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Abstract 
 

Total mercury levels were measured in largemouth bass (Micropterus salmoides), 
“sunfishes” (Lepomis spp)., and “catfish” (primarily Ameiurus spp.) from 1971 to 2004 in 
the middle reaches of the Savannah River, which drains the coastal plain of the 
southeastern U.S.  Mercury levels were highest in 1971 but declined over the next ten 
years due to the mitigation of point sources of industrial pollution.  Mercury levels began 
to increase in the 1980s as a possible consequence of mercury inputs from tributaries and 
associated wetlands where mercury concentrations were significantly elevated in water 
and fish.  Mercury levels in Savannah River fish decreased sharply in 2001-2003 
coincident with a severe drought in the Savannah River basin, but returned to previous 
levels in 2004 with the resumption of normal precipitation.  Regression models showed 
that mercury levels in Savannah River fish changed significantly over time and were 
affected by river discharge.  Despite temporal changes, there was little overall difference 
in Savannah River fish tissue mercury levels between 1971and 2004. 

 
Key words:  Fish, mercury, Savannah River, long-term monitoring, temporal trends, 
long-term data 

 1



Introduction 

Important anthropogenic sources of mercury to aquatic environments include the 

discharge of mercury containing effluents and the atmospheric release of mercury that is 

eventually deposited on surface waters and watersheds.  Mercury that enters aquatic 

ecosystems bioaccumulates in fish and other aquatic organisms, which are consumed by 

humans and wildlife with potentially deleterious effects (Eisler, 1987; Clarkson, 1990).  

Environmental regulations can alleviate this problem, but improvements may be slowed 

by lags in the implementation of remedial technologies and the continued and possibly 

episodic release of mercury to aquatic ecosystems from source pools in soils and 

sediments (Mason et al., 1994; Lorey and Driscoll, 1999; DiCosty et al., 2006).  

Therefore, long-term monitoring data is needed to determine the efficacy of regulations 

and discriminate short-term from secular trends in mercury contamination.  Long-term 

monitoring has demonstrated decreases in mercury in some organisms as a result of the 

abatement of point sources of mercury pollution (Francesconi et al., 1997; Sager, 2002) 

and is needed to document the effects of regulations that control the atmospheric release 

of mercury.   

Soil cores from the Florida Everglades in the southeastern United States show 

relatively high mercury accumulation rates after 1985 that likely resulted from global or 

regional atmospheric deposition (Rood et al., 1995).  Mercury deposition rates have also 

been relatively high elsewhere in the southeastern United States (EPA, 1997; NADP, 

2005).  Exacerbating this problem are wetland habitats on the southeastern coastal plain 

characterized by warm temperatures, low pH, high concentrations of dissolved organic 

matter, and low oxygen concentrations that favor the methylating bacteria that convert 

 2



inorganic mercury into more bioaccumulative methylmercury (Gilmour and Henry, 1991; 

Regnell, 1994; Francis et al., 1998).  These and other factors have contributed to 

relatively high mercury levels in fish from some southeastern environments (EPA, 1999). 

The Savannah River is a major river that drains the southeastern United States 

Piedmont and coastal plain.  Some portions of the Savannah River have fish consumption 

advisories as do many other coastal plain rivers in the region because of relatively high 

mercury levels in fish. Mercury levels in fish tissue have been measured in the middle 

reaches of the Savannah River and several tributaries since 1971 as part of an 

environmental monitoring program conducted by the Savannah River Site (SRS), a 

Department of Energy facility in South Carolina.  These data can be used to assess long-

term changes in mercury contamination in Savannah River fish, identify factors that have 

affected contamination levels, and develop a baseline for evaluating the effects of 

possible future changes in mercury loading on mercury concentrations in fish. The 

objective of this paper is to describe changes in mercury concentrations in fish from the 

middle Savannah River between 1971 and 2004 and identify factors that influenced these 

changes.  

