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ABSTRACT 
Finite element method was used to analyze the three-point 

bend experimental data of A533B-1 pressure vessel steel 
obtained by Sherry, Lidbury, and Beardsmore [1] from -160 to 
-45 °C within the ductile-brittle transition regime.  As many 
researchers have shown, the failure stress (σf) of the material 
could be approximated as a constant.  The characteristic 
length, or the critical distance (rc) from the crack tip, at which 
σf is reached, is shown to be temperature dependent based on 
the crack tip stress field calculated by the finite element 
method.  With the J-A2 two-parameter constraint theory in 
fracture mechanics, the fracture toughness (JC or KJC) can be 
expressed as a function of the constraint level (A2) and the 
critical distance rc.  This relationship is used to predict the 
fracture toughness of A533B-1 in the ductile-brittle transition 
regime with a constant σf and a set of temperature-dependent 
rc.  It can be shown that the prediction agrees well with the 
test data for wide range of constraint levels from shallow 
cracks (a/W= 0.075) to deep cracks (a/W= 0.5), where a is the 
crack length and W is the specimen width. 

 

INTRODUCTION 
Many pressure vessel and piping components are typically 

designed so the materials of construction exhibit ductile 
behavior during the normal operating temperatures.  As the 
temperature decreases under abnormal condition, these 
materials may experience ductile-brittle transition resulting in 
a change of fracture mode and a reduction of fracture 
toughness.  Therefore, for material selection criteria and 
structural integrity assessment under various operating 
conditions, it is desirable to understand the fracture 
mechanism during the ductile-brittle transition and to be able 
to predict the temperature-dependent fracture toughness. 

During the ductile-brittle transition in low alloy steels, the 
fractography changes from a fracture strain (εf)-controlled 
plastic dimple fracture to a critical stress (σf)-controlled 
cleavage mode.  Based on the model proposed by Richie, 
Knott, and Rice (RKR) [2,3], brittle fracture occurs when the 
stress state exceeds σf at a characteristic distance (rc) about 
twice the grain size away from the crack tip.  Further 
investigation showed that, even the cleavage fracture 
mechanism during ductile-brittle transition may change with 
the specimen geometry, temperature, loading rate, prestrain, 
and material composition, it appears that σf is a stable quantity 
and may be used as a material toughness parameter [4-8]. 

 1   

mailto:wzx-ujs@sohu.com
mailto:chao@engr.sc.edu
mailto:ps.lam@srnl.doe.gov


The fracture behavior of A533B-1 pressure vessel steel 
was investigated by Sherry, Lidbury, and Beardsmore [1] 
using three-point bend specimens with various crack length 
(a) to width (W) ratios (a/W= 0.075, 0.1, 0.2, and 0.5) within 
the temperature range between -160 and -45 °C.  Using the 
fracture toughness data of a/W= 0.5, a master curve (KJC) can 
be constructed as a function of temperature.  With ±5% range 
of a constant σf suggested by Chen, Zhen, and Chao [9], rc as 
a function of temperature can be determined by the finite 
element method.  By applying the temperature-dependent rc 
with the J-A2 constraint theory in fracture mechanics, the 
fracture toughness for specimens with any a/W ratios can be 
calculated at each temperature.  It is found that the predicted 
KJC values agree well with those obtained by Sherry et al. [1] 
for a/W= 0.075, 0.1, 0.2, and 0.5 within the temperature range 
from -160 to -45 °C. 

 

MATERIAL PROPERTIES AND FINITE ELEMENT 
MODEL 

The elastic-plastic material response is assumed to follow 
the Ramberg-Osgood power law strain hardening function 
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in which σ is the stress, ε is the strain, σο is the yield stress, E 
is the Young’s modulus, n is the strain hardening exponent, α 
is a material constant, and the corresponding yield strain εo is 
defined as σο/E. 

It is well known that A533B-1 is a very ductile material.  
However, as the temperature decreases, the material exhibits 
ductile to brittle transition, that is, the fracture surface on the 
upper shelf shows ductile tearing and dimple fracture, while 
on the lower shelf the cleavage fracture dominates.  In the 
transition regime, the microstructures appear to be cleavage 
with indication of microvoids.  For the current study, the 
material properties and fracture test data for A533B-1 are 
based on the work by Sherry et al. [1].  By regression 
analyses, the test data in term of temperature (T, in Celsius) 
can be expressed as (see Figs. 1(a) to 1(c) and also in 
Reference [1]): 
 
 

493.12780.2386T-0.0074T2
0 +=σ    (MPa) (2) 

9588.209T0511.0E +−=    (GPa)  (3) 
10.93300.0359T0.0005T n 2 ++=  (4) 

 
Note that in the original report by Sherry et al. [1], a constant 
n= 12 was used instead of Eq. (4).  The coefficient α in Eq. 
(1) is unity (1.0) in the present work. 

