
 
This document was prepared in conjunction with work accomplished under 
Contract No. DE-AC09-96SR18500 with the U.S. Department of Energy. 
 
 
 
This work was prepared under an agreement with and funded by the U.S. Government. 
Neither the U. S. Government or its employees, nor any of its contractors, subcontractors 
or their employees, makes any express or implied:  1. warranty or assumes any legal 
liability for the accuracy, completeness, or for the use or results of such use of any 
information, product, or process disclosed; or  2. representation that such use or results 
of such use would not infringe privately owned rights; or  3. endorsement or 
recommendation of any specifically identified commercial product, process, or service. 
Any views and opinions of authors expressed in this work do not necessarily state 
or reflect those of the United States Government, or its contractors, or subcontractors. 



WSRC-STI-2008-00049 

 1

EVAPORITE MICROBIAL FILMS, MATS, MICROBIALITES AND 

STROMATOLITES.       

Robin L. Brigmon (SRNL) Penny Morris (UHD) & Garriet Smith (USC). 

 
1Savannah River National Laboratory, Bldg. 999W Aiken, SC 29808, 2Department of 

Natural Science, University of Houston-Downtown, 1 Main St., Houston, TX.  77002, 
3University South Carolina Aiken,   471 University Parkway,   Aiken, South Carolina 

29801 

 

*CORESPONDING AUTHOR ADDRESS  

Savannah River National Laboratory,  

Bldg. 999W  

Aiken, SC 29808 

Tel 803-819-8405 

AUTHOR EMAIL ADDRESS (r03.brigmon@srnl.doe.gov) 

TITLE RUNNING HEAD (Microbial Films). 

KEYWORDS (MICROBIAL FILMS, BIOFILMS, ECPS, MATS, 

MICROBIALITES AND STROMATOLITES). 



WSRC-STI-2008-00049 

 2

 

ABSTRACT 

 

Evaporitic environments are found in a variety of depositional environments as early as 

the Archean.  The depositional settings, microbial community and mineralogical 

composition vary significantly as no two settings are identical.  The common thread 

linking all of the settings is that evaporation exceeds precipitation resulting in elevated 

concentrations of cations and anions that are higher than in oceanic systems.  The Dead 

Sea and Storrs Lake are examples of two diverse modern evaporitic settings as the former 

is below sea level and the latter is a coastal lake on an island in the Caribbean.  Each 

system varies in water chemistry as the Dead Sea dissolved ions originate from surface 

weathered materials, springs, and aquifers while Storrs Lake dissolved ion concentration 

is primarily derived from sea water.  Consequently some of the ions, i.e., Sr, Ba are found 

at significantly lower concentrations in Storrs Lake than in the Dead Sea. The origin of 

the dissolved ions are ultimately responsible for the pH of each system, alkaline versus 

mildly acidic.  Each system exhibits unique biogeochemical properties as the extreme 

environments select certain microorganisms.  Storrs Lake possesses significant biofilms 

and stromatolitic deposits and the alkalinity varies depending on rainfall and storm 

activity. The microbial community Storrs Lake is much more diverse and active than 

those observed in the Dead Sea.  The Dead Sea waters are mildly acidic, lack 

stromatolites, and possess a lower density of microbial populations.  The general absence 

of microbial and biofilm fossilization is due to the depletion of HCO3 and slightly acidic 

pH.   

 

1.0 INTRODUCTION 

 

The existence of evaporitic environments can be inferred as early as the Archean 

(Grozinger 2003), but their depositional setting has varied over time.  Some may have 

been lacustrine, some tidal flats or restricted marine, some possibly cave deposits while 

others indicate playa settings (Buck 1980, 1992, Lowe 1983, Walter 1983, Olson 1984, 

Lindsay & Leven 1986, Muir 1987, Martini 1990, Pope & Grozinger 2003).  Each system 
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is influenced by a different set of parameters and these differences can be reflected in the 

pH, ions in solution, organic and detrital sources.  

 

Evaporitic environments, at least in geological terms, are transitional.  However, 

sedimentary structures of organo-physico-chemical origin from these environments have 

been useful for historical classification (Eriksson et al. 2007).  Changing climates can 

alter these environments and lead to their demise.  For instance, the Dead Sea shoreline is 

dropping due to a variety of factors which are partly influenced by human activities 

(Yechieli et al. 1998).  Storrs Lake, San Salvador Bahamas could disappear if sea levels 

continue to rise due to global warming or potential nearby development.  Similar 

scenarios could affect the existence of other sites. 

In this work we will compare the microbiology and geochemistry of two diverse 

hypersaline systems, Storrs Lake in San Salvador, Bahamas, an island sea level lake and 

the Dead Sea, Israel, an inland evaporite basin.  The objectives of this study are to i) 

compare and contrast the fossilization of microbes and their organic products in 

environments that differ in salinity and substrate, ii) use field combined with analytical 

techniques,  electron microscopy (EM), and microbiological  techniques for identification 

and characterization of microbial communities in environmental samples, iii) to discuss 

potential fossilization processes; identify probable microbial fossils, and the metallic ions 

association with fossilization and iv) document the role  importance of both biotic and 

abiotic processes for biofilm development in evaporite systems. 

 

2.0 Background Information 

 

2.1 Microbial Communities 

 

Diverse microbial communities can develop within high salinity environments.  

The microbes are responsible for diverse biogeochemical and metabolic interactions that 

also alter any given environment (Krumbein et al. 2003).  Temperature, community 

composition, grazing by eukaryotes and water chemistry (particularly salinity) influence 

the rate of formation and lithification rates of these communities. Cyanobacteria are 



WSRC-STI-2008-00049 

 4

important in these saline environments due to their adaptation to desiccation and other 

stressors including ultraviolet light (UV) and nutrient limitations (Oren 1993).   

These microbial communities, as determined by the substratum and 

environmental influences, can form simple structures that include the production of 

microbial films or biofilms, mats, microbialites, or complex stromatolites.   A simple 

structure could be 1-5 µm in thickness and composed mostly of monoculture biofilms 

(Brigmon et al. 1995) or a stromatolite composed of a highly diverse active microbial 

community (Farmer & Des Marais 1994).  Although all of these structures could be 

viewed as a continuum of size and complexity due to the interactions of microorganisms, 

environmental conditions, and organic products including extracellular polymers (ECPS) 

and inorganic substrates such as sand and dust (Figure 1), certain characteristics define 

differences between the structural types. For example, biofilms are somewhat less 

complex, usually thinner, can form on living macrobiota and are more transient than 

other microbial consortial structures as those observed in cave vents (Brigmon et al, 

1995). Abiotic processes including sediment deposition and physical/chemical 

precipitation can also be important in biofilm or mat formation (Figure 1).  These 

materials can serve as substrates for attachment, potential nutrient sources, as well as an 

ecological niche necessary for community development.    

 

2.2 Biofilms 

Biofilms exhibit a wide variation in complexity that is largely dependent on 

interactions among microorganisms, environmental conditions, and organic products 

including extracellular polymers (ECPS) and inorganic substrates such as sand and 

dust (Figure 1). Several classification systems have been developed to classify these 

unique microbial communities that result in structures (Eriksson et al. 2007).  A 

formal system termed ‘microbially induced sedimentary structures’ (MISS) has been 

developed to classify the fossilization of biofilms (Noffke et al. 2001).   For 

descriptive purposes that variation can be categorized into three types, subaquatic, 

subaerial, and biodictyon (Krumbein et al. 2003).   
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Subaquatic biofilms are, as the name implies, biofilms constantly exposed to 

water. These aquatic biofilms, both marine and freshwater, demonstrate varying 

structural spatial and temporal heterogeneity.  The marine microbial communities 

may form uniquely structures mucopolysaccharide layers in combination with other 

structures including corals for maintenance (Ritchie & Smith 2004).   Marine 

biofilms can be highly diverse and may also contain Archaea (Wegley et al. 2002).  

Environmental changes, such as tidal (marine) seasonal or episodic (storms) can 

drastically influence the biofilm structure, particularly when sedimentary deposition 

rates are altered.  In carbonate rich water where sediment trapping, binding, as well 

as lithification occurs, these components are instrumental in forming stromatolites. 

Subaerial biofilms are composed of 99% organic material with minimal 

amounts of water and can survive extreme environmental conditions such as 

evaporation or drought.  The biofilms can cover rocks, minerals, sand, and other 

surfaces exposed to the atmosphere. Nutrients sources may include detritus, pollen, 

dust, animal (i.e. bird) waste, and runoff.  Microorganisms in these films will often 

include phototrophic and nitrogen fixing species as well as chemoautotrophs. 

Subaerial biofilms can be observed in lichen communities, tidal mats, algal 

dominated systems, and covering rocks and other dry surfaces (Figure 2). These 

biofilms are noted for their microbially produced melanins, cartenoids, mineral 

accumulation, metal precipitation, chlorophyll, and other metabolic byproducts that 

give them distinct pigmentation.  Microbial activity in both sub-aquatic and sub-

aerial biofilms can significantly increase the breakdown of silica in the amorphous, 

sub-crystalline, crystalline and granular forms of quartz (Brehm et al. 2005).  This 

work by Brehm et al. (2005) emphasized weathering-enhancing processes that 

included effects of microorganisms and biofilms.  

  The term biodictyon comes from the Greek “bios” for life and “dictyon”  net.”  

These biofilms are characterized by living networks of mostly filamentous organisms 

imbedded in soil, sediment, or rock and form mats. The networks create an ecological 

niche for trapping other microorganisms, minerals, sediments, water and other 

nutrients as they percolate through the matrix.  In certain conditions, including 
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intertidal and mineral springs, the networks can generate ooids or calcispheres. The 

precipitation of ooids and calcispheres contribute to mat lithification (Dupraz & 

Visscher 2005).  Higher organisms including bryozoans may depend on 

microorganisms in mats for mutual benefit as in hydrothermal systems (Morris et al. 

