}_{i}^{\text{fodder}} \bullet \mathbf{F}_{i}^{\text{m}} \bullet \mathbf{Q}_{\text{F}} \bullet \mathbf{e}^{-\lambda_{i} t_{\text{f}}}$$
(13)

where

 C_i^{fodder} nuclide concentration in cattle feed (determined below), Ci/kg F_i^{b} and F_i^{m} feed transfer coefficients for beef cow and milk cow, respectively, d/kg or d/l Q_F cattle feed rate, kg/d

t_s and t_f transport time for meat and milk, respectively, yr

Values for these parameters are listed in Table 2 as taken from Jannik and Stagich (2017).

The nuclide concentration in fodder is based on the fraction of time cattle spend on pasture and the fraction of that time that is spent consuming fresh pasture grass. The following equation calculates fodder concentration by weighting the concentration of pasture grass and stored feed.

$$C_{i}^{\text{fodder}} = f_{p}f_{s}C_{i}^{p} + [f_{p}(1-f_{s}) + (1-f_{p})]C_{i}^{s}$$
(14)

C_i^p concentration in pasture grass, Ci/kg

- C_i^s concentration in stored feed, Ci/kg
- f_p fraction of time cattle spend on pasture, unitless
- f_s fraction of time that cattle eat fresh grass while on pasture, unitless

Concentration of nuclides in goat's milk are determined in the same manner as cow's milk and beef except using different values (see Table 2) for feed consumption rate and the fraction of time spent on pasture and eating pasture grass.

 Table 2.
 Default Parameters used for Meat and Milk Concentration Estimates

Parameter	Meat	Milk (cow)	Milk (goat)
Feed consumption rate (kg/d)	36	52	6
Milking/Slaughter to consumption (d)	6	3	3
Fraction of year on pasture	1.00	1.00	0.79
Fraction intake from pasture*	0.75	0.56	0.85

*while on pasture

3.5 Shine Dose

3.5.1 Plume Shine

Dose to individuals from plume shine is estimated in MAXINE only for noble gases. The gamma dose from a particular noble gas in the atmospheric plume is calculated by

$$D_{i}^{p} = \chi_{i} \bullet SF \bullet DF_{i}^{p} \bullet 1yr$$
⁽¹⁵⁾

where

χ_{i}	atmospheric concentration, $\mu Ci/m^3$
SF	shielding factor for the fraction of time spent indoors (0.7 for individuals), unitless
$\mathrm{DF_{i}^{p}}$	nuclide specific plume-shine dose factor, mrem $m^3/yr \mu Ci$ (USDOE 1988a)

3.5.2 Ground-Shine

Ground-shine doses are calculated for all particulate, gamma-emitting nuclides. The dose accounts for buildup over the plant lifetime and is given by,

$$D_{i}^{g} = d_{i} \bullet SF \bullet DF_{i}^{g} \bullet \frac{1 - e^{-\lambda_{i}t_{b}}}{\lambda_{i}} \bullet 1yr$$
(16)

where

 DF_i^g nuclide-specific ground-shine dose factor, mrem m²/yr µCi (USDOE 1988a)

All other parameters have been previously defined.

3.6 Inhalation Dose

Inhalation dose is determined for individuals assuming a constant breathing rate and a constant concentration throughout the year of exposure. The nuclide-specific dose is estimated by,

$$D_{h}^{inh} = \chi_{i} \bullet BR \bullet DF_{i}^{inh} \bullet 1000 \left[\frac{mrem}{rem}\right] \bullet 1yr$$
(17)

where

χ_{i}	atmospheric concentration, $\mu Ci/m^2$
BR	breathing rate, 6400 m ³ /yr (Jannik and Stagich 2017)

 DF_i^{inh} nuclide specific dose conversion factor, rem/µCi (USDOE 1988b)

3.7 Food Ingestion Dose

Dose to an individual is estimated for ingestion of foodstuffs including vegetables, meat, and milk. Two categories of vegetables are available for consumption: "leafy" or "other". The "other" category includes fruits, grains, produce, and below ground vegetables. The dose via vegetable consumption for a one-year period is calculated using,

$$D_{i}^{\text{veg}} = \left[C_{i}^{v}U^{v}f_{v} + C_{i}^{1}U^{1}f_{1}\right] \bullet DF_{i}^{\text{ing}} \bullet 1000 \frac{\text{mrem}}{\text{rem}} \bullet 1\text{yr}$$
(18)

where

Ci	radionuclide concentrations in leafy (l) or other vegetables (v), $\mu Ci/kg$
U	consumption rates of the two vegetable classifications (see Table 3), kg/yr
f	fraction of two vegetable classifications that are home grown, unitless
DF	nuclide specific dose conversion factor, rem/µCi (USDOE 1988b)

Individual dose from meat and milk consumption is calculated in the same manner, using the equations

$$D_{i}^{meat} = C_{i}^{meat} \bullet U^{f} \bullet DF_{i}^{ing} \bullet 1000 \frac{mrem}{rem} \bullet 1yr$$
(19)

$$D_{i}^{\text{milk}} = C_{i}^{\text{milk}} \bullet U^{\text{m}} \bullet DF_{i}^{\text{ing}} \bullet 1000 \frac{\text{mrem}}{\text{rem}} \bullet 1\text{yr}$$
(20)

Default usage factors for vegetables, meat, and milk are shown in Table 3 for maximum and average individuals.

