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Abstract 

  Melanin production by S. algae BrY occurred during late/post-exponential growth in 

lactate-basal-salts liquid medium supplemented with tyrosine or phenylalanine. The antioxidant 

ascorbate inhibited melanin production, but not production of the melanin precursor, 

homogentisic acid.  In the absence of ascorbate, melanin production was inhibited by the 4-

hydroxyplenylpyruvate dioxygenase inhibitor, sulcotrione and Fe(II) (>0.2mM). These data 

support the hypothesis that pigment production by S. algae BrY was a result the conversion of 

tyrosine or phenylalanine to homogentisic acid which was excreted, auto-oxidized and self-

polymerized to form pyomelanin. The inverse relationship between Fe(II) concentration and 

pyomelanin production has implications that pyomelanin may play a role in iron assimilation 

under Fe(II) limiting conditions.  
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The facultative, dissimilatory metal reducer, Shewanella algae BrY inhabits the 1 

oxic/anoxic zone of marine sediment and produces a dark, extracellular, quinoid pigment 2 

characterized as a type of melanin (Caccavo et al. 1992; Turick et al. 2002).  S. algae BrY 3 

exploits the redox cycling properties of melanin through use as a terminal electron acceptor and, 4 

in turn, as a soluble electron shuttle capable of reducing insoluble Fe (III)-oxides (Turick et al. 5 

2002; Turick et al. 2003).  Because melanin also has iron chelation properties, it also plays a role 6 

in iron assilimaltion. For example, Fe(II) assimilation by the yeast Crytococcus neoformans is 7 

achieved through the production of eumelanin, a type of melanin (Nyhus et al. 1997). This 8 

mechanism incorporates the reductive capacity and metal chelation properties of cell-surface-9 

associated melanin to first reduce exogenous Fe(III) and  then assimilate the resulting Fe(II).  10 

Legionella pneumophila produces pyomelanin, another type of melanin, and was postulated to 11 

also use it for extracellular Fe(III) accumulation (Cianciotto et al. 2002). Hence, melanin 12 

production may also play an important role in electron transfer to iron oxides related to growth 13 

and Fe(II) assimilation of the dissimilatory metal reducing, facultative anaerobe S. algae BrY.  In 14 

order to better understand the role of melanin in the physiological ecology of S. algae BrY, it is 15 

important to clearly define the type of melanin produced. 16 

Melanin is an imprecise term that describes a general category of high-molecular-weight 17 

dark pigments of biological origin (Bell and Wheeler 1986). Based on biochemical 18 

characteristics, melanin is further differentiated into several types including eumelain, 19 

pheomelanin, allomelanin and pyomelanin. Eumelanin production occurs by the Mason-Raper 20 

pathway in which tyrosine is converted to dihydroxyphenylalanine (DOPA) and dopachrome by 21 

tyrosinase and oxygen (Bell and Wheeler 1986; Swan 1974; Prota 1992).  Phaeomelanins are 22 

produced by the conversion of tyrosine to dopachrome which reacts with cysteine (Swan 1974; 23 
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Prota 1992; Coon et al. 1994).  Allomelanins are produced from non-nitrogenous phenols and 1 

result in a wide range of diverse phenolic products (Swan 1974; Prota 1992). Tyrosinase plays a 2 

significant role in the production of these types of melanin [6-8] and its activity is correlated to 3 

exogenous Cu (II) concentrations (Swan 1974; Prota 1992; Ikeda et al. 1996). Pyomelanin 4 

(alkaptan) is defined by the conversion of tyrosine or phenylalanine to homogentisic acid (HGA), 5 

which is then excreted from the cell (Yabuuchi and Omyama 1972) to form a reddish-brown 6 

pigment after autoxidation and self-polymerization. Bacterial production of pyomelanin was first 7 

described for Pseudomonas aeruginosa (Yabuuchi and Omyama 1972) and has been identified in 8 

several bacterial species including S.colwelliana, Vibrio cholera, and a Hyphomonas strain 9 

(Ruzafa et al. 1995; Weiner et al. 1985; Kotob et al. 1995) as well as Alcaligenes eutrophus 10 

(David et al. 1996). With gram-negative bacteria, pyomelanin production occurs through the 11 

phenylalanine-tyrosine pathway (David et al. 1996; Lehninger 1975) where phenylalanine is 12 

converted to tyrosine, which is then transaminated to 4-hydroxyphenylpyruvate.  The 13 

metalloenzyme, 4-hydroxyphenylpyruvate dioxygenase (EC1.13.11.27) (4-HPPD), converts 4-14 

hydroxyphenylpyruvate to HGA.  In contrast to tyrosinase, 4-HPPD has a non-heme iron 15 

complex (Lindbald et al. 1977; Lindstedt et al. 1977). Thus, Fe (II) affects 4-HPPD activity 16 

while Cu (II) does not (Lindbald et al. 1977; Lindstedt et al. 1977).  HGA is ultimately converted 17 

to fumaric acid and acetoacetic acid, but pyomelanin producers are either unable to oxidize HGA 18 

or possess a rate of HGA oxidation which is lower than that of 4-HPPD activity.  The overall 19 

effect results in an increase in HGA and its excretion from the cell (Yabuuchi and Omyama 20 