2002). This interaction may include structural development in the bryozoans (Morris 

& Soule 2005).   

2.3 Mats: 

Mats are multilayered, multidimensional matrixed microbial communities that 

incorporate detritus, minerals, and associated geochemical materials including 

crystals (Krumbein 2003).  The interwoven patterns can form laminated or concentric 

structures. The pigments chlorophyll, phycocyanin and phycoerythrin are frequently 

detected by chromatographic and spectroscopic techniques.   They can produce new 

minerals and in evaporite environments influence the chemistry and associated 

microbial ecology (Gerdes et al. 1987, Noffke et al. 2001). 

2.4 Microbialite: 

Microbialites are benthic microbial carbonate deposits that can vary in shape, i.e., 

columnars, sheet-like, branched, head shaped, depending on the microbial population, 

environment and the degree of lamination (Reid et al. 2003, Dupraz & Visscher 2005). 

Microbialites formation results from geochemical interactions combined with 

exopolymer-mediated calcification of cyanobacteria-dominated microbial mats.  The 

biogeochemical interactions for microbialite formation occurring in a hypersaline lake 

(Eleuthera, Bahamas) has been described by Dupraz et al. (2004).  Partial degradation of 

microbial produced extracellular polymeric substances (ECPS) by aerobic heterotrophs or 

UV fuels sulfate-reducing activity and increases alkalinity in mats, inducing CaCO3 

precipitation.  As a result the ECPS biofilm is calcified and serves as a substrate for 

physico-chemical precipitation of additional minerals from the alkaline lake water 

allowing build up of the microbialites. 
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2.5 Lithification:   

 

Lithfication is a microbialite characteristic and can vary from small scale nodules (mm) 

to larger structures including stromatolites (Krumbein et al. 2003).  Microbialites are 

organosedimentary deposits that have accreted into structures as a result of benthic 

(prokaryotic and/or eukaryotic) communities or biofilms, trapping and binding detrital 

sediment in a polysaccharide matrix and / or becoming a niche for mineral precipitation 

and are more prone to fossilization (Burne & Moore 1987).  The interaction of 

cyanobacteria with other bacteria has shown to be critical in lithification.  Experimental 

data have demonstrated that calcium carbonate precipitation only occurred on 

cyanobacterial filaments in the presence of active bacteria under specific geochemical 

conditions (Chafetz & Buczynski 1992).  It was also found that dead cyanobacteria were 

coated with calcium carbonate by bacterial precipitation much more rapidly as compared 

to live cyanobacteria. 

  

2.6 Stromatolites:   

 

Stromatolites are produced by a combination of the accreted products from the dynamic 

interaction of microorganisms, microbial products including ECPS, and sediment (Decho 

2000).  Stromatolites have been defined as organosedimentary structures produced by 

sediment trapping, binding, and/or precipitation activity of microorganisms, primarily 

cyanobacteria (Awramik 1984).   Certain cyanobacteria are known to precipitate, trap, 

and bind particles of calcium carbonate to form structures and induce lithification 

(Chafetz & Buczynski 1992).   

 

2.7 Storrs Lake Microbial Depositional Structures: 

 

Cyanobacteria have evolved different multiple strategies to adapt to environmental 

stresses including drying, high salinity, low nutrients, and UV light (Castenholz & Garcia 

Pichel 2000).     The adaptations include pigment production that protects cells from the 

deleterious effects of UV, desiccation and subsequent cell wall damage.  Pigment 



WSRC-STI-2008-00049 

 8

production is particularly important in transient evaporite crust environments with wet 

and dry cycles. The cyanobacteria can dominate in hypersaline aquatic systems with 

limestone surfaces where they can be endolithic utilizing calcium carbonate that can lead 

to a permanent increase in travertine in stromatolites (Pentecost & Whitton 2000). 

 

 Cyanobacteria may also be the principal nitrogen fixers in a given ecosystem. 

Recent studies have demonstrated that epilithic cyanobacteria in Holocene beach rock 

(Heron Island, Great Barrier Reef. Australia) are the main nitrogen fixers (Diez et al. 

2007).   These cyanobacteria have adapted to a wide range of environments and their key 

metabolic activities including structural and function in similar hypersaline lakes is of 

great value to maintenance of microbial-based ecosystems (Dupraz et al. 2004). 

 

The diverse cyanobacteria is the major biofilm producer.  The cyanobacteria 

community is composed predominantly of Phormidium as well as Oscillatoria, Lyngbya 

and Spirulina (Brigmon et al. 2006).    The Storrs Lake cyanobacteria have been observed 

to be different from those examined at other San Salvador salinity sites as they have a 

higher proportion of phycobillin pigments (Brigmon et al. 2006).    In Storrs Lake 

evaporite mats, below the photic zone, the cyanobacteria are dead and are often 

fossilized, but the non-photosynthetic bacteria are dominant and demonstrate high 

metabolic activity (Brigmon et al. 2006).  

 

The purple sulfur bacteria Chromatium spp. is dominant in the Storrs Lake 

reddish-pigmented layer biofilms that are frequently found on both the shoreline 

evaporite crusts and stromatolites.  Sulfate reducing bacteria (SRBs) including 

Desulfovibrio sp. and the sulfur oxidizing bacteria, Thiothrix spp., are components of the 

stromatolite biofilms (Brigmon et al. 2006).  SRBs function in the deeper or oxygen 

limited layers of the biofilm where lithification may be occurring while the sulfur 

oxidizers thrive at the oxygen interface near the water surface getting energy from the 

hydrogen sulfide generated from the deeper anaerobic portions of the biomats  (Brigmon 

et al. 1994).     
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2.8 Geology 

 

Storrs Lake, San Salvador Island, Bahamas (Figure 3):  The hypersaline lake is located on 

the eastern side of San Salvador Island.  It is 2.0 meters in depth and about 7.3 km long 

and 1.3 km to 50 m wide and has well developed stromatolites that are located a few 

hundred yards from the sea. The lake contains islands which support a diversity of plants 

including mangroves and sedges (Carex).  Water is supplied from conduits within the 

bedrock, which includes the fossil reef, and seepage through Holocene sand that allows 

limited exchange with the ocean (Davis & Johnson 1990).  Additional water sources are 

rainfall and tropical storms that carry ocean water on shore and deposit it in Storrs and 

other San Salvador Island coastal lakes.  The island, sediment deposition, and its 

ecosystem are influenced by hurricanes (Yannarell et al. 2007). Fluctuations in Storrs 

Lake water chemistry have been observed to vary in a 20cm range (Zabielski & Neumann 

1990).   The water salinities vary from 70 to 100 g L-1 and the pH varies between 8 and 9, 

depending on rainfall and storm activity.   

 

Few plants or animals were observed in or out of the lake along the littoral zone 

besides the microbial mats, associated stromatolites, microbialites, except the mangrove 

Rhizophora sp. and some sedge (Carex) that rim the lake.  Microbial mats bordering the 

lake vary in size and thickness depending on weather conditions.   These mats contain 

Rhizophora leaves which are assimilated into the mats (Figure 2).  Organisms living in 

the water column include cyanobacteria, bacteria, diatoms, ostracods, and infrequent 

gastropods.  Most likely halophilic Archaea species could be found in hypersaline Storrs 

Lake but were not measured here. The current chemical and detrital sedimentary deposits 

within the lake are usually less than one meter thick and composed of finely laminated 

organic-rich carbonate mud and evaporite similar to Salt Pond that is adjacent to Storrs 

Lake (Yannarell et al. 2007).  The nitrogen-fixing microbial community in Salt Pond has 

been shown to change spatially with seasonal salinity changes (Yannarell et al. 2006).  

The mineralogy of these sediments include argonite, gypsum, and algal derived high-

magnesium calcite in the form of clay sized and sand sized particles as well as a variety 

of stromatolitic structures (Zabielski &Neumann 1990).   
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During the Pleistocene, large portions of the island were covered by carbonate 

reefs at levels that were above today’s sea levels (Teeter 1995).  According to Teeter the 

lakes are floored by Pleistocene carbonate bedrock covered by approximately 2 M of 

unconsolidated Holocene sediments. Storrs Lake has been directly connected with the 

ocean and the paleosalinity history has been reconstructed from MgO content of ostracod 

carapaces (Teeter 1995).  The geology of San Salvador includes three major rock types’ 

eolanites, beachrock, and reefrock (Davis & Johnson 1990).  The eolanites are most 

evident in carbonate dune ridges and found throughout the island including the 

subsurface. The beachrock consists mostly of cemented shell fragments and ooliths and 

can be seen covering other rocks on the beaches.  Reefrock is made up of fossilized reefs, 

including various corals, sponges, and cyanobacteria. The reported fossil reefs are found 

near the current island shoreline, including Storrs Lake.  Stromatolites in Storrs Lake 

have been estimated to range in age 2310+/-70 yrs., growing at the rate of 16 cm/1000 

years (Elliot 1994). Storrs Lake, which is probably as old, if not older than the earliest 

dated modern stromatolites  Surveys of the various San Salvador lakes have demonstrated 

the existence of a diverse water chemistry with some having salinities up to 300g L-1 

(Teeter 1995).  

 

Dead Sea Israel (Figure 4): 

The Dead Sea, a nonmarine evaporite basin, 400 m below sea level with an average pH of 

6.3, and salinity of 229.9 g L-1, is located on the northern branch of the African-Levant 

Rift Systems (Figure 4). The rift system, according to one model, was formed by a series 

of strike slip faults, initially forming approximately 2 million years ago (Csato, et al. 