	Consump	tion Rate
Parameter	Maximum	Average
Leafy Vegetables	31 kg/yr	11 kg/yr
Vegetables	289 kg/yr	89 kg/yr
Meat	81 kg/yr	32 kg/yr
Milk	260 L/yr	69 L/yr

 Table 3.
 Consumption Parameters (Jannik and Stagich 2017)

Input Parameter	Value	Units
Relative Concentration (X/Q):	8.6E-08	sec/m ³
Decayed X/Q:	8.3E-08	sec/m ³
Depleted X/Q:	6.0E-08	sec/m ³
Relative Deposition (D/Q):	1.6E-10	$1/m^2$
Distance to Receptor:	11408	m
Vegetable Consumption (AVG, MAX, value):	max	289 kg/yr
Leafy Veg Consumption (AVG, MAX, value):	max	31 kg/yr
Milk Consumption (AVG, MAX, value):	max	260 L/yr
Meat Consumption (AVG, MAX, value):	max	81 kg/yr
Origin of Milk (Cow or Goat):	cow	
Deposition Buildup Time(1/2 plant life):	32	yr
Breathing Rate:	6,400	m ³ /yr
Elemental Iodine Fraction:	0.10	
Absolute Humidity:	0.01290	kg/m ³
Tritium Plant-to-Air Ratio:	0.50	
Shielding Factor:	0.70	
Fraction of Year C-14 Released:	1.00	
Retained Fraction (iodines):	1.00	
Retained Fraction (particulates):	0.20	
Weathering Rate Constant:	18.1	1/yr
Crop Exposure Time:	0.192	yr
Pasture Grass Exposure Time:	0.0822	yr
Pasture Grass Productivity:	0.7	kg/m ²
Produce Productivity:	2.2	kg/m ²
Surface Soil Density (15 cm):	240	kg/m ²
Pasture Grass Holdup Time:	0.00000	yr
Stored Feed Holdup Time:	0.24657	yr
Leafy Vegetable Holdup Time:	0.00274	yr
Produce Holdup Time:	0.00274	yr
Milk Cattle Feed Consumption (52):	52	kg/d
Beef Cattle Feed Consumption:	36	kg/d
Feed-Milk-Man Transport Time:	0.00820	yr
Fraction of Year on Pasture (beef):	1.00	
Fraction of Year on Pasture (milk):	1.00	
Fraction Intake from Pasture (beef):	0.75	
Fraction Intake from Pasture (milk):	0.56	
Slaughter to Consumption Time:	0.0164	yr
Fraction of Produce from Garden:	0.76	
Fraction of Leafy Vegs from Garden:	1.00	

Table 4.	SRS Site Default Input Parameters
1 abic 4.	SRS She Delaunt input I diameters

Input Parameter	Value	Units
Relative Concentration (X/Q):	8.6E-08	sec/m ³
Decayed X/Q:	8.3E-08	sec/m ³
Depleted X/Q:	6.0E-08	sec/m ³
Relative Deposition (D/Q):	1.6E-10	$1/m^2$
Distance to Receptor:	11408	m
Vegetable Consumption (AVG, MAX, value):	max	289 kg/yr
Leafy Veg Consumption (AVG, MAX, value):	max	31 kg/yr
Milk Consumption (AVG, MAX, value):	max	260 L/yr
Meat Consumption (AVG, MAX, value):	max	81 kg/yr
Origin of Milk (Cow or Goat):	cow	
Deposition Buildup Time(1/2 plant life):	32	yr
Breathing Rate:	6,400	m ³ /yr
Elemental Iodine Fraction:	0.10	
Absolute Humidity:	0.0129	kg/m ³
Tritium Plant-to-Air Ratio:	0.54	
Shielding Factor:	0.70	
Fraction of Year C-14 Released:	1.00	
Retained Fraction (iodines):	1.00	
Retained Fraction (particulates):	0.20	
Weathering Rate Constant:	18.1	1/yr
Crop Exposure Time:	0.192	yr
Pasture Grass Exposure Time:	0.0822	yr
Pasture Grass Productivity:	0.7	kg/m ²
Produce Productivity:	2.2	kg/m ²
Surface Soil Density (15 cm):	240	kg/m ²
Pasture Grass Holdup Time:	0.00000	yr
Stored Feed Holdup Time:	0.24657	yr
Leafy Vegetable Holdup Time:	0.00274	yr
Produce Holdup Time:	0.16438	yr
Milk Cattle Feed Consumption (52):	44	kg/d
Beef Cattle Feed Consumption:	44	kg/d
Feed-Milk-Man Transport Time:	0.00548	yr
Fraction of Year on Pasture (beef):	1.00	
Fraction of Year on Pasture (milk):	1.00	
Fraction Intake from Pasture (beef):	0.75	
Fraction Intake from Pasture (milk):	0.56	
Slaughter to Consumption Time:	0.0164	yr
Fraction of Produce from Garden:	0.76	
Fraction of Leafy Vegs from Garden:	1.00	

Table 5. Comparing to Maxdose Default Input Parameters

4.0 Verification of Models

To verify MAXINE, comparisons were made with MAXDOSE-SR, which has been fully verified (Simpkins 1999). First a detailed comparison was made using all radionuclides available within MAXINE. The input for this detailed test case is shown in Table 4. For each pathway, the doses were compared for each radionuclide. The results of this comparison for total dose are shown in Table 5. The only radionuclide with a difference greater than 1% is I-135. The reason for this difference is two-fold: the short half-life of I-135 (6.6 hrs) and the rounding of conversion factors and constants for time in MAXDOSE-SR and not in MAXINE. All other radionuclides are in good agreement.