Materials and Methods 

The Savannah River is formed by the confluence of the Tugaloo and Seneca 

Rivers in northeast Georgia.  It flows southeast through the Piedmont and Coastal Plain 

to the Atlantic Ocean,creating the border between the states of South Carolina and 

Georgia.  It also constitutes the southwestern border of the SRS, an 800-km2 nuclear 

materials production site established in 1951 near Aiken, South Carolina, USA.  The SRS 

conducts an extensive environmental monitoring program to assess the possible 
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movement of radiological and nonradiological contaminants into the surrounding 

environment.  By 1971 this program had expanded to include the routine analysis of fish 

samples for mercury.  Collection sites were located in the middle reaches of the Savannah 

River near river kilometers (RKs) 193, 225, and 258 prior to 1992 and RKs 191, 208,  

228, 243, 245, 253, and 302 thereafter  (Figure 1).  Collection sites were also located in 

four Savannah River tributaries located on the SRS: Upper Three Runs, Fourmile Branch, 

Steel Creek, and Lower Three Runs.  Fourmile Branch may have received mercury 

contamination from industrial seepage basins located near its headwaters, and a small 

tributary of Upper Three Runs received groundwater with low concentrations of mercury 

from a groundwater air stripping facility located approximately 6.5 km from its 

confluence with Upper Three Runs. However, aqueous total and methylmercury levels in 

Fourmile Branch and Upper Three Runs were not exceptional compared with Steel Creek, 

Lower Three Runs, and other tributaries without point sources of mercury contamination 

(Paller et al., 2004). 

Sites were usually sampled yearly to every few years using fish traps, angling, 

and/or electrofishing.  Fish were separated into largemouth bass (Micropterus salmoides), 

sunfishes (Lepomis spp.), and catfishes (Ameiurus spp. and Ictalurus punctatus); and only 

fish of edible size were collected (approximately > 30 cm,  15 cm, and 30 cm total length, 

respectively).  The numbers of fish collected varied and will be discussed in detail later.  

Muscle samples from individual whole fish were analyzed prior to 1992; and composite 

muscle samples from five fish were analyzed afterward.  Samples were analyzed for total 

mercury by cold vapor atomic absorption spectrometry following tissue homogenization 

and digestion after 1992 and by wet digestion and flameless atomic absorption 
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spectrophotometry in earlier years.  Detection limits were < 0.1 mg/kg for most samples 

but were occasionally as high as 0.3 mg/kg.   

Annual monitoring reports recorded mercury concentrations for each individual 

fish after 1991or annual averages (plus maxima and sample sizes) for all fish from each 

taxonomic group from each site prior to this.  These data were used to calculate annual 

arithmetic means over all Savannah River sites for each of the three taxonomic groups 

(weighted by sample size for years in which only site means rather than individual fish 

measurements were available).  One half of the detection limit was substituted for values 

under the detection limit (approximately 11% of the data) when calculating averages.  

Second order polynomial regression models were used to analyze long-term trends for 

each taxonomic group.  The dependent variable in each model was the average annual 

fish tissue mercury concentration, and the independent variables were year and Savannah 

River discharge (measured near Jackson, SC, USGS http://waterdata.usgs.gov/nwis/sw).  

Polynomial models were used because of the relatively complex relationships between 

the dependent and independent variables as discussed in detail later.  A Durban-Watson 

D statistic was computed for the residuals from each model to determine if serial 

correlation was significant.  Similarities in time trends among taxonomic groups were 

assessed with Pearson correlation coefficients.  Matched-pairs t-tests were used to 

identify significant differences between mercury concentrations in fish from the 

Savannah River and fish from the tributary creeks.  Separate t-tests were conducted for 

each taxonomic group and stream.  The matched pairs for each test consisted of the 

average mercury concentration in fish from the river and the average mercury 

concentration in fish from the creek for each year in which collections were obtained 
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from both sources.  Statistical analyses were conducted with SYSTAT (SYSTAT 

Software Inc., 2002). 

Results 

Fish sample sizes from the Savannah River varied prior to 1991, ranging from 

zero during some years to as many as 188 individuals (catfish during 1974) (Figure 2).  