The width (W) and the thickness (B) for test specimens 
with a/W= 0.1, 0.2 and 0.5 are, respectively, 134 mm and 67 
mm.  In the case of the shallow crack specimens (a/W= 
0.075), the width and the thickness are both 50 mm.  
Therefore, using the weakest link statistical theories and 
following the American Society for Testing and Materials 
(ASTM) E 1921, “Standard Test Method for Determination of 
Reference Temperature, To, for Ferritic Steels in the 
Transition Range [12],” the fracture toughness (JC or KJC) 
from Reference [1] can be converted to that for the standard 
1T specimen, for which the thickness B1T= 25.4 mm or 1 inch: 
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where KJC(1T) is the fracture toughness for the 1T specimen and 
Kmin= 20 MPa m1/2.  Figure 1(d) shows the dependencies of 
1T fracture toughness on specimen geometry (a/W) and 
temperature (T). 

The ABAQUS finite element program [10] was used to 
analyze various specimens tested by Sherry et al. [1].  Due to 
geometric and loading symmetries, only one-half of the 
specimen is modeled.  The eight-noded reduced integration 
elements were used in the calculation.  Figures 2a and 2b 
show the typical finite element meshes for a/W= 0.1 and 0.5, 
respectively.  The smallest element size near the crack tip is 
0.002 mm.  The concentrated load acting on the simply-
supported three-point bend specimen is applied to the end of 
the uncracked ligament. 
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Figure 1  Temperature dependent material properties (a) yield stress, (b) hardening exponent, (c) Young’s 
modulus, and (d) fracture toughness (KJC).  Test data were reported by Sherry, et al. [1]. 

 
 
 

 
 (a) a/W= 0.1 (b) a/W= 0.5 
 

Figure 2 Finite element models for (a) shallow crack (a/W= 0.1) and (b) deep crack (a/W= 0.5) 
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DETERMINATION OF CHARACTERISTIC DISTANCE (rc) 
The fracture toughness obtained from material testing 

typically exhibits large data scattering in the ductile-brittle 
transition regime.  The statistically-formulated master curve 
method has been adopted as a major approach to describe the 
fracture toughness for ferritic materials [11].  Based on 
ASTM E 1921 [12], the master curve for the 1T specimen is 
given as 

 
)TT(019.0
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where KJC(1T) is in MPa m1/2, T is the temperature in °C, and To 
is a reference temperature in °C.  Using the fracture 
toughness data for a/W= 0.5 provided in Reference [1], To is 
estimated as -129 °C.  The corresponding master curve along 
with the experimental data, converted to 1T equivalent data 
using Eq. (5), is shown in Figure 3. 
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Figure 3  Master curve for specimens with a/W=0.5 

 
In modeling the microscopic fracture process of the 

metallic materials, it is assumed that the nucleation of 
microcracks is caused by sufficient stress acting on the brittle 
cementite leading to slip of the crystalline boundaries due to 
dislocation motion.  As more microcracks are initiated, the 
nucleation sites may coalesce and form microcrack clusters, 
which eventually link up with the main crack and the fracture 
event takes place [3].  Therefore, it can be postulated that 
fracture occurs when the crack tip opening stress (σθθ) reaches 
or exceeds a critical value (σf, or the local fracture stress) at a 
distance rc ahead of the crack tip. 

In general, the temperature effect is insignificant on local 
fracture stress [2,3].  For A533B steels, it was found that the 
local stress σf is about 1955 MPa [9,13].  On the other hand, 
the characteristic distance, rc, is more sensitive to the 
temperature variation [14].  The temperature-dependent 
macroscopic parameters, such as the yield stress, Young’s 
modulus, strain hardening exponent, and the fracture 

toughness (KJC) for A533B-1 have been determined [1] and 
shown earlier in Figures 1(a) to 1(d), respectively. 

Finite element analyses of three-point bend specimens with 
a/W= 0.5 at various temperatures are conducted.  The 
specimens are loaded up to JIC, corresponding to the master 
curve of KJC obtained in Figure 3.  The characteristic 
distance, therefore, can be determined by a given critical stress 
(σf), which for demonstration purpose is chosen as 1955±5% 
MPa (i.e., 1857.25, 1955, and 2052.75 MPa).  The resulting 
rc as a function of temperature is plotted in Figure 4. 