Additional verification testing was performed by comparisons with MAXDOSE-SR test cases. All test cases for single release locations were compared and these results are shown in Table 6. Multiple release locations cannot be handled by MAXINE and therefore not all test cases are shown. As shown in Table 6 MAXDOSE-SR and MAXINE are in good agreement.

For quality assurance purposes, a detailed set of test cases was developed specifically for MAXINE. The input for these tests are shown in their entirety in Appendix A. These results should be used as a benchmark any time changes are made to MAXINE. Hand calculations were performed for Hg-194 doses estimated from default input parameters . Results of the hand calculations are shown in Table 7 for all pathways. The actual hand calculations are shown in Appendix C. Hand calculations produced results within 1% to the MAXINE spreadsheet results and are in good agreement.

Input Parameter	Value	Units
Relative Concentration (X/Q):	3.3E-08	sec/m ³
Decayed X/Q:	3.2E-08	sec/m ³
Depleted X/Q:	2.2E-08	sec/m ³
Relative Deposition (D/Q):	1.3E-10	$1/m^2$
Distance to Receptor:	14014	m
Vegetable Consumption (AVG, MAX, value):	max	276 kg/yr
Leafy Veg Consumption (AVG, MAX, value):	max	43 kg/yr
Milk Consumption (AVG, MAX, value):	max	230 L/yr
Meat Consumption (AVG, MAX, value):	max	81 kg/yr
Origin of Milk (Cow or Goat):	cow	
Deposition Buildup Time(1/2 plant life):	25	yr
Breathing Rate:	8,000	m ³ /yr
Elemental Iodine Fraction:	0.50	
Absolute Humidity:	0.01125	kg/m ³
Tritium Plant-to-Air Ratio:	0.50	
Shielding Factor:	0.70	
Fraction of Year C-14 Released:	1.00	
Retained Fraction (iodines):	1.00	
Retained Fraction (particulates):	0.20	
Weathering Rate Constant:	18.1	1/yr
Crop Exposure Time:	0.192	yr
Pasture Grass Exposure Time:	0.0822	yr
Pasture Grass Productivity:	1.8	kg/m ²
Produce Productivity:	0.7	kg/m ²
Surface Soil Density (15 cm):	240	kg/m ²
Pasture Grass Holdup Time:	0.00000	yr
Stored Feed Holdup Time:	0.24700	yr
Leafy Vegetable Holdup Time:	0.00274	yr
Produce Holdup Time:	0.16400	yr
Milk Cattle Feed Consumption (52):	44	kg/d
Beef Cattle Feed Consumption:	44	kg/d
Feed-Milk-Man Transport Time:	0.00548	yr
Fraction of Year on Pasture (beef):	1.00	
Fraction of Year on Pasture (milk):	1.00	
Fraction Intake from Pasture (beef):	0.75	
Fraction Intake from Pasture (milk):	0.56	
Slaughter to Consumption Time:	0.0164	yr
Fraction of Produce from Garden:	0.76	-
Fraction of Leafy Vegs from Garden:	1.00	

Table 6.	Input Parameters for Expanded Test Case
1 4010 0.	Input I urumeters for Expanded Test Cuse

H-3 (oxide)	1.00E+02
C-14	2.00E+02
Ar-41	3.00E+02
Cr-51	5.00E+02
Co-60	5.00E+02
Zn-65	2.00E+00
Se-75	4.00E+00
Kr-85	6.00E+00
Kr-85m	8.00E+00
Kr-87	1.00E+01
Kr-88	1.00E+00
Sr-90	3.00E+00
Zr-95†	5.00E+00
Nb-95	7.00E+00
Ru-103	9.00E+00
Ru-106†	1.00E+03
Sb-125	5.00E+03
I-129	1.00E+04
I-131	1.00E-04
I-133	2.00E-04
I-135	3.00E-04
Xe-131m	4.00E-04
Xe-133	5.00E-04
Xe-135	6.00E-04
Cs-134	7.00E-04
Cs-137	8.00E-04
Ce-141	9.00E-04
Ce-144	1.00E-03
Pm-147	1.23E-01
Eu-154	4.56E-01
Eu-155	7.89E-01
Os-185	1.10E+00
U-234	2.20E+00
U-235†	3.30E+00
U-238	4.40E+00
Np-237	5.50E+00
Pu-238	6.60E+00
Pu-239	7.70E+00
Am-241	8.80E+00
Am-243	9.90E+00
Cm-242	1.10E+01
Cm-244	2.20E+01
Cf-252	3.30E+01

Table 5 cont. Input for Expanded Test Case (Source Term in Curies)