1997).  Over geologic time the rift was occupied by a series of lakes; their existence was 

controlled by both tectonic activity and climate. Today the remaining lakes are the Sea of 

Galilee (Lake Kinneret) and the Dead Sea.   The precursor of the Dead Sea was another 

hypersaline body of water, Lake Lisan (Yechieli et al. 1998).  The Dead Sea receives its 

waters from the Jordan River system, runoff from wadis (Arabic for seasonal streams) 

during the winter months, limited rainwater and from surrounding aquifers both 

subterraneous and through springs (Yechieli et al. 1996, Ehrlich et al. 1985; Friedman 
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1998).  The detrital and dissolved mineral materials deposited in the Dead Sea are from 

windblown materials and rock products ranging in age from Triassic to Quaternary and 

includes gypsum, alkali basalt, chert, conglomerate, sandstone, limestone, clay, sand, 

sandstone, mudstone, marl, chalk, dolostone (Sneh et al. 1998).  Input from a variety of 

aquatic systems as well as weathering of these rock materials have contributed to the 

overall dissolved components in the Dead Sea. 

 

During the 20th century the water level dropped and in 1979, after 300 years, the 

meromictic stratification with an anoxic water mass below 40 m was altered (Herut et al. 

1997).   Today it experiences mostly annual stratification or a holometric regime (Lensky 

et al. 2005, Gavrieli et al. 2006).  The drop in water, at least in part, is a result of 

increased fresh water diversion along the Jordan River system.  Fresh water diversion 

may not entirely account for the drop in water level as the balances of evaporation rate 

and subsurface water flow are not well understood (Lensky et al. 2005).  With the drop in 

surface levels, the Dead Sea was separated into a northern and a southern basin in the 

1960’s (Steinhorn 1997). The northern basin is ~324 M deep while the southern basin is 

shallower with a maximum depth of 8 m (Nissenbaum 1975,  Steinhorn 1997).  The 

southern basin is divided into evaporation pans for salt and potash production (Anati 

1997, Hall 1997, Steinhorn 1997).  The residual end brines are depleted in potassium, 

sodium and enriched in magnesium and chloride; these brines are subsequently pumped 

back into the Dead Sea.  The effects are increased halite precipitation and salinity 

(Garvrieli 1997).  The Dead Sea is expected to reach equilibrium, but not dry up as the 

unique brine that would be left (Mg, Na, Ca, and Cl) and the low surface area to volume 

ratio would reduce the evaporation rate (Yechieli et al. 1998). 

 

3.0 METHODS AND MATERIALS 

The collecting and processing methods described below for the sites follow 

procedures that have been described by a number of authors (D’Amelio et al. 1989, 

Thomas Keprta et al. 1998, Morris et al. 2003, Fratesi et al. 2004, Brigmon et al. 2006)   

 

3.1 Storrs Lake 
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Stromatolites, biofilms, and water samples were collected from Storrs Lake, on the east 

side of San Salvador, Bahamas. Samples were taken along from the west shore of the 

lake to the east side of Cactus Island (Figure 3).  The coordinates and description of the 

sampling sites are listed in Table 1. The stromatolites, at all sampling points, had a 

cauliflower-type appearance, and varied in diameter from 10 cm-1.5 m. The microbial 

mats, covering the stromatolites in the water column, were 0.5 m thick in some places. 

Samples were collected with either 15 or 50 ml sterile polycarbonate tube (Fisher 

Scientific Fairlawn, NJ).   Stromatolites were sampled  by using the 50 cc sterile tubes to 

core  a 2-3 cm  long and 2 cm wide segment  from the stromatolites at Sites 1, 2, and & 7. 

The carbonate material was soft and easily obtained. Samples of microbial mats were 

obtained with either the 15 or 50 ml tubes. The samples were obtained at depths from 0.1 

- 0.5 m and kept cold (~ 3° C) until laboratory processing.  Some biofilms were sampled 

by scraping the edge of the tube on the film to limit perturbation of the stromatolites and 

liquid samples were collected by sterile 3 ml syringe.  Select samples were kept on ice 

and returned to the US within 48hr for microbial analysis.  Samples for microscopy and 

total microbial densities were fixed in the field with 10% formalin (Fisher Scientific, 

Fairlawn, NJ).   Temperature was measured in the field with a thermometer, dissolved 

oxygen concentration, nitrate, nitrite, and hydrogen sulfides were determined with field 

test kits (Chemetrics, Calverton, VA).  Salinity was measured with a refractometer and 

pH with a battery powered test meter (Fisher Scientific).  A geochemical water survey of 

a 1000 M transect through Storrs Lake, was conducted from the western shore to the 

eastern point of Cactus Island in July, 2001.  Nitrate, nitrite, dissolved oxygen, 

temperature, pH, and salinity measurements were taken at 12 sampling sites with location 

coordinates determined by GPS (Garmin Model GPS 76). The high salinity of the water 

required dilution with deionized water (DI) to be examined with a refractometer.  

Measurements were taken with water samples obtained from a depth of 0.25m.  Storrs 

Lake had a depth of, at the most, 2.0 m during this sampling event.   

 

Three water samples were collected and brought back from Sites 3 (water 

column) and 5 (stromatolite ridge) on ice for laboratory analysis by ion chromatography 
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(IC).  Chloride, sodium, lithium, manganese, calcium, nitrite, nitrate, phosphate, and 

sulfate concentrations from Storrs Lake were measured with a Dionex DX500 ion 

chromatograph  equipped with a conductivity detector, and a 250-mm Dionex IonPac 

AS14 Analytical column (4-mm ID, 16-µm bead; Dionex Corp., Sunnyvale, CA), 

operated at ambient temperatures.  A 3.5 mM sodium carbonate/1 mM sodium 

bicarbonate buffer solution was used as the eluent (1.2 mL/min) for the IC.  Water 

samples were diluted 100X in deionized water vortexed for 1 minute then centrifuged for 

5 minutes at 2500 rpm to prepare for the IC. 

 

Total microbial population densities in the stromatolite samples obtained from 

Cores at Sites 1, 2, and 7 were determined by the Acridine Orange Direct Count (AODC) 

technique (Brigmon & De Ridder 1996).  Discrete samples were collected aseptically 

from formalin fixed stromatolite cores, mixed with filter sterilized FA Buffer by Difco 

Inc. (Detroit, MI), and vortexed for 4 minutes.  The resulting dilutions were filtered 

through Nucleopore, polycarbonate 0.2µm membranes and all microorganisms 

(prokaryotes, cyanobacteria, Archaea, fungi) were counted using epifluorescent 

microscopy (Axioskop, Carl Zeiss Inc., Thornwood, NY). Dry weights were determined, 

and microbial density results were reported in cells/gdw.   

 

Aerobic heterotrophic plate counts provide an estimate of the total number of 

viable aerobic and facultative bacteria in the stromatolites.  Plates were prepared with 

fresh field samples at the Bahamas field Station Laboratory to determine colony forming 

units (CFUs).  Briefly, fresh 5 gm aliquots of stromatolites from Storrs Lake were 

weighed,  ground, and  aseptically mixed with 45mL  0.2 µm filter –sterilized sea water, 

vortexed for 4 minutes, and  plated on non-selective media glycerol artificial seawater 

agar,(GASW) within hours after collection (Smith & Hayasaka 1982).  Five dilutions 

were made in sterile seawater to determine microbial densities.  Each dilution was plated 

in triplicate and the cultures were incubated at 37°C and CFUs determined after 7 days on 

a Leica Quebec Darkfield Colony Counter.  Dry weights were determined on the 

stromatolite material tested and density determinations are reported in CFU/gram dry 

weight (GDW).  
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3. 2 Dead Sea  

 

The samples were collected from seven sites on the western shoreline which included 1 

site at Ein Gedi, three at Ein Boqeq, one at Hamme Zohar, and two at Mt. Sedom.  The 

coordinates for the sites, collected sedimentary materials, water temperature and 

collecting depths are listed in Table 2.  The coordinates were determined with a Magellan  

Model 2500T. Sterile 50 ml tubes (Fisher Scientific, Fairlawn, NJ with screw caps were 

used to collect the materials and water samples.  With the exception of the Ein Gedi 

halite, all samples were immediately preserved in 5% formalin (Fisher Scientific, 

Fairlawn, NJ).  Halite samples dissolve in formaldehyde and, in order to preserve the 

relationship of the microbes to their substrates, the samples were kept in sterile plastic 

bags without preservation. Water samples were collected at each collecting site and 

analyzed later for salinity, pH and chemical composition.  Chemical analysis was done by 

S. Grasby, Canadian Geological Survey. Carlton C. Allen, NASA Johnson Space Center 

used a Scintag X-ray powder diffractometer (XRD) for mineral identification. 

  

3.3 Electron Microscopy Analysis of Storrs Lake and the Dead Sea Samples: 

 

All preserved samples were initially analyzed with a Philips XL30 environmental 

electron microscope (ESEM) and subsequently critically point dried, platinum coated for 

15 seconds and analyzed with a JEOL 6340F field emission scanning electron 

microscope (FE-SEM) equipped with a light element electron dispersive X-ray 

spectrometry system (EDS).  Carbonate and evaporite materials are subject to charging 

by the FE-SEM electron beam and can either destroy or alter thin biofilms and other 

organic features.  The problem can be ameliorated by reducing the kV and adjusting the 

working distance.  The kV for this study, depending on the materials, was varied from 3 

to 10 kV with working distances varying from 4-6.   

   

4.0 RESULTS 
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4.1 Storrs Lake:   

 

4.1.1 Microbial Analysis:  Storr’s Lake microbialites are represented by biotically formed 

stromatolites, microscopically observed as crystals, mineralized filaments, diatom tests, 

and other microorganisms.  Stromatolites are most evident in the shallower areas of 

Storrs Lake but in this study were observed across the sampling transect.  Samples for 

electron microscopy were taken from the stromatolite ridge described in Table 1.   

Filaments: Mineralized filaments were composed of cyanobacteria and were common in 

the stromatolite biofilm samples. The forms include both continuous and segmented 

filaments (Figures 5, 6, 7, and 8).  In Figures 5 & 6, and 7 the fossilized cyanobacteria 

filaments with precipitated calcium carbonate are evident in the stromatolite samples.   