1972; David et al. 1996; Lindstedt et al. 1977; Sanches-Amat et al. 1998).  21 

A reddish-brown form of melanin, tentatively identified as pyomelanin (Turick et al. 22 

2002) is produced by S. algae BrY during late/post exponential growth in the presence of 23 
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tyrosine. Because this organism uses soluble and insoluble forms of Fe(III) as a terminal electron 1 

acceptor and Fe(II) is a component of 4-HPPD, the role of Fe(II) is expected to play a significant 2 

role in melanin pigment production as S. algae (BrY) transitions back and forth between oxic 3 

and anoxic conditions. The type of melanin and factors related to its production were the focus of 4 

this study in order to begin to understand the role of this pigment in the physiological ecology of 5 

S. algae BrY.   6 

Bacterial growth and melanin production were as described previously (Turick et al 2002) 7 

and used ether Tryptic Soy broth (TSB) ( McCuen, 1988) or  a lactate basal salts medium 8 

(LBSM) (Lovley et al. 1996) supplemented with tyrosine or phenylalanine concentrations of 2 g 9 

l-1. Except where indicated, iron was omitted from LBSM  to reduce its effect on  melanin 10 

production or behavior. Cell numbers were measured by staining the cells with acridine orange 11 

and then visualizing them with an epifluorescence microscope (Hobbie et al. 1977). Chemical 12 

determination of melanin was performed as previously described (Ellis and Griffiths 1974; 13 

Turick et al. 2002). Melanin content of spent, cell-free culture medium was determined 14 

spectrophotometrically at 400 nm (Ruzafa et al 1995) and zeroed against controls (cultures 15 

grown without tyrosine).   For rate determination, samples were assayed at 400 nm for melanin 16 

production at different time intervals throughout the growth cycle.  Rates were calculated from 17 

the data prior to a plateau in melanin production, by linear regression of log-transformed data. 18 

Cell-free spent growth media of S. algae BrY were assayed for melanin precursors by high-19 

pressure capillary electrophoresis (HPCE) with a Celect H150 C-8 bonded phase capillary column.  20 

Standards (DOPA and HGA) were dissolved in 4 mM ascorbate to a final concentration of  4 mM 21 

each. HGA and DOPA were also determined by colorimetric methods.  DOPA analysis consisted of 22 
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the DOPA nitration method (Waite and Benedict 1984).  HGA content was determined based on its 1 

reaction with cysteine to form 1, 4-thiazine, according to the methods of Fellman et al. (1972).  2 

 For this study, all experiments were conducted in duplicate or triplicate and performed at 3 

least twice. Statistical analysis was conducted with Student’s t test. 4 

Extracellular melanin polymerization 5 

Melanin was produced by aerobically grown cultures in all media supplemented with   6 

tyrosine or phenylalanine, but was not detected in these media under anoxic conditions. On solid 7 

media, melanin production occurred in the regions of the highest colony density on the plates.  8 

Pigment was first observed surrounding individual colonies. After several days, the darkness of 9 

the colonies, themselves, increased. Colonies growing on T-soy agar (TSA) without 10 

supplemental tyrosine showed only slight pigmentation.  The onset of melanogenesis occurred 11 

24 h earlier on solid media incubated at 37°C than at 28°C. Pigment produced on complex 12 

medium (TSA plates) was determined to be melanin and related to the tyrosine and 13 

phenylalanine content (300 mg l-1 and 600 mg l-1 respectively) of the medium.  Similar results 14 

were reported for pyomelanin production by P. aeruginosa (Yabuuci and Omyama 1972), V. 15 

cholera (Sanchez-Amat et al. 1998), S. colwelliana (Ruzafa et al. 1995; Weiner et al. 1985) and 16 

L. pneumophila (Ciaciotto et al. (2002).  17 

 When melanin production was measured by the absorbance at 400 nm (Ruzafa et al. 18 

1995), melanin production was 7-fold greater in cell-free, spent LBSM media supplemented with 19 

tyrosine (2 g l-1) than phenylalanine (2 g l-1).  No melanin was produced in media without either 20 

supplement. Melanin production by S. algae BrY in LBSM supplemented with phenylalanine 21 

occurred 24 h later than in LBSM supplemented with tyrosine (data not shown).  After 72 h of 22 

incubation, melanin production leveled off in these cultures and resulted in an OD (A400) of 23 

For Review Purposes Only/Aux fins d'examen seulement



 7 
 

3.274  for the tyrosine supplemented culture (controls subtracted) and a significantly different 1 

(P<0.05) value of 0.459 for the  phenylalanine supplemented culture.  2 

 Metabolic precursors of melanin 3 

 Extracellular melanin is produced by the auto-oxidation and self-polymerization of 4 

metabolic precursors such as HGA or DOPA (Yabuuchi and Omyama 1972; Weiner et al. 1985; 5 