	MAXDOSE-SR	MAXINE	% Difference
	Dose (mrem)	Dose (mrem)	
AR 41	5.27E-04	5.27E-04	0.0
AM241	4.69E+01	4.69E+01	0.0
AM243	5.28E+01	5.28E+01	0.0
C 14	1.47E-01	1.46E-01	-0.7
CE141	4.90E-07	4.91E-07	0.2
CE144	1.15E-05	1.15E-05	0.0
CF252	4.00E+01	4.00E+01	0.0
CM242	1.55E+00	1.55E+00	0.0
CM244	6.04E+01	6.04E+01	0.0
CO 60	8.54E+01	8.53E+01	-0.1
CR 51	2.69E-02	2.69E-02	0.0
CS134	6.42E-05	6.43E-05	0.2
CS137	1.11E-04	1.11E-04	0.0
EU154	5.83E-02	5.84E-02	0.2
EU155	4.37E-03	4.36E-03	-0.2
Н 3	1.66E-04	1.66E-04	0.0
I 129	4.39E+03	4.39E+03	0.0
I 131	5.68E-07	5.68E-07	0.0
I 133	2.13E-08	2.11E-08	-0.9
I 135	3.59E-09	3.54E-09	-1.4
KR 85	4.91E-08	4.91E-08	0.0
KR 85M	3.15E-06	3.15E-06	0.0
KR 87	7.60E-06	7.60E-06	0.0
KR 88	5.66E-06	5.65E-06	-0.2
NB 95	1.59E-02	1.59E-02	0.0
NP237	2.68E+01	2.68E+01	0.0
OS185	5.79E-03	5.80E-03	0.2
PM147	8.36E-05	8.36E-05	0.0
PU238	3.04E+01	3.04E+01	0.0
PU239	3.97E+01	3.97E+01	0.0
RU103	2.62E-02	2.62E-02	0.0
RU106	4.25E+01	4.25E+01	0.0
SB125	9.05E+01	8.98E+01	-0.8
SE 75	4.18E-02	4.18E-02	0.0
SR 90	2.46E-01	2.46E-01	0.0
U 234	1.95E+00	1.95E+00	0.0
U 235	2.85E+00	2.85E+00	0.0
U 238	3.57E+00	3.57E+00	0.0
XE131M	1.25E-11	1.25E-11	0.0
XE133	6.34E-11	6.34E-11	0.0
XE135	4.47E-10	4.47E-10	0.0
ZN 65	3.95E-02	3.95E-02	0.0
ZR 95	2.46E-02	2.46E-02	0.0

Table 7.Results of Detailed Test Case

Test Case	MAXDOSE-SR Dose (mrem)	MAXINE Dose (mrem)	% Difference
1	3.21E+01	3.22E+01	-0.3
2	3.23E+00	3.23E+00	0.0
3	2.17E+00	2.17E+00	0.0
4	8.00E-01	8.00E-01	0.0
9	5.09E+00	5.11E+00	-0.4

Table 8. Comparison of MAXDOSE-SR Test Cases with MAXINE

 Table 9.
 Comparison of MAXINE with Hand Calculations Hg-194

Pathway	MAXINE	Hand Calculated	% Difference
	Dose (mrem)	Dose (mrem)	
Shine	6.78E-05	6.77E-05	0.1%
Inhalation	1.95E-03	1.96E-03	0.5%
Vegetables	3.96E-03	3.94E-03	0.5%
Milk	1.06E-04	1.07E-04	0.9%
Meat	1.88E-02	1.89E-02	0.5%
Total	2.49E-02	2.49E-02	0.00%

5.0 User's Manual

5.1 First Time User Instructions

The programming for MAXINE is contained in one EXCEL© File entitled 'MAXINE.XLS'. Simply copying this file to your computer installs the program. The spreadsheet has been locked to avoid inadvertent changes to cells performing calculations. Following installation, it is recommended that the user execute at least one test case to ensure the spreadsheet is operating correctly.

5.2 Input Instructions

Table 4 shows the input template in its entirety. In viewing the actual spreadsheet, the user has the ability to change all parameters shown in red. All other cells have been locked to prevent user access. The spreadsheet is set up such that default values are included for each parameter except the source term. Each parameter is discussed in detail below.

Relative Concentration (X/Q): Enter the relative air concentration in units of s/m³ for the location of interest. This input is likely estimated using the methods detailed in U.S. NRC Regulatory Guide 1.111 (USNRC 1977b). Valid Range 1E-10 to 1E-05 s/m³.

- Decayed X/Q: Enter the 2.26 day decayed relative air concentration in units of s/m^3 for the location of interest. Valid Range 1E-10 to 1E-05 s/m³.
- Depleted X/Q: Enter the 8-day decayed and depleted relative air concentration in units of s/m^3 for the location of interest. Valid Range 1E-10 to 1E-05 s/m³.
- Relative Deposition (D/Q): Enter the relative deposition of particulates without radioactive decay in units of 1/m². Valid Range: 1E-13 to 1E-08 1/m²
 - Distance to Receptor: Enter the distance from the release point to the downwind location of the receptor in meters. Valid Range: 0 to 80,000 m
- Vegetable Consumption: Enter the vegetable consumption rate for the exposed individual as AVG, MAX or a value. The average consumption rate is 89 kg/yr and the max consumption rate is 289kg/yr. Valid Range: 0 to 900 kg/yr
- Leafy Veg Consumption : Enter the leafy vegetable consumption rate for the exposed individual as AVG, MAX or a value. The average consumption rate is 11 kg/yr and the max consumption rate is 31 kg/yr. Valid Range 0 to 260 kg/yr
 - Milk Consumption : Enter the milk consumption rate for the exposed individual as AVG, MAX or a value. The average consumption rate is 69 Lyr and the max consumption rate is 260 L/yr. Valid Range 0 to 500 L/yr
 - Meat Consumption: Enter the meat consumption rate for the exposed individual as AVG, MAX or a value. The average consumption rate is 32 kg/yr and the max consumption rate is 81 kg/yr. Valid Range 0 to 470 kg/yr
 - Origin of Milk: Enter the type of milk consumed by the exposed individual either as COW or GOAT.