The fossilized filaments were observed to range in length from approximately ten 

microns to several dozen microns forming a support matrix.   Broken mineralized forms 

indicate the mineralization was initially limited to external “mold” processes with the 

cellular material now degraded (Figure 7). Note the thickness of the mineralization 

surrounding the filament is up to a micron in thickness.  Some of the filaments shown in 

Figure 8 do not show the extent of mineralization and evidence of ECPS indicating they 

are most likely from layers on the exterior of the stromatolite biofilm. These mineralized 

formations were found associated with all microbial life in the stromatolites from various 

cyanobacteria, diatoms, spherical bacteria to biofilm. Some filamentous fungi were 

observed in Storrs Lake biofilms but were not specifically identified.  Fungi are known to 

have an impact on geological processes including stromatolite formation due to their 

ability to provide physical structure, aggregate particles, and increase reactive areas 

(Sterflinger 2000) 

 

Spheres:  Spherical forms were observed throughout the samples and were found 

to vary in size.  The largest spheres observed averaged 5.3 µm diameter, were relatively 

uncommon, and ranged from a smooth to rough texture (Figure 9).  Medium sized 

spheres were often observed throughout the samples, usually appearing in clusters from 

2-8, were associated with biofilm, averaged 2.0 µm and ranged from a smooth to rough 

texture (Figure 10). Smallest spheres were imbedded in biofilm, usually associated with 
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larger microbial features, apparently forming two distinct populations and varied in 

texture (Figure 11).  The smallest spheres were composed of two populations, the larger 

averaged 0.55 µm in diameter (Figure 11) and the smallest were 0.13µm. The smaller 

0.13µm spheres were most likely produced abiotically but the 0.55 µm may have been 

produced either biotically or abiotically. 

 

Rod-Shaped:  Rod-shaped or somewhat dumbell-shaped structures range in size 

from approximately 1.0-3.0 µm and often were associated with crystals within the 

biofilm matrix (Figure 12A, B). Some were characterized by small-scale coarse-grained 

roughness and often flattened in shape when attached to surfaces (Figure12B). Similar 

mat communities entrapping ‘dumbell”-shaped crystals of aragonite have been observed 

in Asta Springs at Yellow State Nation Park, Wyoming USA (Farmer & Des Marais 

1994).  The shorter rods may represent sulfate-reducing bacteria (SRB) as they were 

frequently associated with calcium sulfate crystals (Figs12B).   

 

Diatoms: Diatoms were also observed as integral portions of the biofilm structure 

(Figures 13A, B).  Figure 13A demonstrates a relatively intact diatom being incorporated 

into the biofilm. Note the rod-shaped bacteria covering the diatom both in clumps as well 

as single cells indicating colonization.   In Figure 13B a partially degraded diatom test is 

observed within the biofilm structure.  Intact diatoms identified in the samples included 

mainly Pinnularia with some Navicula and Achnanthes species.  Again, the active 

bacteria attached both to the diatom as well as surrounding it with ECPS thus indicating 

the ongoing nature of the biofilm building process.  

 

Biofilms: Biofilms were found to consist of organic materials (bacteria, including 

cyanobacteria, fungi, diatoms) and inorganic (sand, limestone) materials enmeshed within 

the mat structure. Archaea species may have been observed in EM but other tests are 

necessary to discern them from other prokaryotes (Oren 1993).  Close examination with 

the FE-SEM indicates that binding is due to microbially produced polysaccharide (ECPS) 

or “slime” (Figure 14 A, B).  Examples of the binding can be seen in Figure 14A, as a 

fossilized cyanobacteria filament is attached to mineralized sand and rock grains. In 
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Figure 14B ECPS cross-links crystals several µm apart.  

 

Microbial Densities: Total microbial densities (live, dead, aerobic, and anaerobic) 

in the stromatolites varied from 2.48 X 1010 cells/gdw in the Site 1 sample to 1.58 X 1010  

cells/gdw in Site 2 (Figure 15).  These density determinations included all algae, fungi, 

cyanobacteria, and bacteria and were made from stromatolite material that was fixed in 

the field to preserve the sample integrity.  The aerobic and/or facultative microbial  

densities or live microorganisms in the stromatolite cores ranged from 4.75 X 104 

CFUs/gdw in Site 2 up to 9.46 X 105 CFUs/gdw in Site 1 (Figure 15).  While individual 

bacteria species were not identified from the viable cultures, many diverse morphological 

colony types and pigmented type variations were observed growing on the GASW 

medium.    

 

4.1.2 Geochemical Gradient: Table 1 describes the Storrs Lake water sampling sites as to 

their GPS coordinates and physical characteristics.  Table 3 contains all the field data that 

was taken during the survey.  The sampling transect range of the coordinates is from the 

west shore of Storrs Lake (N 24.0549 W 74.45348) to the far end of Cactus Island (N 

24.05943 W 74.44016).  The results of the nitrate tests for all sampling sites were 

consistently below the detection limit (1ppm).  Dissolved oxygen (DO) levels in the tests 

ranged from 6 to 9 ppm with a mean of 7.5 ppm (Table 3).  There was a gradient of 

increasing dissolved oxygen concentrations from the Storrs Lake western shore to the 

middle of the lake (Figure 16A).  The DO variation was most likely due to the higher 

density of biomats closer to the shorelines (Figure 3).  Water temperature ranged from 

32.5 to 39.5°C with a mean of 36.6°C (Figure 16B).  The lake temperature peaked (39°C-

39.5°C) at the first and last sampling sites close to the shorelines were also likely to the 

insulating effect of the biomats. The lake depths varied from 1-2 M over the sampling 

transect. 

 

The water pH ranged from 8.24 to 9 with a sampling mean of 8.36 (Table 2).  

There was a pH gradient higher near the island (pH 8.97) that decreased to 8.2 by the 

western shore (Figure 17A).  The pH showed an interesting profile being highest at Site 7 
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where the water was deepest (around 2 M) and then again elevated by Cactus Island (Site 

12) (Figure 17A).  The salinity ranged from 66 to 82 g L-1 with a mean of 73.2 g L -1 

(Table 2).  Salinity increased steadily as locations were sampled from west to east (Figure 

17B).  Salinity followed the DO trend of gradually increasing throughout the sampling 

sites to the middle of Storrs Lake (Figure 17B).  Table 4 summarizes the statistical 

analysis of the water constituents as a function of location as shown from the survey.  

The positive correlations in Table 3 for the water chemistry demonstrate a significant 

trend of increasing dissolved oxygen (6-9 ppm), pH (8.2-9), and salinity water 

concentrations (66-82 g L-1) across the transect moving west to east.  No nitrate or nitrite 

was detected at any of the sampling sites with the field test kits.  These findings were 

similar to previous geochemical analyses at Storrs Lake (Brigmon et al. 2006).    

  

4.2  Dead Sea  

 

The Dead Sea (Figure 4), with a salinity of 332.1 g L-1, initially appears devoid of life as 

it lacks the large, visual stromatolites and mats of Storrs Lake, San Salvador Island, 

Bahamas, Shark’s Bay, Australia or the tufa mounds of Mono Lake, California (Ehrlich 

1985, Shearman 1998, Brigmon et al. 2002, Byrne et al. 2002).  Microscopic and 

molecular data analyses indicate the existence of an abundant, albeit not diverse, 

halophilic species from the Dead Sea (Oren 1997).  Many of the isolates belong to the 

domain Archaea, specifically  Halobacteriacea (Arahal et al. 2000, Mack et al. 1993, 

Oren 1988, 1993) while the domain Bacteria is represented by gram-negative, moderate 

halophilic species, for example Bacillus marismortui (Oren 1988). Other microbial 

components include the green alga Duniella, halophilic ciliate and amoeboid protozoa, 

fungi and cyanobacteria (Elazari-Volcani 1944, Ehrlich et al. 1985, Huval et al. 1995,  

Oren 1997).  These microorganisms have been classified based on their environmental 

salt preference ranging from moderately halophilic species able to grow optimally 

between 0.5 and 2.5 M salt (Ventosa et al. 1998) to extremely halophilic up to 3.4 M and 

greater salt concentrations (Arahal et al. 2000). 
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4.2.1 Evaporite Minerals (FE-SEM Analysis):  Microorganisms associated with chloride 

mineral surfaces were limited to rod-shaped structures with filamentous, apical 

extensions (Figure 18A).  The microorganism and the chloride mineral were not stable in 

the FE-SEM electron beam and as a result subject to charging and deterioration which 

can occur quickly during the imaging process.  Figure 18A is an example of the process 

as indicated by the unnatural wavy surface of the chloride mineral and the hole in one of 

the microbial filaments. Microbial fossilization is a cumulative process and begins with 

the precipitation of a limited number of CaCO3 crystals on the surface of the extant 

organism with subsequent deposits that enclose the microbe and limited adjacent areas 

(Figure 18A, B).  Thin biofilms extend outward from the microbe as indicated by the 

folding on the surface that formed during critical point drying (Figure 18B).  Gypsum 

deposits were small, usually in the 5-7 µm range and associated with a chloride mineral.  

No evidence of microbial remains was found incrusting on the mineral. 

 

4.2.2 Putative Microbes Associated with Sand-Sized Orthoclase and Quartz, Silts, Clays 

(FE-SEM Analysis): Sand sized orthoclase and quartz fragments were anomalous as to 

the potential identification of microbes, biofilms or fossilized remains. Rice grain shaped 

deposits that were in the 2-5 µm size range for microbes were found on these detrital 

fragments, but there was no evidence of biofilms or other microbial remains (Figure 

18C).  EDS spectra indicated low to nonexistent levels of carbon or other chemical 

signals of biotic remains such as potassium. 