It can be seen that rc increases as the temperature rises.  
This is consistent with the findings for 22NiMoCr3-7 steel 
(A508) in Reference [14].  This fact can be explained as 
follows:  The lower material yield stress at higher 
temperature leads to a more extensive crack tip blunting and a 
larger stretch zone size (SZW) [15].  As a result, the higher 
crack tip stress relief requires larger fracture process zone so 
more microcracks can be formed and linked to the main crack.  

 

 
Figure 4  Characteristic distance (rc) as a function 
of temperature 
 

Based on the assumption that the fracture initiation is 
independent of the crack size, it is reasonable to infer that the 
relationship between the temperature and the characteristic 
distance, rc, in Figure 4 can be applied to any ratios of a/W in 
this study.  The test results in Reference [14] appear to 
support this conclusion. 
 
 

PREDICTION OF FRACTURE TOUGHNESS IN 
DUCTILE-BRITTLE TRANSITION ZONE 
 
J-A2 Two-parameter Constraint Theory in Fracture 
Mechanics 

When the Ramberg-Osgood strain hardening law is used 
to describe the material constitutive response, the stress-strain 
relationship can be expressed as  
 

 4   



0

ij1n

0

e
ij

0

kk

0

ij

0

ij S
)(

2
3)1(

σσ
σ

α+δ
σ
σ

ν−
σ
σ

ν+=
ε
ε −  (8) 

 
where ν is the Poisson’s ratio, δij is the Kronecker delta, 

 is the deviatoric stress, and 3/S ijkkijij δσ−σ=

2/SS3 ijije =σ  is the Mises equivalent stress. 

The elastic-plastic stress field for a Mode I crack can be 
obtained by asymptotic solution.  Hutchinson [16,17], Rice, 
and Rosengren [18] (HRR) used the first term in the series 
expansion to provide a singular, dominant solution as the 
crack tip is approached (r→0): 
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where (r, θ) is the polar coordinate of a material point with the 
origin at the crack tip, J is the J-integral which uniquely 
defines the magnitude of the crack tip stress, In is a non-
dimensional integration constant and depends only on the 
strain hardening exponent n, and )n,(~

ij θσ is a non-

dimensional stress distribution function. 
The constraint effect in fracture mechanics has drawn 

much of the attention since mid-20th century [19] due to the 
issues of applying the laboratory determined fracture 
toughness to full structures (i.e., transferability).  Yang et al. 
[20] and Chao et al. [21] developed the higher order terms in 
the asymptotic expansion, and concluded that only two 
parameters (J and A2) are needed to describe the near crack tip 
solution: 
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where L is a characteristic length, which can be regarded as 
the crack length, specimen width, or a unit length (e.g., unity), 
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and )n,(~ )k(
ij θσ  is the non-dimensional stress distribution 

function with respect to Sk (k= 1, 2, and 3; S1 < S2 < S3).  
When the strain hardening exponent (n) is greater or equal to 
3, S3= 2S2 – S1.  The stress index Sk is a function of n only, 
and is independent of the applied load and the material 
constants, such as α, εo, or σo in the Ramberg-Osgood power 
law.  In Eqs. (10) and (11), the integration constant In , the 
stress distribution function )n,(~ )k(

ij θσ  and the stress index Sk 

have been tabulated by Chao and Zhang [22]. 

It should be noted that the first term in Eq. (10) is the 
HRR solution (i.e., Eq. (9)).  By introducing the second 
fracture parameter, A2, the J-A2 controlled region would be 
greater than that dominated by the J-integral alone.  In this J-
A2 theory, J remains the role in describing the crack tip stress 
intensity, while A2 is used to describe the constraint level of 
the cracked body.  The value of A2 can be obtained by 
matching the finite element solution to Eq. (10).  
 
 
Prediction of Fracture Toughness at Various 
Temperatures 
Based on the RKR fracture model [2], the crack initiation 
takes place when the circumferential stress σθθ(θ=0) reaches a 
critical value σf in the ligament a distance rc from the crack 
tip.  From Eq. (10), 
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It can be seen that λ is a function of crack tip constraint 
(expressed by A2) and the material properties. 