Deposition Buildup Time: Enter the time (in years) that the radionuclides have been accumulating in the soil. This value is taken to be 1/2 the operational period of the facility and is a

	simplified method of approximating the average deposition over the operating lifetime of the facility (NRC Guide 1.109). Valid Range: 0-100 yr
Breathing Rate:	Enter the inhalation rate of the individual in m^3/yr . Valid range is 6000 to 10000 m^3/yr
Elemental Iodine Fraction:	Enter the fraction of iodine released that is elemental. The balance is assumed to behave as a gas. Valid Range: 0-1
Absolute Humidity:	Enter the annual average absolute humidity in kg/m ³ . Valid Range: 0.003 to 0.020 kg/m ³
Tritium Plant-to-Air Ratio:	Enter the ratio of tritium concentration in the plant moisture to tritium concentration in atmospheric moisture. Valid Range: 0-5
Shielding Factor:	Enter the fraction of time that the individual is exposed to gamma radiation. Valid Rage: 0-1
Fraction of Year C-14 Released:	Enter the ratio of the total annual release time to the total annual time during which photsynthesis occurs (taken to be 4400 hrs). For continual releases a value of one should be entered. Valid Range: 0-1
Retained Fraction (iodines):	Enter the fraction of elemental iodine that is retained on the surface of the vegetation following deposition. Valid Range: 0-1
Retained Fraction (particulates):	Enter the fraction of particulates that are retained on the surface of the vegetation. Valid Range: 0-1
Weathering Rate Constant:	Enter the rate constant describing the removal of particulates from plant surfaces due to weathering. Valid Range: 5 – 250 1/yr
Crop Exposure Time:	Enter the length of time (in yrs) the crops are exposed. This typically equates to the growing season. Valid Range: 0-1 yr
Pasture Grass Exposure Time:	Enter the length of time (in yrs) pasture grass is exposed. Valid Range: 0-1 yr
Pasture Grass Productivity:	Enter the productivity of pasture grass in kg/m^2 . Valid Range: 0-3 kg/m^2
Produce Productivity:	Enter the productivity of produce in kg/m^2 . Valid Range: 0-3 kg/m^2
Surface Soil Density:	Enter the surface soil density in units of kg/m^2

	assuming a contamination depth of 15 cm. Valid Range: $50 - 400 \text{ kg/m}^2$.
Pasture Grass Holdup Time:	Enter the length of time (in yrs) between contamination and consumption of pasture grass by grazing cows or goats. Valid Range: 0-1 yr
Stored Feed Holdup Time:	Enter the length of time (in yrs) feed is stored prior to consumption by livestock. Valid Range: $0 - 1$ yr
Leafy Vegetable Holdup Time:	Enter the length of time (in yrs) leafy vegetables are stored prior to consumption. Valid Range: $0 - 1$ yr
Produce Holdup Time:	Enter the length of time (in yrs) vegetables are stored prior to consumption. Valid Range: $0 - 1$ yr
Milk Cattle (Goat) Feed Consumption:	Enter the fodder consumption rate for milk cattle or goats in kg/d. Depending on what is input above under origin of milk, the input statement will change to reflect either milk cattle or goats. The expected value for milk cows is 52 kg/d and the expected value for goats is 6 kg/d. Valid Range: 0-100 kg/d
Beef Cattle Feed Consumption:	Enter the fodder consumption rate for beef cattle in kg/d. Valid Range: 0-100 kg/d
Feed-Milk-Man Transport Time:	Enter the length of time (in yrs) from milking to consumption by exposed individual.Valid Range: 0-0.038 yr
Fraction of Year on Pasture (beef):	Enter the fraction of the year that beef cattle are on the pasture Valid Range 0-1
Fraction of Year on Pasture (milk):	
	Enter the fraction of the year that milk cattle or goats are on the pasture. Valid Range 0-1
Fraction Intake from Pasture (beef):	
Fraction Intake from Pasture (beef): Fraction Intake from Pasture (milk):	are on the pasture. Valid Range 0-1 Enter the fraction of a beef cow's diet that is pasture
	are on the pasture. Valid Range 0-1 Enter the fraction of a beef cow's diet that is pasture grass while the cow is on pasture. Valid Range: 0-1 Enter the fraction of a milk cow's or goat's diet that is
Fraction Intake from Pasture (milk):	 are on the pasture. Valid Range 0-1 Enter the fraction of a beef cow's diet that is pasture grass while the cow is on pasture. Valid Range: 0-1 Enter the fraction of a milk cow's or goat's diet that is pasture grass while on pasture. Valid Range: 0-1 Enter the length of time (in yrs) between cattle slaughter and consumption by humans. Valid Range:

Garden: were grown in local garden. The remaining leafy vegetables are assumed not to be contaminated. Valid Range: 0-1

5.3 Output Files Generated

Appendix C shows the MAXINE spreadsheet in its entirety for test case 1. Pages 1 and 2 show userinput. Pages 3 and 4 show radionuclide specific constants used in the dose estimates. The last two pages show the concentration and dose by radionuclide and pathway.

6.0 Conclusions

MAXINE is performing as expected and producing correct results for a wide range of test cases. Minimal input is required by the user and output is available in an easily interpreted form. Recommended improvements to MAXINE would be to add atmospheric dispersion estimates to the spreadsheet or link to another spreadsheet that would perform this function.