  

4.2.3 Microbes Associated with Silts and Clays (ESEM and FE-SEM Analysis) Materials 

that were preserved in 10% formalin (v/v) in the field were brought back to the laboratory 

and observed with an environmental scanning electron microscope.  This method of 

analysis proved to be very productive as a wide array of unfossilized microbes and thin or 

poorly biofilms were detected.  Some microbes were elongated with a hammer-like 

extension that appears to be attached to detrital fragments (Figure 18D, 19A). Others 

were elongated, appearing to bend around fragments and some were rod shaped (Figures 

19B, C, D).  The bacillus or rod shaped varied from those with relatively straight walls to 

those with more or less rounded rods to (Figures 19C, D).  The bacillus-shaped microbe 
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in Figure 19D (Mt. Sedom) appears to have substantial amounts of fossilized ECPS 

materials surrounding it. Some of the Mt. Sedom observed morphologies may represent 

the modern population, but some could have been weathered and transported from the 

surrounding geological deposits in a manner similar to the fossil coccoliths that were 

found in association with silts and clays (not shown). Figures 19A & C demonstrates 

different morphologies typically observed in the Dead Sea samples attached to substrate. 

Figure 19A represents filamentous-shaped microbes encased in a thin biofilms while 19C 

there can be seen rod-shaped microorganisms.     

 

All of the Dead Sea samples analyzed have lower microbial densities and 

apparently lower species diversity (Figures 10, 12B, 18A, B, C, D).  While some biofilms 

were observed (Figure 18B), they were generally monolayer or only a few µm in 

thickness. 

 

4.2.4 Mineralogy:  The XRD analysis of the sedimentary materials from Ein Gedi 

included evaporites, primarily halite, sand-sized orthoclase and quartz sediments. 

Samples from Ein Boqeq and Mt. Sedom were primarily composed of silts and clays with 

lesser amounts of evaporites.  EDS analysis indicates calcium sulfate (SEM visual 

analysis indicates gypsum), halite, magnesium chloride, potassium chloride and various 

silts and clays.  In addition to these minerals, other investigators have reported 

magnesium bromide, carnallite, and calcium chlorite (Nissenbaum 1975, Ehrlich 1985, 

Zak 1997).  

 

4.3 Water Chemistry.   

 A comparison of the water chemistry analysis for the Dead Sea and Storrs Lake are 

summarized in Table 5.   

 

4.3.1 Storrs Lake:  The water chemistry for Storrs Lake varied, depending on whether the 

samples were obtained adjacent to the stromatolites or were obtained from the open areas 

of the lake (Table 5).  The levels of ions near the stromatolites in descending order of 

dominance are Cl> Na> SO 4 > F> Mn> Ca> K.  The following were not detected:  Li, 
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Fe, NO2,  NO3, PO 4 .    In the open waters their levels, in descending order of dominance 

are Cl> Na> Ca> SO4 > Mn.  The following were not detected: K, Li, Fe, NO2 , NO 3 , 

and PO4.  Most of these dissolved components represent major seawater components 

with the exception of Mn, Li, and F. 

 

4.3.2 Dead Sea:  The northern basin ions are represented in descending order by Mg> Ca 

> Cl> Na> K> Sr> HCO3 >SO 4 >Si> Mn> Li (Table 5).  The following were not detected 

Fe, Ba, and NO3.  The southern basin ions, in descending order were K> Mg> Na> Cl> 

Ca> SO4 > HCO3 > Sr> Mn> Li.  The following were not detected: Fe, Ba, Si, and NO3.  

Nitrite (NO 2) was not measured for the Dead Sea samples.  The levels of the ions were 

similar in both basins with the exception of SO4 that was higher in the southern basin and 

Sr which was higher in the northern basin.  

 The dissolved ions, originating from surface weathered materials, springs, and 

aquifers, are more diversified in the Dead Sea because of the long geological time 

encompassed in its formation.  Storrs Lake dissolved ion concentration is primarily 

derived from sea water and not products of geological processes over millions of years.   

Consequently some of the ions, i.e., Sr, Ba are found at significantly lower concentrations 

than in the Dead Sea. The origin of the dissolved ions are ultimately responsible for the 

pH of each system, alkaline versus mildly acidic.    

 

5. DISCUSSION 

5.1 Nitrogen:   

Storrs Lake:  Primary production and the conversion of N2 to NH3 (N2 fixation) 

by certain cyanobacteria and eubacteria are important metabolic indicators of the 

potential contribution of microbial mats to carbon and nitrogen budgets of intertidal 

communities. From the data shown here it is evident that nitrogen is extremely limited 

Storrs Lake (Table 5.  N2 fixation helps circumvent chronic N-limitation in oligotrophic 

marine systems.  This process may meet mat and community N demands or serve as 

supplement (rather than exclusive) source of “new” nitrogen for mat growth.  The large 

cyanobacterial component in this system no doubt plays a major role in nitrogen fixation. 
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In either case, the environmental factors regulating N2 fixation may subsequently control 

other mat activities including fixation, primary production, and growth of stromatolites. 

 

Dead Sea:  NO 3 (Table 5) was not detected and NO2 was not measured in any of 

the samples.  Previous researches have measured N and the conclusions are that  

biological processes have minimal impact on the nitrogen cycles (Stiller and Nissenbaum 

1999). Historically the levels of N, particularly in the form of ammonia, increased after 

the 1979 water overturn.  For example in 1960 the recorded levels of N in the form of 

ammonia was 5.9 mg L-1, but increased in 1991 to 8.9 mg L-1.  The ammonia sources 

were diffusion from bottom sediments and potentially production in oxygenated water by 

mineralization.    

 

5.2 Strontium 

 

Storrs Lake: Strontium levels were not measured in this work.  Previous studies 

on San Salvador have demonstrated that strontium concentrations are elevated in 

comparison to open marine systems, but are not as concentrated as in the Dead Sea 

(Swart et al. 1987).  The primary reason is that the origin of the waters and the influence 

of heavy rain and tropical storms due to the proximity to the ocean (Figure 3).   

 

Dead Sea:  Strontium levels are elevated in comparison to Storrs Lake and make have 

had several sources.  The sources may have been from the Sedom lagoon, a Pliocene 

marine evaporite environment that formed the Sedom Formation.  The Sedom Formation 

is exposed at Mt. Sedom (Table 2). Adjacent to the Sedom lagoon there was a Cretaceous 

limestone and its weathered products provided additional strontium.  An alternative 

method would have been dolomitization of the initial CaCO3 in the Sedom lagoon 

(Gavrieli & Stein 2006).  The earlier depositional sequences contributed to the water 

chemistry of the Dead Sea’s hypersaline Pleistocene precursor, Lake Lisan.  Thus the 

strontium, as well as the elevated concentration of other ions represents the evolution of a 

sea level evaporite lagoon to an evaporite environment below sea level.   
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5.3 Mineralization 

 

We know that biological activity influences the geological processes of mineral 

precipitation and stromatolite building, the heterogeneity and temporal impacts of 

environmental influences makes predictions and all encompassing explanations difficult 

as biofilms associated with modern marine stromatolites are subjected to constantly 

changing environmental conditions resulting from tidal, seasonal, diurnal, and 

depositional events.  For instance, the presence of mats or biofilms and organic substrates 

can provide favorable sites for the nucleations of crystals and contribute directly to 

biofilm structure (Farmer & De Marais 1994). 

 

Storrs Lake:   The  process of biofilm formation with biogeochemical interactions 

is demonstrated in Storrs Lake samples as crystals are covered with bacteria in Figures 

12A and B.  Figure 14 shows the exopolysaccharide produced by microorganisms and 

their role in binding inorganic materials including crystals.  In hypersaline conditions this 

biological activity can lead to laminated deposition of minerals and associated 

microorganisms.  For karst or carbonate waters and sediment the cumulative interaction 

of microorganisms and geochemical conditions in the right environment can results in 

stromatolite formation (Eriksson et al. 2007).   

 

Dead Sea:  There is a paucity of microbially mediated mineralization and biofilm 

development (Figures 18, 19).  A mildly acidic pH and low carbonate levels are 

counterproductive to calcium carbonate or dolomite precipitation (Table 5).  Microbial 

diversity is restricted to obligate halophilic tolerant groups with periodic blooms of other 

groups such as the one celled green alga Dunaliella after seasonal rains and runoffs from 

the wadis have diluted the surface waters (Nissenbaum 1975, Oren 1997).  Under these 

conditions microbial groups commonly found in Storrs Lake such as cyanobacteria and 

fungi are restricted in their development.  The halophilic groups produce relatively thin 

ECPS (Figure 18A, B, 19 C, D). 

 

5.4 Environmental Influences 



WSRC-STI-2008-00049 

 24

  

Storrs Lake:  Evaporation exceeds precipitation except during the rainy or storm 

season (Davis & Johnson 1989, Yannarell et al. 2007).  The seasonal fluctuations result 

in large transitions in the water chemistry and microbial activity.  Tropical storms, i.e., 

hurricanes can have even a more dramatic effect on microbial activity due to changes in 

substrate and sediment and water chemistry (Yannarell et al. 2007).  The impact of 

hurricane disturbance and recovery on microbial community structure and ecosystem 

functions were studied in a nearby San Salvador hypersaline lagoon, Salt Pond, which is 

close to Storrs Lake (Yannarell et al. 2007).  This environmental microbiology study 

demonstrated the hurricane related sand deposition on microbial nitrogen fixation rates.  

The rates were higher in mats re-colonizing sand depositional sites than those re-

colonizing sand eroded sites.  Microbial population recovery rates were favorably 

influenced at sites with high diversity which structurally contributed to the rapid recovery 

of the disturbed ecosystem.  