Sample sizes became more consistent after 1991, usually ranging from 30-35 individuals 

for each taxonomic group.  Sunfish and catfish were collected during most years except 

1977 to 1980 resulting in a fairly complete record for these taxonomic groups.  In 

contrast, largemouth bass were not collected from the Savannah River in substantial 

numbers until 1985.  The tributary creeks were sampled less consistently than the 

Savannah River; the average number of years each creek was sampled for each 

taxonomic group was 13.9 (5-19).  The number of fish collected from the creeks was also 

smaller than the number collected from the river, ranging from 2-17 each year for each 

taxonomic group. 

Mercury concentrations in Savannah River catfish and sunfish peaked in the early 

1970s and then declined for about ten years (Figure 2), following a reduction in the 

discharge of mercury from a mercury-cell chlor-alkali plant in Augusta GA (Figure 1) 

from 5 kg/d to less than 0.1 kg/d in 1970 (Kvartek et al., 1994).  Mercury levels in catfish 

and sunfish stopped decreasing in the early 1980s and around 1990 began a slow, erratic 

increase that was interrupted during 2000 to 2003, a period of low water level in the 

Savannah River  (USGS http://waterdata.usgs.gov/nwis/sw) resulting from a drought that 

began in 1999 and ended in April 2003 (Keaton et al., 2005) .  Mercury concentrations 

returned to levels equaling or exceeding those before the drought in 2004.  Largemouth 
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bass exhibited some of the same trends as sunfish and catfish, but the largemouth bass 

data were insufficient to verify patterns before 1985.  There was a significant correlation 

between mercury levels in sunfish and catfish (r=0.75, P<0.001) and sunfish and 

largemouth bass (r=0.68, P=0.001), suggesting similar responses to changes in mercury 

bioavailability over time.  However, the correlation between largemouth bass and catfish 

was relatively weak (r=0.38, P=0.089), with the comparatively short period of record for 

the former being a possible contributing factor. 

The 2000-2003 drought reduced the discharge from tributary streams, many of 

which ceased flowing and some of which were largely dewatered (personal observation, 

M.H. Paller).  Previous research showed that aqueous methylmercury concentrations 

were higher in these streams than in the Savannah River, and that these streams 

contributed methylmercury to the Savannah River (Paller et al., 2003).  Persistently 

greater mercury bioavailability in the tributaries was indicated by the fish collection data, 

which showed that mercury concentrations were significantly higher (P<0.05) in fish 

from the tributaries than in fish from the Savannah River except for largemouth bass in 

Upper Three Runs and catfish in Fourmile Branch (Figure 3).   

Hypotheses suggested by the preceding data were that mercury levels in Savannah 

River fish varied nonrandomly over time and were affected by hydrological conditions in 

the Savannah River watershed.  These two hypotheses were examined with second order 

polynomial regression models that tested whether year and Savannah River discharge 

were significant predictors of annual average mercury levels in fish.  Savannah River 

discharge was the only hydrological metric consistently measured over the entire study 

period.  First and second order terms for year were significant (P < 0.05) in the catfish 
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and sunfish models, reflecting curvilinear temporal patterns resulting from early 

decreases in mercury followed by later increases (Table 1, Figure 4).  Lack of 

significance of year in the largemouth bass model likely resulted from the relatively short 

period of record for this species.  First and second order terms were significant (P < 0.05) 

for discharge in the sunfish and largemouth bass models, indicating a tendency for 

mercury levels in fish to be greater during years of intermediate discharge than during 

years of very low and very high discharge as illustrated by graphing regression residuals 

(from second order polynomial regressions of mercury on year) against flow (Figure 5).  

Unexplained variance in the models was relatively high (Table 1).  Durban Watson 

statistics (Table 1) were not significant at P<0.05 indicating that the assumption of 

independence required for accurate statistical testing was met.  

Mercury concentrations in Savannah River fish over time can be compared with 

the current USEPA human health criterion for methylmercury in fish of 0.3 mg/kg.  