For a specimen with a given a/W ratio, it is assumed that 
A2 is a constant (note that this assumption will be revisited in 
the next section).  Therefore, from Eqs. (12) and (13), the 
fracture toughness (JC) in the ductile-brittle transition region 
can be predicted by 
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To demonstrate the fracture toughness prediction with Eq. 
(14), finite element analysis is first performed to estimate the 
A2 values under fully plastic condition for a/W= 0.5, 0.2, 0.1, 
and 0.075, which are determined as, respectively, -0.17, -0.23, 
-0.26, and -0.27.  By further assuming that the deep cracks 
and the shallow cracks follow the same fracture initiation 
mechanism, a constant fracture stress, σf, is applied to all 
crack sizes (see the paragraph above Figure 3).  Therefore, 
by substituting into Eq. (14) the value of σf (in the present 
work, it appears that the lower bound value, 1857.25 MPa, 
gives a better prediction), along with the temperature-
dependent material parameters (i.e., σo and  εo= σo/E in Figs. 
1) and rc (the upper curve in Fig. 4), the corresponding 
ductile-brittle transition curves (1T KJC) can be obtained for 
a/W= 0.5, 0.2, 0.1, and 0.075, as shown in Figures 5(a) to 
5(d), respectively.  It can be seen that the predicted curves in 
general agree well with the experimental data. 
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Figure 5  Predicted fracture toughness (KJC) in ductile-brittle transition temperature regime using σf= 1857.25 
MPa and the temperature dependent rc in Figure 4: (a) a/W= 0.5, (b) a/W= 0.2, (c) a/W= 0.1, (d) a/W= 0.075 

 
 

 

Discussion of A2 Dependence on J and Temperature 
In the previous section, the constraint parameter A2 was 

assumed as a constant for a given a/W, and not to depend on 
the temperature.  However, based on the fact that the material 
parameters, such as E or n, are functions of temperature (Figs. 
1(a) to 1(d)), it is likely that A2 would be varied with the 
temperature as well.  The A2 dependence on temperature and 
on loading level (J-integral) will be discussed in the following. 

From the finite element solution, A2 can be obtained at 
various loading levels characterized by the J-integral.  In the 
case of a/W= 0.5 at T= -100 °C, this relationship is plotted in 
Figure 6.  It can be seen that A2 initially increases with the 
rising load but rapidly approaches a constant value.  The 
same trend can be found for the other crack sizes (a/W).  
Chao et al. [21] have investigated the A2 variation with respect 
to J for different strain hardening exponents, n.  They found 

that the constraint parameter A2 is indeed a constant value for 
a given a/W under fully plastic condition.  This fact was later 
theoretically proved by Chao and Zhu [23]. 

Figure 7 shows the relationship between the constraint 
parameter A2 and the temperature in the case of a/W= 0.5.  
Each A2 value is estimated at a load level corresponding to the 
temperature dependent JC on the mater curve (based on Fig. 
3).  It can be seen that A2 is essentially unchanged at low 
temperatures.  However, as the temperature is above -100 °C, 
the A2 value tends to be decreased.  This may be caused by 
the stress relief at the crack tip due to the enlarged plastic zone 
size.  However, the effect of decreasing value of A2 is not 
expected to be significant on predicting the fracture toughness 
in ductile-brittle transition. 
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Figure 6  The relationship between the constraint 
parameter A2 and the temperature T 
 
 

 
Figure 7  The relationship between the constraint 
parameter A2 and the J-integral 
 
 

CONCLUSIONS 
Based on the tensile and fracture toughness data of A533B-

1 pressure vessel steel provided by Reference [1] and the 
finite element analysis using the ABAQUS code [10], the 
temperature dependant characteristic distance, rc, is first 
established based on a constant critical fracture stress of the 
material, σf.  By employing the J-A2 constraint theory in 
fracture mechanics [20,21], it is shown that the fracture 
toughness (KJC or JC) in the ductile–brittle transition 
temperature regime can be predicted by Eq. (14), which is a 
function of the critical fracture stress (σf), characteristic 
distance from the crack tip (rc), loading parameter (J), 
constraint parameter (A2), and the tensile properties of the 
steel.  Furthermore, by confirming that the constraint 
parameter A2 is insensitive to the temperature and the loading, 

a conclusion can be made that, for a given crack length to 
specimen width ratio (i.e., a/W), the fracture toughness 
throughout the ductile-brittle transition temperature regime 
can be fully characterized by a single constraint parameter, A2.  
The predicted fracture toughness has been shown in good 
agreement with the experimental data [1]. 
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