 

The living ecology in Storr’s Lake is limited to a microbial community of mats 

and no other animals were observed in this work.  The microbial mats consisting of 

bacteria and algae along the shore varied in color from purple to green, brown, with a 

black bottom layer. There were a few dead fish and crabs observed along the shoreline 

and seagulls were observed congregating on some of the stromatolites protruding from 

the lake as well as the island where are nesting.  The air around Storrs Lake seeped with a 

sulfur smell.  This sulfur odor was especially evident wading through the lake as the 

sediments were stirred up. The lake’s bottom consisted of areas of stromatolite growth 

and thick dark anoxic material with a consistency of swamp sediments up to 1 M in 

depth. An expanding landfill with trash, old vehicles, and other debris several hundred 

yards Northwest of Storrs Lake could be a threat due to leachate groundwater 

contamination. Recent anthropogenic activity on San Salvador indicates that the future of 

Storrs Lake could be in danger due to proposed coastal development (Don Gerace, 

Personal Communication).   
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Dead Sea:  The Dead Sea is different from sea level evaporite systems similar to 

Storrs Lake and most nonmarine evaporite systems such as Mono Lake, California and 

the Great Salt Lake, Utah.  For example, the pH level in the upper water mass is slightly 

acidic, 6.3, rather than basic and the dominant ions are chlorine and magnesium for both 

the northern and southern basins (Nissenbaum 1975, Ehrlich et al 1985, Domagalski, et 

al. 1989, MacIntyre et al. 1999). The Dead Sea water levels have dropped over 20 m 

since the 1950’s (Gavrieli & Stein 2006).  The drop in water levels is accompanied by a 

gradual increase in salinity and as the sulfate and bicarbonate are depleted, precipitation 

of aragonite and gypsum is decreased (Nissenbaum 1975, Gavrieli & Stein 2006.  These 

events have been responsible for the increased halite precipitation.  The changes in 

mineral precipitation may in part be due to the evaporation ponds in the southern basin 

(Gavrieli & Stein 2006).  Nitrate levels have increased, but are still low as the area is arid 

and lacks significant numbers of cars there are no coal burning industries (Berner & 

Berner 1996, Stiller et al. 1999).  

 

5.5 Hydrologic Systems 

 

 Storrs Lake:  The hydrologic system on San Salvador has been documented by 

Davis and Johnson (1989).  As is typical of karst areas there are no surface water streams.  

Potential reasons for the trends demonstrated here are not certain as the water flow 

patterns can vary.  Various vents feeding the water supply were noted on the North end of 

the Lake.  Smaller vents were observed on Cactus Island.  Another factor is tidal 

influence, not directly but maybe through subsurface seeps (Teeter 1995).  These seeps 

may change with changes in sediment deposition due to storm events. One possibility is 

when rain falls, water flows in towards the middle of the lake, making the hydrogen 

gradient stronger (pH) in the middle than on the banks.  This is evident in its hypersaline 

characteristic.  The ocean side was higher in salinity, suggesting that this could be due to 

weathering of atmospheric salt deposition.  The potential of biogeochemical interactions 

influencing the water chemistry due to the thick biofilm evident throughout the lake is 

also an alternative reason.   
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 Dead Sea:  The lake is roughly rectangular in shape with no outlet and is 

separated into a northern and southern basin.  The northern basin is 400 M in depth and 

the southern basin is shallower, varying from 6-8 M.  The only fresh water source is the 

Jordan and limited seasonal rain waters.  The Dead Sea is dominated by a variety of salts, 

most of which are emanating from springs in and around the lake (Nissenbaum 1975, 

Lensky et al. 2005).  Many of the salts and the high levels of strontium are a result of 

meteoritic water circulating through residual brines deposition beginning with the Sedom 

Lagoon (Lensky et al. 2005). 

 

5.6 Biofilms, Mats, Stromatolites: 

 

Microbial film formation is dependent upon different factors for growth and metabolism.  

Marine biofilms form on a variety of biotic and abiotic surfaces. In intertidal systems 

these can be quite extensive (Decho 2000). Development of marine biofilms on abiotic 

surfaces begins with the attachment of microbes to surfaces and the secretion of 

extracellular polymers (Decho 2000, Kawaguchi & Decho 2002). Cell to cell signals 

influence both community profiles and metabolic activities within the polymeric matrix 

(Davies et al. 1998). These can develop into mats with the addition of photoautotrophs to 

the community, which then can stimulate the precipitation or trapping of sediment. 

 

The evolution from biofilms to mats to stromatolites is closely linked to water 

chemistry and the absence of invertebrate herbivores.  Stromatolites are found in many 

different regions of the world in a variety of habitats, including hypersaline 

environments.   All of the stromatolites have a similar microbial ecology including 

phototrophic microorganisms and photosynthetic microbial mats combined with 

fossilization (Reid et al.  2003).  In alkaline hypersaline conditions both cyanobacteria 

and algae enable CaCO3 precipitation, thus encouraging extensive microbialite structures.  

 

An example of modern stromatolites growing in a normal, tropical marine, 

intertidal environment have been described from Stocking Island, Bahamas (Pickney et 

al.1995).  At this site the activities of herbivores are restricted by the physical 
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environment, i.e., tidal currents and shifting channel sands.   The stromatolites described 

by Pickney et al. 1995 appears to be actively growing due to the association with 

microbial mats covering the stromatolite surface, an important discovery which explains  

the ecophysiological properties controlling stromatolite formation. As the organic mass 

ages and older components die, new growth of cyanobacteria and microbes ensure their 

continued existence with the open ocean conditions.   

 

Storrs Lake:   Hypersalinity, which can over time limit invertebrate grazing biofilms, 

selects for certain microorganisms (Elliot 1994).  The stromatolites at Storrs Lake have been 

estimated to be around 2500 years old (Zabielski & Neumann, 1990).  These San 

Salvador stromatolites are similar in age to those on Stocking Island, Bahamas.    

 Total  microbial densities in the Storrs Lake stromatolites was  as high as 1.58 X 

1010 cells/gdw in Site 2 and  live microorganisms up to in 9.46 X 105 CFUs/gdw in Site 1 

(Figure 16) demonstrating high aerobic metabolic activity.    While these plates were 

grown on GASW medium utilizing artificial seawater at 37°C, the resultant densities do 

not of course represent all viable bacteria present. Certain bacteria that could not grow in 

these conditions include obligate anaerobic or extreme halophilic microorganisms (Oren 

1993).   In addition, the salt requirement and tolerance of many bacteria vary according to 

other growth conditions including temperature and medium composition (Ventosa et al. 

1998).  A majority of environmental bacteria are often nonculturable when using one 

medium in any given location.  The geochemical gradient observed in this study could 

yield a related gradient in microbial speciation due to the different available nutrients.  

Symbiotic sulfur oxidizing bacteria including Thiothrix spp. forms laminated mats 

around detrital particles and builds nodules in the hindgut caecum of marine spatangoids 

(De Ridder & Brigmon 2003) were identified in Storrs Lake biofilms.  Anaerobic 

conditions prevail in these small microbialites and hence the mutualism because 

Thiothrix spp bacteria remove sulfide.  It is thought that the symbiosis provides a 

detoxifying effect with nutritional consequences to the echinoid (Brigmon & DeRidder 

1996). Sulfur nodules, (i.e., a nucleus wrapped by a layered microbial mat), are 

structurally similar to oncoids, i.e., a type of biolaminated particle in sedimentary 

structures.  No other algal types including green algae or red algae were observed in the 
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stromatolite samples.  This could have been to due their low densities, nutrient 

deficiencies (i.e. lack of nitrogen), or the high salinity. 

 

Marine Systems:  Corals form a similar biofilm except much of the polymeric material is 

produced by mucus cells in the coral polyp (Harvell et al. 2007). The microbial 

community develops within the surface mucopolysaccharide layer, but does not appear to 

adhere to the epidermal cells (Ritchie 2006). Microbial cell to cell communication occurs 

by the production of homoserine lactones in marine systems to maintain biofilm structure 

(Johnson 2005). The microbial community profile is determined, in part, by the 

production of antibiotics and other allelopathic compounds (Ritchie 2006), and by carbon 

source availability.   Distinct differences in biofilm species composition appear to be 

structural and functional.  For example, in contrast to biofilms formed on microbialites 

and stromatolites, establishment of significant numbers of cyanobacteria only seems to 

occur on corals during black-band disease (Weil et al. 2006).   

 

Dead Sea: The Dead Sea lacks obvious stromatolites, microbialites or biofilms and 

cursory investigation would not produce any evidence of life or microbially induced 

calcium carbonate precipitation in the form of stromatolites.  Microscopic investigations 

negates the visual finding as there are a number of microbes present that are adapted to 

aquatic saline environments (Nissenbaum 1975, Oren and Anati 1996, Oren 1997).   

Biofilm development was observed to be minimal in the Dead Sea samples.  This 

is in contrast to Storrs Lake which produces thick, viscous biofilms as well as 

stromatolites.  The stromatolites in Storrs Lake are similar to those described in Stouts 

Lake, San Salvador Bahamas with active microbial mats (Elliot 1992).  The Dead Sea 

biofilms were primarily detected with an environmental scanning electron microscope 

and in contrast to Storrs Lake there is minimal fossilization (Figure 19A, B, C and 21B).  

Fossilization in the biofilms and microbes is being controlled by the depletion of HCO3 

and the slightly acidic pH. 
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5.7 Nutrient Systems 

 

Studies of the nutrient distribution, ie carbon and nitrogen, within ecosystems can 

provide useful insights into the structure and function of those ecosystems.  While N-

fixation was not measured in Storr’s Lake, the extreme N limitation in the system as 

demonstrated by both field (Test Kits) and laboratory techniques (IC) makes it apparent 

that this analysis needs to be addressed.   A walk down of the surrounding area makes it 

apparent that local sources of nitrogen are negligible. While not measured in this study, 

the uptake of dissolved organic carbon (DIC) from the water column is essential for 

photosynthesizing microbial mats as those at Storrs Lake.  DIC that comes in contact 

with the biofilms are either fixed into organic matter abiotically or biotically or diffused 

out to the water (Des Marais & Canfield 1994).   

In a closed evaporite system like Storrs Lake the movement of DIC would not be 

as dynamic as in an open water system.  Studies that compare extreme environments such 

as evaporite systems will enable us to better analyze the data as it is apparent in 

comparing Storrs Lake and the Dead Sea that visual identification of organic activity can 

be difficult.  Microscopic analysis, if they are directed towards stromatolitic or 

microbialite remains can also fail as life may be sparse and the chemistry may limit 

fossilization.   