Although total mercury rather than methylmercury was measured in Savannah River fish, 

most (90% or more) of the mercury in freshwater fish is usually methymercury (Bloom, 

1992) suggesting it is not unreasonable to apply the EPA criterion to the Savannah River 

data.  Mercury levels in sunfish exceeded 0.3 mg/kg in the early 1970s, subsequently 

decreased below this level, and then again exceeded the 0.3 m/l criterion in 2004 (Figure 

2).  Mercury levels in catfish also exceeded the criterion during the early 1970s, 

decreased below it during most of the period between 1975 and 1996, and were above the 

criterion thereafter except during the drought.  Concentrations in largemouth bass were 

consistently above the human health criterion. 
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Discussion 

There are several unmeasured sources of variability that could affect the analysis 

and interpretation of the Savannah River data.  Species combined in the taxonomic 

groups sunfish and catfish may have differed in mercury body burdens as a result of 

species-specific physiological, ecological, and behavioral differences that affected 

mercury uptake and depuration.  However, examination of stomach contents 

(unpublished data) indicated that all fish within each group had generally similar diets 

and occupied the same trophic level, suggesting generally similar potentials for mercury 

bioaccumulation.  Size and age can also affect mercury concentrations in fish.  Neither 

were typically measured, although some consistency resulted from the requirement that 

all fish be of edible size.  Seasonal changes in fish tissue mercury concentrations 

constituted another source of variability that could not be evaluated because collection 

dates (other than year) were usually unavailable.  Previous research on Savannah River 

fish showed that seasonal differences in mercury concentrations were significant (Paller 

et al., 2004) but smaller than the long-term changes described herein.  Variations in 

sample size and changes in analytical methods also added uncertainty to the analysis.  

These and possibly other sources of error undoubtedly contributed to the relatively high 

unexplained variance in the regression models.  Monitoring data developed by many 

individuals over 34 years cannot be expected to possess the same quality as typical 

research data but remain valuable because of their uniqueness.  

We propose that the initial downward trend in fish tissue mercury levels (Figure 4) 

resulted from the abatement of mercury discharges from the Augusta chlor-akali plant in 

1970.  Other research has shown decreases in fish tissue mercury levels following the 
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elimination of point sources of mercury pollution, although levels may stay relatively 

high in benthic organisms as a result of bioavailable mercury remaining in the sediments 

(Sager, 2002).  An environmental half-life for mercury in smelt and sculpin of about 10 

years was reported from Lake Ontario (Borgmann and Whittle, 1992), and a comparable 

environmental half-life was reported for teleost fishes from a marine bay in southwest 

Australia (Francesconi et al., 1997) following reductions in point source pollution.  These 

rates of mercury reduction in fish tissues are generally similar to the rates observed in 

Savannah River fish in 1971-1976 following a 98% reduction in point source mercury 

discharges from the chlor-alkali plant in 1970. 

Reasons for the upward trend in fish mercury levels that characterized the latter 

half of the study period (Figure 4) are more difficult to determine but may be related to 

mercury inputs from diffuse watershed sources.  Sediment cores show relatively high 

mercury deposition in the Florida Everglades after 1985 (Rood et al., 1995), and it is 

likely that mercury deposition was also high in the Savannah River basin at this time.  

Relatively high methylmercury levels in fish from Savannah River tributaries (Figure 3) 

can be plausibly explained by watershed runoff of atmospherically deposited mercury 

that was subsequently transformed in the tributaries and associated backwaters where 

environmental conditions favored methylation.  This was suggested by high mercury 

levels in fish from the tributary streams (Figure 3) and by results from a previous study 

showing that methylmercury levels were elevated in tributary water and in clams 

(Corbicula fluminea) residing in the discharge plumes of Savannah River tributary 

streams (Paller et al., 2003).  Tributaries and the floodplain wetlands they drain could 

have contributed to increased mercury levels in Savannah River fishes by discharging 

 10



methylmercury that is dissolved and associated with particulate matter into the Savannah 

River where it entered the food chain and through the migration of relatively 

contaminated tributary fish into the river as observed with other contaminants (Paller et 

al., 2005).   

