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Abstract 
 

 Synthetic CdZnTe (CZT) semiconducting crystals are highly suitable for the room 

temperature-based detection of gamma radiation.  The surface preparation of Au contacts on 

surfaces of CZT detectors is typically conducted after 1) polishing to remove artifacts from 

crystal sectioning and 2) chemical etching, which removes residual mechanical surface 

damage however etching results in a Te rich surface layer that is prone to oxidize.  Our 

studies show that CZT surfaces that are only polished (as opposed to polished and etched) 

can be contacted with Au and will yield lower surface currents.  Due to their decreased dark 

currents, these as-polished surfaces can be used in the fabrication of gamma detectors 

exhibiting a higher performance than polished and etched surfaces with relatively less peak 

tailing and greater energy resolution.  

 

 CdZnTe or “CZT” crystals are attractive to use in homeland security applications 

because they detect radiation at room temperature and do not require low temperature 

cooling as with silicon- and germanium-based detectors.  Relative to germanium and silicon 

detectors, CZT is composed of higher Z elements and has a higher density, which gives it 

greater “stopping power” for gamma rays making a more efficient detector.  Single crystal 

CZT materials with high bulk resistivity (ρ>1010 Ω.cm) and good mobility-lifetime products are 

also required for gamma-ray spectrometric applications.  However, several factors affect the 

detector performance of CZT are inherent to the as grown crystal material such as the 

presence of secondary phases, point defects and the presence of impurities (as described in 

a literature review by R. James and researchers).1  These and other factors can limit radiation 
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detector performance such as low resisitivity, which causes a large electronic noise and the 

presence of traps and other heterogeneities, which result in peak tailing and poor energy 

resolution. 1   

 

 Improvements in detector design have occurred that also improve the radiation 

detection capabilities of CZT crystals.  Although these detector designs like the Frisch-grid2 

show great promise for maximizing the capabilities of CZT as a gamma radiation 

spectrometer (as shown recently by Chen et al. 2007a; 2007b)3, ,4 5 one of the simplest, 

inexpensive and more common methods of quickly evaluating good and poor radiation 

detector material is with the use of a planar detector geometry.  The penetration depth of low 

energy gammas (60 keV) and alpha particles is quite low, <200 µm in CZT.  The testing of a 

planar detector with such sources has thus two advantages: (1) the nuclear response is easy 

to interpret since it should be  generated by the bulk collection of electrons, and (2) the 

overall performance is sensitive to surface preparation via possible mechanisms of surface 

recombination,6 electronic noise induced by injecting contacts and surface leakage.7 

 

 The influence of surface treatment for the purpose of passivating the non-cathode and 

non-anode  surfaces of CZT in detectors to reduce their leakage currents has been well 

studied.1,8,9,10,11  The typical surface treatment on the anode and cathode sides of CZT 

detectors prior to contact application is usually polishing with abrasive grit followed by 

chemical etching as mentioned by Schlesinger et al. (2001).1 

 

 In this study, we examined the effect of surface treatment on the electronic and X-ray 

topographic properties of two CZT crystals. They were grown by the Modified Vertical 

Bridgman (MVB) method to have 10% Zn content as described in Li et al. (2001)5 and 

procured from Yinnel Tech (South Bend, IN).  A 12 x 12 x 7 mm3 portion of the crystal 

designated CZT3-7-8 and a 12 by 12 by 4.7 mm3 portion of the crystal designated YT-5 were 

polished by standard methods with 0.3 µm alumina followed by 0.05 µm alumina.  Half of 

each crystal was then etched with a 1% Br:MeOH solution (99.98% pure).   