7.0 REFERENCES

- Bauer, L.R. and Hamby, D.M., "Relative Sensitivities of Existing and Novel Model Parameters in Atmospheric Tritium Dose Estimates," Radiation *Protection Dosimetry*, Volume 37, No. 4, pp. 253-260, 1991.
- Eckerman, K.F., Congel, F.J., Roecklien, A.K., and Pasciak, W.J., "User's Guide to GASPAR Code," NUREG/-0597, U.S. Nuclear Regulatory Commission, Washington, DC, June 1980.
- Hamby, D.M., "Average Absolute Humidity at the Savannah River Site," Westinghouse Savannah River Company Inter-Office Memorandum: SRL-ETS-900141, Aiken, SC, March 22, 1990.
- Hamby, D.M., "Land and Water-Use Characteristics in the Vicinity of the Savannah River Site," WSRC-RP-91-17, Westinghouse Savannah River Company, Aiken, SC, March 1991.
- Hamby, D.M., "A Probabilistic Estimation of Atmospheric Tritium Dose," Health *Physics*, 65: 33-40, 1993.
- Hamby, D.M., and Bauer, L.R., 'The vegetation-to-air concentration ratio in a specific activity atmospheric tritium model', Health Physics, 66:339-342, 1994.
- Jannik, G.T., Stagich B.H., 2017. Land and Water Use Characteristics and Human Health Input P Parameters for Use in Environmental Dosimetry and Risk Assessments at the Savannah River Site, SRNL-STI-2016-00456, Revision 1.
- Jannik, G.T., Stone D.K., 2013. Maxdose –SR and Popdose-SR Version 2013: Routine-Release Atmospheric Dose Models Used at SRS, SRNL-STI-2013-00722, Revision 0..
- Kabela E.D., Meteorlogical Inputs for CAP88, SRNL Interoffice memorandum: SRNL-L220-2011-00066. June 23, 2011
- Simpkins, A.A. "MAXDOSE-SR: A Routine-Release Atmospheric Dose Model used at SRS." Westinghouse Savannah River Company Report: WSRC-TR-99-00281, Aiken, SC 1999.
- U.S. Department of Energy, External Dose-Rate Conversion Factors for Calculation of Dose to the Public, DOE/EH-0070, Washington, DC 1988a.
- U.S. Department of Energy, Internal Dose Conversion Factors for Calculation of Dose to the Public, DOE/EH-0071, Washington, DC, 1988b.
- U.S. Nuclear Regulatory Commission, "Calculation of Annual Dose to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10CFR50 Appendix I," Regulatory Guide 1.109, Rev 1, Washington, DC, October 1977a.
- U.S. Nuclear Regulatory Commission, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors," Regulatory Guide 1.111, Rev. 1, Washington, DC, July 1977b.

Appendix A: MAXINE Test Cases

Table A1. MAXINE Test Case Input

Input Parameter	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8
Relative Concentration (X/Q):	2.7E-08	3.35E-08	2.7E-08	3.35E-08	2.7E-08	3.35E-08	2.7E-08	3.35E-08
Decayed X/Q:	2.7E-08	3.19E-08	2.7E-08	3.19E-08	2.7E-08	3.19E-08	2.7E-08	3.19E-08
Depleted X/Q:	2.5E-08	2.19E-08	2.5E-08	2.19E-08	2.5E-08	2.19E-08	2.5E-08	2.19E-08
Relative Deposition (D/Q):	2.0E-10	6.78E-11	2.0E-10	6.78E-11	2.0E-10	6.78E-11	2.0E-10	6.78E-11
Distance to Receptor:	7752	7000	8000	9000	8000	7000	6000	2000
Vegetable Consumption (AVG, MAX, value):	Max	Avg	Max	Avg	Max	Avg	Max	Avg
Leafy Veg Consumption (AVG, MAX, value):	Max	Avg	Avg	Max	Max	Avg	Max	Avg
Milk Consumption (AVG, MAX, value):	Max	Avg	Max	Avg	Max	Avg	Avg	Max
Meat Consumption (AVG, MAX, value):	Max	Avg	Avg	Max	Max	Avg	Max	Avg
Origin of Milk (Cow or Goat):	Goat	Cow	Goat	Cow	Goat	Cow	Goat	Cow
Deposition Buildup Time:	38	5	10	15	20	25	30	40
Breathing Rate:	8,000	10000	9000	8000	8000	8000	8000	8000
Elemental lodine Fraction:	1.00	0	1	1	0	0.5	0.5	0.5
Absolute Humidity:	0.01125	0.01125	0.01125	0.00800	0.00800	0.00800	0.01125	0.01125
Tritium Plant-to-Air Ratio:	0.54	0.54	1.00	0.54	0.54	0.50	0.54	0.54
Shielding Factor:	0.70	1	0.70	0.70	0.70	1.00	0.70	0.70
Fraction of Year C-14 Released:	1.00	0.5	1	0.5	0.5	1	1	1
Retained Fraction (iodines):	1.00	1	1	0.5	0.5	0.5	1	0.8
Retained Fraction (particulates):	0.20	0.4	0.6	0.8	1	0.2	0.2	0.2
Weathering Rate Constant:	18.1	17	18.1	18.1	18.1	18.1	18.1	18.1
Crop Exposure Time:	0.192	0.1	0.192	0.192	0.1	0.192	0.192	0.1
Pasture Grass Exposure Time:	0.0822	0.04	0.0822	0.0822	0.0822	0.0822	0.0822	0.04
Pasture Grass Productivity:	1.8	1.8	1.8	1.8	1.8	2	2	2
Produce Productivity:	0.7	1	0.3	1	0.3	1	0.3	0.3
Surface Soil Density (15 cm):	240	250	240	250	240	240	240	240
Pasture Grass Holdup Time:	0.00000	0.001	0.002	0	0	0	0	0.00247
Stored Feed Holdup Time:	0.24700	0.1	0.24700	0.1	0.24700	0.1	0	0.1
Leafy Vegetable Holdup Time:	0.00274	0.00274	0.00274	0.001	0.00000	0.00274	0.00274	0.001
Produce Holdup Time:	0.16400	0.1	0.164	0	0.1	0.1	0.08	0.164
Goat Feed Consumption (6):	6	1	2	3	4	5	6	7
Beef Cattle Feed Consumption:	36	36	36	36	36	40	5	2
Feed-Milk-Man Transport Time:	0.00822	0.004	0.00822	0.00822	0.004	0.004	0.00822	0.004

WSRC-TR-2002-00360 Revision 1

Fraction of Year on Pasture (beef):	1.00	1	1	0.5	1	0.2	1	1
Fraction of Year on Pasture (milk):	0.79	1	1	1	1	0.79	0.3	0.2

Table A1. MAXINE Test Case Input cont.