These sources of tributary mercury would be expected to diminish during 

droughts that reduce tributary discharge to the river, reduce the access of fish to the 

tributaries and floodplain, and dewater wetlands where relatively still water and 

accumulated organic matter favor methylation.  Such conditions could lead to reduced 

methylmercury in Savannah River fish if they continued long enough and may be 

responsible for the temporary drop in fish tissue mercury levels observed during 2000-

2003.  Methylmercury half-lives in most freshwater fishes are under a year (Trudel and 

Rasmussen, 1997) suggesting that the 2000 through early 2003 low water period in the 

Savannah River basin would be sufficient for significant declines in fish tissue mercury 

levels given lower methylmercury availability.   

Significant second order terms for Savannah River discharge suggested that high 

water years as well as low water years were associated with reduced mercury levels in 

sunfish and largemouth bass.  Aqueous total mercury and methylmercury is frequently 

transported with dissolved and particulate organic matter  (Balogh et al., 2003; Maurice-

Bourgoin, 2003; Mast et al., 2005), which often peak in concentration on the ascending 

limb of flood hydrographs (Asselman, 1999; Lawler et al., 2006) and may become diluted 

during prolonged rainy periods (Johnson et al., 2006).   Therefore, mercury levels in fish 

might be greatest during years of moderate flow that resulted in substantial 

methylmercury transport from the watershed without strong dilution.  The occurrence of 
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significant second order terms for Savannah River discharge in the regression models for 

sunfish and largemouth bass supports this hypothesis, although this effect was not 

observed with catfish.  Additional research examining the relationship between flood 

events and aqueous mercury concentrations will be needed to fully understand and verify 

relationships between floodplain hydrology and mercury availability.   

Long-term monitoring data may not provide the detailed information needed to 

fully understand mechanisms that affect mercury bioavailability, but they provide a 

unique overview of secular trends and help separate them from fluctuations on shorter 

time scales.  Long-term data from the Savannah River showed that reductions in fish 

mercury levels in the early 2000s were temporary and probably a result of hydrological 

factors.  In aggregate, the Savannah River data indicate that the control of point sources 

resulted in relatively rapid decreases in fish tissue mercury levels followed by later 

increases most likely associated with the mobilization of atmospherically deposited 

mercury from the Savannah River watershed.  As a result, there was little overall 

difference in fish tissue mercury levels between 1971 and 2004.   
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Table 1.  Statistical significance of terms in a regression modela evaluating the effects of 

year and flow (Savannah River discharge) on average yearly total mercury 

levels in three types of fish collected from the Savannah River during 1971-

2004. 

Sunfishes Catfishes Largemouth bass Model 

term t P t P t P 

Constant 3.520 0.002 3.835 0.001 1.114 0.282 

Year -3.517 0.002 -3.840 0.001 -1.118 0.280 

Year2 3.515 0.002 3.835 0.001 1.121 0.279 

Flow 2.401 0.025 1.652 0.122 2.221 0.041 

Flow2 -2.247 0.035 -1.500 0.147 -2.131 0.049 

R2 0.47 0.42 0.28 

Durbin-Watson 

D statistic 2.061 1.702 1.872 

First order  

Autocorrelation -0.039 0.130 -0.008 

 

a Average annual HG (mg/L)=a-b1(Year)+b2(Year2)+b3(Flow)-b4(Flow2) 
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Figure 1.  Long-term fish collection sites in the middle Savannah River and Savannah 

River Site (UTR = Upper Three Runs, FMB = Fourmile Branch, SC = Steel Creek, LTR 

= Lower Three Runs). 

 

Figure 2.  Total mercury in fish collected from the middle Savannah River during 1971-

2004.   

 

Figure 3.  Total mercury in fish from the Savannah River and four Savannah River 

tributary streams 

 

Figure 4.  Polynomial regression model predicting total mercury in sunfishes from year 

and Savannah River discharge (m3/s) 

 

Figure 5.  Relationship between Savannah River discharge and residual mercury scores 

derived from a second order polynomial regression of mercury levels in sunfishes on year 

(the residuals represent the variation in fish tissue mercury levels stripped of variance 

associated with year).   
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