Biofilms can form under a wide range of conditions including extreme environments.  

For example, acidic streams from mines can contain metal-containing leachate can 

contain iron, sulfur, and arsenic that select for certain microorganisms. These materials 

have been shown to be accumulated as ferric arsenate and arsenate-sulphate precipitates 

in rapidly growing bacteria-made microbialite structures (Leblanc et al. 1996).  The 

ongoing development of bacterial biofilms alternating with sand deposition, drying, and  

and erosive cycles results in the formation of As-rich ferruginous accretions. These 

laminated and dome-shaped bacterial structures are similar to those of stromatolites but 

lack the abundance of cyanobacteria.  This incorporation of minerals and metals into 

biofilms layered with sand and sediment is similar to those processes in natural systems 

(Krumbein 1978).  Biofilms as well as microbialites and stromatolites are 

organosedimentary structures that can grow in a wide range of environments, where 
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water temperature, nutrients, geology, and pH vary widely. While they are most often 

observed in neutral and alkaline waters, stromatolites can form in acid-sulfate springs and 

geyser systems including geothermal areas in New Zealand (Jones et al. 2000) and the 

United Sates (Farmer & De Marais 1994).  As might be expected the growth and 

development of stromatolites from acidic thermal waters compared with those from 

neutral and alkali waters have been found to be microbiologically and geochemically 

distinct (Jones et al. 2000).   

While biofilms of varying quality and quantity can be observed worldwide, 

stromatolites are only seen where environmental conditions are conducive to growth and 

development of these unique structures.  The formation of stromatolites that are basically 

laminated microbial mats constructed from layers of filamentous and other 

microorganisms that may become fossilized requires certain environmental conditions. 

These conditions include the geochemistry, temperatures, water flow, depth, and 

microbiology similar to those found at Storrs Lake.   Storrs Lake due to its proximity to 

the ocean, shallower depth, and environmental factors is more dynamic in terms of spatial 

and temporal changes that have an obvious impact on the geomicrobiology of the site.   

Microbial diversity and densities were observed to be much greater in Storrs Lake 

compared to samples from the Dead Sea.    The Dead Sea microorganisms, although in 

lower densities and apparent diversity, were observed actively attached to abiotic 

substrates. 

Recent research on the microbiology of hypersaline systems (Yannarell et al. 

2007) will likely provide valuable information in a number of fields.  Much of the interest 

in microbiology of hypersaline systems is limited due to problems with isolation of 

organisms from environmental samples (Brigmon et al. 1994). Here we extensively 

employed electron microscopy to allow direct examination of samples from those sites. 

Both culture and microscopy techniques demonstrated an extremely active microbial 

community in Storrs Lake’s stromatolites.  However, the methods used to determine 

aerobic and heterotrophic microbial densities here were performed with GASW medium 

made with artificial seawater.  Some extreme halophilic species may not grow at this 

salinity hence this method may have underestimated the actual population. 
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In this work we discussed and compared microbiology and geochemistry from two 

distinct hypersaline environments.  We compared the two systems although the Storrs 

Lake ecosystem was found to be much more biologically active than the Dead Sea.  This 

ecological range does show the diversity and adaptability of microorganisms to their 

extreme environments.  The diversity of the microbial community demonstrated in this 

study gives rise to multiple functions (i.e. incorporation of diatom tests), products (i.e. 

ECPS for cross-linking crystals and fossilized bacteria) and functions (i.e. uv-resistant 

cyanobacteria pigments in evaporite crusts) that allow these resilient biological materials 

 

6.0 Conclusions   

 

In this review, we described the development of microbialites from biofilms to 

microbial mats to more complex structures like stromatolites in hypersaline Storrs Lake, 

San Salvador Bahamas.  At the same time we can conclude that the Dead Sea, also a 

hypersaline ecosystem, has a very different, but limited, microbial ecology. We also point 

out the importance of biofilm establishment due to biotic and abiotic processes in 

evaporite systems. The microbiology of these evaporite systems is highly dependent on 

the geology and other key associated environmental influences.  The development of 

stromatolites in Storrs Lake was related to oxygen, water flow, pH, and associated 

geochemistry for the evaporite system. The characteristics of hypersaline microbialites in 

the Bahamas were compared with those in the Dead Sea.   

In this work we observed unique interactions between geochemical (ie. crystals) and 

possible microbiological activity.  Future work on identifying specific microbial 

processes involved (ie. redox coupled reactions) is needed to understand the function of 

those interactions in extreme geochemical environments.   Here we have shown how the 

diversity of the geological settings and microbial communities rise to unique ecosystems 

and structures.  The incorporation of diatom tests adds to the strength and structure of the 

stromatolite biofilms.  Bacterial products including ECPS were shown cross-linking 

various crystal-types and fossilized bacteria to “cement” the structure together.    
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 As shown here with the use of EM and microbiological techniques biofilms are 

also excellent environments for stabilization of fossilized filaments, diatoms, and 

inorganic detritus.  These conclusions are supported by other research indicating the 

important of microbial –substrate interactions due to precipitation of carbonate “cement” 

as recently described in other tropical environments (Diez et al. 2007).  Cyanobacteria in 

Storrs Lake make up most of the evaporite crust as well as the fossilized material below 

and some of other functions including UV-resistant pigments. These microbially 

produced pigments in evaporite most likely allow these resilient microorganisms to 

survive under a wide range of conditions.  The interaction of an extremely active 

bacterial population with cyanobacteria evident here most likely accelerates calcium 

carbonate precipitation and fossilizations as documented in microbial mats in other sites 

by Chafetz and Buczynski (1992).  We hypothesize that the nitrogen limitation is made 

up by the nitrogen fixing cyanobacteria and associated mat bacteria in the Storrs Lake 

biofilms.   
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8. Figures Captions 

Figure 1. A diagram illustrating the formation of biofilms because of the interactions of 

microorganisms, environmental conditions, and organic products, including extracellular 

polymers (ECPS) and inorganic substrates such as sand and dust. A. Bacteria initially 

colonize the sediment or surface and begin to produce ECPS. B. Subsequent colonizers 

may include phototrophs including cyanobacteria where near sunlight as well as mineral 

precipitates and other microorganisms. C. Lithification occurs overtime through a 

combination of ECPS, microbial biofilm, and minerals interacting to create a hardened 

matrix. 

Figure 2. Storrs Lake, San Salvador Island.  Rhizophora mangle leaves being 

incorporated into biomats on the north end of Storrs Lake.  Arrows indicate leaves. 

 

Figure 3.  Storr's Lake (Inset) is on the east side of San Salvador, Bahamas. The 

sampling transect is shown between the west side of Storrs Lake and Cactus Island. 

 

Figure 4. Dead Sea, Israel.  The arrows and numbers indicate the north and south basin 

sampling sites.  

Figure 5.  Storrs Lake, San Salvador Island. FE-SEM images.  Intact mineralized 

filaments composed of cyanobacteria are common in the Storrs Lake stromatolites.  

Arrows indicate small ooid shaped mineral precipitates. . 

 

Figure 6.  Storrs Lake, San Salvador Island.  FE-SEM images.  Segmented mineralized 

filaments with fossilized biofilms and smallest spheres.  

 

Figure 7.  Storrs Lake, San Salvador Island.  FE-SEM images.  Broken fossilized 

filaments that are similar to those in Figure 5. The filament is hollow indicating that 

initial mineralized formed an external mold with small ooid shaped mineral deposits. 

 

Figure 8.  Storrs Lake, San Salvador Island, FE-SEM images.  Cyanobacteria-like 

fossilized filaments also appeared as structural elements in biofilm formation covering 
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stromatolites. The filaments are layered and intertwined and are indicative of microbial 

network building activities. 

 

Figure 9.  Storrs Lake, San Salvador Island, FE-SEM images.  Example of the largest 

spherical structures with sizes averaging 5.3 µm diameter and ranging from a smooth to a 

rough texture.   

 

Figure 10. Storrs Lake, San Salvador Island, FE-SEM images. Medium sized spheres 

averaging   2.0 µ are common, usually appearing in clusters from 2-8, frequently 

associated with biofilm, and ranging from a smooth to a rough texture. 

 

Figure 11.  Storrs Lake, San Salvador Island, FE-SEM images.  The smallest spheres are 

found imbedded in biofilms, occur in clusters and are usually associated with larger 

microbial features.  The spheres form two distinct population sizes averaging .55µm 

(imaged in this figure) and  .13µm.   

. 

 

Figure 12. A. Storrs Lake, San Salvador Island, FE-SEM images.  The arrow indicates a 

rod-shaped bacterium attached to the surface of a calcium sulfate crystal and associated 

with biofilms matrix.  Other microbial examples were found, ranging in size from 

approximately 1.0-3.0 µm and often associated with crystals within the biofilm matrix B. 

Shorter rods typical, sometimes appearing as rough textured dumbbells  were also 

observed, usually associated with calcium sulfate crystals and probably representing 

sulfate reducing microbes.   

 

  Figure 13.  Storrs Lake, San Salvador Island, FE-SEM images.  Diatoms formed 

integral portions of the biofilm structure. A. A relatively intact diatom being incorporated 

into the biofilm and partially covered by bacteria similar to those imaged in Figure 12B 

(arrow).  B. A partially degraded diatom test is observed in the biofilm structure, and 

similar to Figure 13A, there are bacteria similar to Figure 12 B and calcium sulfate 

crystals (arrows).   
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Figure 14.  Storrs Lake, San Salvador Island, FE-SEM images.  A demonstrates a 

fossilized cyanobacterial filament held to sand and rock grains by biofilms (ECPS). 

Arrow indicates cross-linked biofilm B Higher magnification of Figure 14A, arrow 

indicates the ECPS binding calcium sulfate crystals.  