Input Parameter	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8
Fraction Intake from Pasture (beef):	0.75	0.2	0.2	0.75	0.75	0.75	0.75	0.75
Fraction Intake from Pasture (milk):	0.85	1	1	1	1	0.7	0.7	0.2
Slaughter to Consumption Time:	0.0164	0.0164	0.0164	0.0164	0.0164	0.0164	0.008	0.008
Fraction of Produce from Garden:	0.76	1	1	1	1	1	0.5	0.3
Fraction of Leafy Vegs from Garden:	1.00	0.25	0.1	0.5	1	1	0.25	1
Source Term	1Ci Each							
	H-3	All Rads						
	Cs-137							
	Pu-239							

Appendix B

The following displays hand calculations for Ar-39, Hg-194 which are listed in Table 8 and were calculated with site specific parameters in Table 4.

Ar-37

$$D_i^p = \chi_i * SF * DF_i^p * 1yr$$

$$\chi_i = \frac{\chi}{Q} * Q_i * 10^6 \frac{\mu Ci}{Ci} * 3.17x 10^{-8} \frac{yr}{s} * e^{-\lambda_i t}$$

$$\chi_i = 8.6x 10^{-8} \frac{s}{m^3} * 1 \frac{Ci}{yr} * 10^6 \frac{\mu Ci}{Ci} * 3.17x 10^{-8} \frac{yr}{s} * e^{-7.22x 10^{-2} \frac{1}{yr} * 0.00034145yr}$$

$$\chi_i = 2.7x 10^{-9} \frac{\mu Ci}{m^3}$$

$$\begin{split} D_i^p &= \chi_i * SF * DF_i^p * 1yr \\ D_i^p &= 2.7x 10^{-9} \frac{\mu Ci}{m^3} * 0.7 * 7.15x 10^{-2} \frac{mrem * m^3}{yr * \mu Ci} * 1yr \\ D_i^p &= 1.35x 10^{-10} mrem \end{split}$$

Ar-39

$$D_{i}^{p} = \chi_{i} * SF * DF_{i}^{p} * 1yr$$

$$\chi_{i} = \frac{\chi}{Q} * Q_{i} * 10^{6} \frac{\mu Ci}{Ci} * 3.17x 10^{-8} \frac{yr}{s} * e^{-\lambda_{i}t}$$

$$\chi_{i} = 8.6x 10^{-8} \frac{s}{m^{3}} * 1 \frac{Ci}{yr} * 10^{6} \frac{\mu Ci}{Ci} * 3.17x 10^{-8} \frac{yr}{s} * e^{-2.57x 10^{-3} \frac{1}{yr} * 0.00034145yr}$$

$$\chi_{i} = 2.72x 10^{-9} \frac{\mu Ci}{m^{3}}$$

$$D_i^p = \chi_i * SF * DF_i^p * 1yr$$

$$D_{i}^{p} = 2.7x10^{-9} \frac{\mu Ci}{m^{3}} * 0.7 * 13.4 \frac{mrem * m^{3}}{yr * \mu Ci} * 1yr$$
$$D_{i}^{p} = 2.53x10^{-8}mrem$$

Hg-194

$$\begin{split} D_{i}^{tot} &= D_{i}^{inh} + D_{i}^{ground} + D_{i}^{veg} + D_{i}^{meat} + D_{i}^{milk} \\ D_{i}^{inh} &= \chi_{i} * BR * DF_{i}^{inh} * 1yr \\ \chi_{i} &= \frac{\chi_{DD}}{Q} * Q_{i} * 10^{6} \frac{\mu Ci}{Ci} * 3.17x 10^{-8} \frac{yr}{s} * e^{(31.62 - \lambda_{i})t} \\ \chi_{i} &= 6.0x 10^{-8} \frac{s}{m^{3}} * 1 \frac{Ci}{yr} * 10^{6} \frac{\mu Ci}{Ci} * 3.17x 10^{-8} \frac{yr}{s} * e^{(31.62 - 1.57x 10^{-3}) \frac{1}{yr} * 0.00012773yr} \\ \chi_{i} &= 1.9x 10^{-9} \frac{\mu Ci}{m^{3}} \\ D_{i}^{inh} &= 1.9x 10^{-9} \frac{\mu Ci}{m^{3}} * 6400 * 0.16 \frac{rem}{\mu Ci} * 1yr \\ D_{i}^{inh} &= 1.96x 10^{-3} mrem \end{split}$$

$$D_i^{ground} = d_i * SF * DF_i^g * \frac{1 - e^{-\lambda_i t_b}}{\lambda_i} * 1yr$$

$$d_i = \frac{D}{Q} * Q_i * 10^6 * e^{(31.62 - \lambda_i)t}$$

$$d_i = 1.6x 10^{-10} \frac{1}{m^2} * 1\frac{Ci}{yr} * 10^6 \frac{\mu Ci}{Ci} * e^{\left(31.62 - 0.00157\frac{1}{yr}\right)00012773yr}$$

$$d_i = 1.67 x 10^{-4} \frac{\mu C i}{m^2 * yr}$$

 D_i^{ground}

$$= 1.67x10^{-4} \frac{\mu Ci}{m^2 yr} * 0.7 * 1.89x10^{-2} \frac{mrem * m^2}{yr * \mu Ci}$$
$$* \frac{1 - e^{-0.00157 \frac{1}{yr} * 32yr}}{0.00157 \frac{1}{yr}} * 1yr$$