 

WSRC-STI-2007-00277 2



WSRC-STI-2007-00277 

 The surfaces of these treated samples were characterized by transmission IR imaging 

using a CCD camera for image recording and by X-ray topography (XRT) prior to applying 

the gold contacts.  A representative IR image of YT-5 is shown in Fig. 1a (IR data for CZT3-7-

8 not shown). There are several triangular-shaped objects in addition to objects that appear 

circular or more polygonal in shape.  These secondary phases, which were also identified in 

sample CZT3-7-8 (data not shown) are sometimes referred to as inclusions or precipitates.12  

The synchrotron-based XRT studies were performed using a (333) symmetric reflection from 

the surface.  XRT data for sample YT-5, after treatment with (on the right half) polishing and 

(on the left half) polishing plus etching are shown in Fig. 1b.  Both sides of the crystal show 

considerable in advertent surface damage from shipping and handling, which could have a 

deleterious affect on detector performance particularly for low energy (5 to 20 keV) X-rays 

where the penetration depth corresponds to the thickness of the damaged layer.   For high 

energy (100 to 1000 keV) gamma rays, the signal is developed primarily by the motion of the 

charge in the undamaged bulk region of the crystal.   Additionally, the etched side of YT-5 

shows more micro structural details than the other side due to the removal of the damage 

surface layer.  Similar XRT images were observed for CZT3-7-8 (data not shown).  

 

 The surface and bulk current-voltage curves of these two CZT materials were 

measured using a planar detector design with sputtered Au contacts.  The theoretical 

representation of these two types of current-voltage measurements is presented in Fig. 2a.  

High bulk resistivity materials and a high metal/semiconductor barrier permit the use of high 

bias during radiation detector performance studies.  A low surface resistivity produces lower 

electronic noise.  Figure 2b-d show bulk and surface current-voltage measurements for the 

two crystals and the two types of surface treatments.  These results show that the as-

polished (un-etched) surface treatment process resulted in lower surface current 

measurements relative to the polished and etched treatments.  

 

 Subsequent radiation detector performance studies were then performed with these 

two crystals using alpha and gamma sources.  The results are shown in Fig 3a through d 

(alpha particle detector data for CZT3-7-8 not shown).  The as-polished crystals had higher 

performance for both alpha particle and gamma-ray detection than the crystals that were 
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etched after polishing and it is believed that this was caused by the improved blocking 

character of the Au/CZT contact.  There was considerably less peak tailing in the as-polished 

samples as well as greater signal-to-noise and energy resolution. 

 

 This study examined the effect of surface treatment on the surface quality, bulk and 

surface current-voltage behavior, and radiation detection performance of CZT.  Unanticipated 

findings, which were reproducible with two CZT crystals from different boules include the 

following: 1) Au contacts that are sputter deposited on polished and un-etched surfaces 

produce better performing radiation detectors than those that are etched after polishing and 

2) the presence of a surface with considerable physical damage that can be observed using 

X-ray topographic imaging does not always correlate with lowered radiation detector 

performance.  One possible explanation for these two findings is the fact that the etching 

process, which removes the surface damage, leaves a residual chemical contamination on 

the surface of the CZT crystal.  This contamination could result from interactions between the 

etchant and impurities in the CZT.  While this contamination is not imaged by topography it 

may interfere with the ability of the Au to make a good contact to the surface and hence limit 

detector performance. 
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Figure 3.  Radiation detection using a single element planar detector on polished and 
polished and etched surfaces with a) 241Am gamma (bias of 500 V; shaping time 1 µs; 
FWHM: 2.9% for as-polished and 4.1% for polished and etched) and b) alpha source with the 
YT-5 crystal (bias of 1000 V, shaping time 3 µs, FWHM: 9.8% for polished and 11.9% for 
polished and etched surfaces; c) 137Cs gamma detection using the CZT3-7-8 crystal (bias of 
1000 V, shaping time 0.3 µs FWHM: 1.7% for polished and 2.0% for polished and etched 
surfaces) and d) 137Cs gamma detection (bias of 1000 V; shaping time 3 µs, FWHM: 1.6% for 
polished and 2.2% for polished and etched) using the YT-5 crystal.  Black symbols represent 
polished surfaces.  Red symbols represent polished and etched surfaces. 
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