 

Figure 15.  Storrs Lake, San Salvador Island microbiology.  Total and viable aerobic 

microbial densities in stromatolite samples. 

 

Figure 16.  Storrs Lake, San Salvador Island.  A. Dissolved oxygen concentrations in the 

water column. B. Temperature changes from the shoreline across the lake to Cactus 

Island.    

 

Figure 17. Storrs Lake, San Salvador Island.  A. Sampling sites pH measurements. B. 

Salinity measurements across the lake.   

 

Figure 18. Dead Sea, Israel. FE-SEM images. A. Halotolerant microorganisms 

associated with chloride mineral surfaces were limited to rod-shaped structures with 

filamentous, apical extensions. B. Arrow indicates thin, wrinkled biofilms extending 

outward from a fossilized microbe. C. Sand sized orthoclase and quartz fragments with 

rice-grain shaped potential microbes or fossilized remains. D. ESEM images.   

Filamentous microorganism with hammer-like extension (arrow) that appears to be 

attached to detrital filaments.   

 

Figure 19. Dead Sea, Israel.  ESEM images.  A. Higher magnification of Figure 18D.  

Filamentous microorganism with hammer-like extension (arrow), attached to detrital 

fragments. B. Elongated filament bending around fragments and rocks. C. Bacillus or rod 

shaped structures, inhabiting the surfaces of silts and clays.  D. Bacillus or rod-shaped, 

but with relatively straight walls in comparison with Figure 19C.  Substantial amounts of 

EPS materials are observed.   
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9. Table Captions 

Table 1. Storrs Lake, San Salvador Island.   Site descriptions. 

 

Table 2. Dead Sea Israel.  Sum data of Dead Sea water and substrate survey.  The Ein 

Gedi site is located in the northern basin and the other sites are in the southern basin. 

 

Table 3.  Storrs Lake, San Salvador Island.  August 9, 2001, real time water chemistry 

survey. 

 

Table 4. Storrs Lake, San Salvador Island.  Statistical analysis of real time ground water 

survey. 

 

Table 5.  Comparison of anion and cation concentrations, pH and average temperatures 

at select Storrs Lake and the Dead Sea locations.
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10. Tables.  

 
Table 1. Storrs Lake Site Description 
 
Site Coordinates Description 
1 N 24.0549 W 74.45348 Storrs Lake western shore 
2 N 24.0590 W 74.45247 20m from shore 
3 N 24.05901 W 

74.45211 
Past stromatolite mantle 

4 N 24.05811 W 
74.45132 

Beginning of stromatolitic ridge between Cactus Island 
and shore 

5 N 24.5893 W 74.4506 Middle of stromatolitic ridge 
6 N 24.05957 W 

74.45019 
10 meters from Cactus Island 

7 N 24.06025 W 
74.44879 

Shore of Cactus Island 

8 N 24.06038 W 
74.44738 

Western shore of Cactus Island 

9 N 24.05973 W 
74.44651 

Northern shore of Cactus Island 

10 N 24.06018 W 
74.44373 

Eastern shore (ocean side) of Cactus Island 

11 N 24.05943 W 
74.44016 

Southern shore of Cactus Island 

12 N 24.05973 W 
74.44783 

20m from Eastern shore of Cactus Island (ocean side) 
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Table 2. Sum Data of Dead Sea Water and Substrate Survey 
 
Site Name Coordinates Water 

Temp. 
Description Sediment 
Sample 

Depth of 
collection 

Water 
Sample* 

1 Ein Gedi 31°27'09"N 
35°23'57"E 

31° C sand, evaporites, 
primarily halite 

.61 m yes  

2 Ein Boqeq (by Gardens Hotel) 31°11' 48"N 
35°21'45"E 

32° C sand mixed with silt .61 m yes 

3 Ein Boqeq, 183 m. north of site 2  33° C gravel mixed with sand, 
silt 

.61 m yes 

4 Ein Boqeq, 805 m. north of site 2  30° C silt .13 m yes 
5 Hamme Zohar 31°10'12"N 

35°22'02E 
33.5° 
C 

gravel and sand .61 m yes 

6 Mt Sedom   31°05'23"N 
35°23'35E 

 sand, silt with halite surface 
sample 

no 

7 Mt Sedom   31°03'50"N 
35°23'43"E 

 sand, silt with halite surface 
sample 

no 

*all water collected approximately .1524 m below the surface 
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Table 3. Sum Data of 8/9/01 Storrs Lake Water Chemistry Survey 
Site 

Coordinates 
N 
(ppm) 

DO 
(ppm) 

T (°C) pH Salinity 
(ppt) 

1 N 24.0549 W 74.45348 nd** 6 39 8.24 68 
2 N 24.0590 W 74.45247 nd 7 38.25 8.3 66 
3 N 24.05901 W 74.45211 nd 7 37.8 8.36 66 
4 N 24.05811 W 74.45132 nd 8 35 8.48 72 
5 N 24.5893 W 74.4506 nd 8 36 8.51 74 
6 N 24.05957 W 74.45019 nd 9 35 8.63 75 
7 N 24.06025 W 74.44879 nd not 

meas* 
36.5 9 74 

8 N 24.06038 W 74.44738 nd not 
meas 

37.5 8.9 75 

9 N 24.05973 W 74.44651 nd not 
meas 

36 8.74 73 

10 N 24.06018 W 74.44373 nd not 
meas 

32.5 8.72 77 

11 N 24.05943 W 74.44016 nd not 
meas 

35.5 8.52 76 

12 N 24.05973 W 74.44783 nd not 
meas 

39.5 8.97 82 

*not meas=not measured 
*not meas=not measured 
 
**nd=not detected 
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Table 4. Statistical Analysis of Storrs Lake  Water Survey 
Chemistry Parameter mean (µ) ± standard deviation (σ) Correlation (r) 
Nitrate & Nitrite (ppm) nd* NA 
Dissolved Oxygen (ppm) 7.5 ± 1.05 .9683 
Temperature (°C) 36.55 ± 1.98 -.2892 
pH 8.36 ± 0.899 .7425 
Salinity (ppt) 73.17± 4.67 .8859 
*nd=not detected 
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Table 5.  Comparison of anion & cation concentrations, pH, average temperatures at 
select locations in Storrs Lake and the Dead Sea. 

LOCATION Measurements 
Dead Sea Storrs Lake 

Chemical Parameter  Dead Sea-
Evaporite 
Ponds (N=4) 

Dead Sea-
Ein Gedi 
(N=1) 

Storrs Lake-
Stromatolites 
(N=3) 

Storrs Lake 
Water 
(N=3) 

Na 23327 21010 
 

25300 
 

6670 
 

Ca 19017 
 

23930 
 

1230 
 

5330 

K 8351.3 8351.3 
 

640 
 

nd 

Mg 45280 45280 
 

not meas.** not meas. 
 

Mn 23.21 23.21 
 

1500 
 

433 
 

Li 8.69 
 

8.69 
 

nd 
 

nd 
 

Fe nd* 

 
nd 
 

nd 
 

nd 
 

Ba nd 
 

nd 
 

not meas. not meas. 

Sr 299.7 
 

364.6 
 

not meas. not meas. 

 
 
 
 
 
 
 
CATIONS  
(Mg L-1) 

Si nd 52.16 
 

not meas. not meas. 

Cl 222133 
 

235150 
 

52300 
 

17700 
 

SO4 464.9 
 

195.6 
 

5670 
 

2300 
 

HCO3 300.47 
 

344.5 
 

not meas. not meas. 

NO2 not meas. 
 

not meas. 
 

nd 
 

nd 
 

NO3 nd nd nd 
 

nd 
 

Fl not meas. 
 

not meas. 
 

3440 
 

nd 

 
 
 
 
 
 
ANIONS 
(Mg L-1) 

PO4 not meas. 
 

not meas. 
 

nd nd 

Temperature (C) 31.5 32 36.3 36.8 
 pH 6.3 6.3 8.8 8.4 
nd*=not detected  
not meas**=not measured 



Figure 1. Biotic biofilm formation (A) Initial attachment of bacteria and production of 
extracellular polymers (ECPS) (B) Photrophic bacteria & detritus including 

precipitatesaccumulate on  biofilm surface (C) lithification occurs over time within  biofilm



Figure 2. Leaves being incorporated in biomats in Storrs Lake.



Figure 3. San Salvador Island, Bahamas & 
sampling locations

N

Storrs Lake

Cactus Island

Sampling Transact



Figure 4. Dead Sea and sampling locations



Figure 5. Intact fossilized cyanobacteria

1 µ m

1 µ m

Figure 6. Segmented fossilized cyanobacteria

2 µ m

Figure 8. Cyanobacteria incorporated in biofilmFigure 7. Fossilized Cyanobacteria mold



Figures 9., 10., 11, & 12. Spherical structures of varying 
sizes from Storrs Lake Stromatolites

Figure 9 Figure 10

1 µ m

Figure 11 Figure 12



Figure 13. Bacteria filaments (A) and rods (B) attached to 
crystals in biofilm matrix

14A 14B



Figure 14. Diatoms incorporated in biofilm matrix intact (A) and tests 
(B) by active bacteria.
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Figure 15. Extracellular polymers (ECPS) in Biofilm Matrix Crosslinking
Fossilized Cyanobacteria (A) and Crystals (B).

A B



Figure 16. Total and viable aerobic microbial densities in 

Storrs Lake stromatolite samples.
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Figure 17. Storrs Lake Water Dissolved Oxygen Versus Sampling Sites 
(A) and Temperature Versus Sampling Sites  (B)
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Figure 18. Storrs Lake  water pH vs Sampling Sites (A). 
And  Salinity  vs Sampling Sites  (B)
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Fig 19A 19B

19C 19D

Figure 19. Bacteria colony (A) extracellular polymers (ECPS) (B)

attached rods (C) and filaments (D) in Dead Sea Samples
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Figure 21A
Figure 21B