 $D_i^{ground} = 6.77 x 10^{-5} mrem$

$$\begin{split} D_{l}^{peg} &= \left[C_{l}^{v}U^{v}f_{v} + C_{l}^{l}U^{l}f_{l}\right] * DF_{l}^{ing} * 1yr \\ C_{l}^{v} &= d_{l} * \left[\frac{r_{l}(1-e^{-\lambda_{l}^{W}t_{v}})}{\lambda_{l}^{w}+v_{v}} + \frac{B_{l}(1-e^{-\lambda_{l}t_{b}})}{P*\lambda_{l}}\right] * e^{-\lambda_{l}t_{h}} \\ C_{l}^{v} &= 1.67x10^{-4}\frac{\mu Cl}{m^{2}} * \left[\frac{0.2\left(1-e^{-10.1\frac{1}{3yr}\cdot0.192yr}\right)}{18.1\frac{1}{yr}*2.2\frac{kg}{m^{2}}} + \frac{0.09\left(1-e^{-0.00157\frac{1}{3yr}+32yr}\right)}{240\frac{kg}{m^{2}}*0.00157\frac{1}{yr}}\right] * e^{-0.00157\frac{1}{yy}*0.01643yr} \\ C_{l}^{v} &= 2.76x10^{-6}\frac{\mu Cl}{kg} \\ C_{l}^{l} &= 2.76x10^{-6}\frac{\mu Cl}{kg} \\ C_{l}^{l} &= 2.76x10^{-6}\frac{\mu Cl}{kg} \\ 2.76x10^{-6}\frac{\mu Cl}{kg} * 289\frac{kg}{yr} * 0.76 + 2.7x10^{-6}\frac{\mu Cl}{kg} * 31\frac{kg}{yr} * 1\right] * 5.8x10^{-3}\frac{rem}{\mu Cl} * 1yr \\ D_{l}^{veg} &= 3.94x10^{-3}mrem \\ D_{l}^{meat} &= C_{l}^{meat} * Uf * DF_{l}^{ing} * 1yr \\ C_{l}^{meat} &= C_{l}^{fodder} * F_{l}^{b} * Q_{F} * e^{-\lambda_{l}t_{S}} \\ C_{l}^{fodder} &= 1*0.75*4.0x10^{-6}\frac{\mu Cl}{kg} + [1(1-0.75)+(1-1)] * 2.7x10^{-6}\frac{\mu Cl}{kg} \\ C_{l}^{fodder} &= 3.68x10^{-6}\frac{\mu Cl}{kg} \\ C_{l}^{meat} &= 3.68x10^{-6}\frac{\mu Cl}{kg} * 0.25\frac{d}{kg} * 44\frac{kg}{d} * e^{-0.00157\frac{1}{yr}\cdot0.00548yr} \\ C_{l}^{meat} &= 4.0x10^{-5}\frac{\mu Cl}{kg} \end{aligned}$$

$$D_i^{meat} = 4.0x10^{-5} \frac{\mu Ci}{kg} * 81 \frac{kg}{yr} * 5.8x10^{-3} \frac{rem}{\mu Ci} * 1yr$$
$$D_i^{meat} = 1.89x10^{-2} mrem$$

$$\begin{split} D_{i}^{milk} &= C_{i}^{milk} * U^{m} * DF_{i}^{ing} * 1yr \\ C_{i}^{milk} &= C_{i}^{fodder} * F_{i}^{m} * Q_{F} * e^{-\lambda_{i}t_{f}} \\ C_{i}^{fodder} &= f_{p} * f_{s} * C_{i}^{p} + [f_{p}(1 - f_{s}) + (1 - f_{p})]C_{i}^{s} \\ C_{i}^{fodder} &= 1 * 0.56 * 4.0x10^{-6} \frac{\mu Ci}{kg} + [1(1 - 0.56) + (1 - 1)] * 2.7x10^{-6} \frac{\mu Ci}{kg} \\ C_{i}^{fodder} &= 3.68x10^{-6} \frac{\mu Ci}{kg} \\ C_{i}^{milk} &= 3.68x10^{-6} \frac{\mu Ci}{kg} * 4.7x10^{-4} \frac{d}{L} * 44 \frac{kg}{d} * e^{-0.00157 \frac{1}{yr} * 0.00548yr} \\ C_{i}^{milk} &= 7.09x10^{-8} \frac{\mu Ci}{L} \\ D_{i}^{milk} &= 7.09x10^{-8} \frac{\mu Ci}{L} * 260 \frac{L}{yr} * 5.8x10^{-3} \frac{rem}{\mu Ci} * 1yr \\ D_{i}^{milk} &= 1.07x10^{-4}mrem \end{split}$$

 $D_i^{tot} = 2.49 x 10^{-2} mrem$

 $D_i^{tot} = 1.96 x 10^{-3} mrem + 6.77 x 10^{-5} mrem + 3.94 x 10^{-3} mrem + 1.89 x 10^{-2} mrem + 1.07 x 10^{-4} mrem$