Kotob et al. 1995; Ruzafa et al. 1994).  To determine if extracellular melanin occurred through 6 

auto-oxidation, the antioxidant ascorbate was added to the cultures. Cultures of S. algae BrY 7 

grown for 72 h at 28°C in LBSM supplemented with 12 mM of both the antioxidant ascorbate 8 

and tyrosine did not produce melanin.  The absorbance (A400) of that cell-free culture supernatant 9 

was 1.3, while cell-free culture supernatant from the culture with tyrosine only was 3.5.  10 

S. algae BrY cultures were grown at 28°C in LBSM with 12 mM tyrosine, (with and 11 

without 12 mM ascorbate) and analyzed after 18 and 48 h of growth for the presence of melanin 12 

precursors (Figs. 1).   For cultures without ascorbate, two peaks were detected after 18 h (Fig. 13 

1A), but only one peak remained after 48 h (Fig. 1B). Cultures incubated with ascorbate revealed 14 

only one peak, which corresponded to HGA (Fig. 1C and 1D).  The peaks with retention times of 15 

2.68 min. co-migrated with HGA (Fig. 1D) and were confirmed to be HGA by colorimetric 16 

analysis.  The HGA peak was not detected in growth medium without tyrosine.  The first peak, 17 

from the 18 h sample without ascorbate, migrated later than the DOPA peak (Fig. 1A and 1D).  18 

Colorimetric analysis of the sample confirmed that the peak was not DOPA. These results 19 

support our hypothesis that S. algae BrY produces extracellular pyomelanin by the auto-20 

oxidation of excreted HGA but not DOPA. 21 

Several other pyomelanin-producing bacteria have been shown to produce pyomelanin by 22 

this process of HGA auto-oxidization and self-polymerization (Yabuuchi and Omyama 1972; 23 
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Ruzafa et al. 1995; Weiner et al. 1985; Ruzafa 1994).  Although HGA was consistently identified 1 

in culture liquid, the presence of another melanin precursor, DOPA, was not detected in any of 2 

the cultures.  Only one peak appeared near the DOPA retention time during these studies and 3 

was not present in the presence of ascorbate.  The absence of this peak in the presence of 4 

ascorbate suggests that this compound may be an autooxidation product of another metabolite.  5 

With S. colwelliana, DOPA is produced, but it is not linked to pigment production (Kotob et al 6 

1994). In this study, HGA was detected in cultures prior to detectable melanin production, which 7 

has been observed previously (Fuqua and Weiner 1993; Ruzafa et al. 1994).  The gene 8 

responsible for HGA production by S. colwelliana is constitutive (Kotob et al. 1995) and may 9 

also be constitutive for S. algae BrY. 10 

Enzyme inhibition experiments 11 

 Sulcotrione [2-(2- chloro- 4- methane sulfonylbenzoyl)-1, 3-cyclohexanedione)] (Zeneca 12 

Ag. Products, Richmond, CA) is a potent inhibitor of 4-HPPD (Lee et al 1997; Schulz et al. 13 

1993; Secor 1988).  S. algae BrY was grown for 48 h in tyrosine-supplemented LBSM with 14 

sulcotrione (0, 0.25, 2.5, and 10 µM final concentration) to test its effects on melanin production. 15 

Melanin production by S. algae BrY grown was completely inhibited with 10 µM sulcotrione 16 

(Fig. 2) with an inhibition constant (Ki) of 0.04µM. The inhibition constant (Ki) for sulcotrione 17 

was determined as previously described (Turick and Apel 1997).  Cell density and growth were 18 

not affected by the sulcotrione concentrations tested in Fig. 2 (data not shown). 19 

The enzyme tyrosinase (EC 1.14.18.1) will convert tyrosine to DOPA, which is quickly 20 

oxidized to dopachrome (Prota 1992; Yasunobu et al. 1959). The effect of sulcotrione on the 21 

activity of commercially-obtained mushroom tyrosinase (Sigma Chem.) was tested to confirm 22 

the specificity of the inhibitor.  Tyrosinase (EC 1.14.18.1) activity was measured as previously 23 
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described (Yasunobu et al. 1959).  The addition of 8 mM sulcotrione did not inhibit the activity 1 

of 1336 units commercially-obtained mushroom tyrosinase. Thus, sulcotrione inhibition of 2 

melanin production by S. algae BrY supports the hypothesis that the enzyme 4-HPPH and not 3 

tyrosinase was responsible for melanin production by S. algae BrY.  4 

Effect of Fe (II) on melanin production 5 

 Exogenously added Cu(II) enhances tyrosinase activity and related melanin production 6 

(Bell and Wheeler 1986; Swan 1974; Ikeda et al. 1996), but does not affect 4-HPPD activity 7 

(Linbald et al; 1997; Lindstedt et al 1977).  Conversely, exogenous Fe(II) controls 4-HPPD 8 

activity but does not affect that of tyrosinase.  The effects of these metals on melanin production 9 

by S. algae BrY was tested in LBSM supplemented with tyrosine (Fig. 3). 10 

 The growth of S. algae BrY was not adversely affected by the Fe (II) concentrations used 11 

in this study (Fig. 3A). However, exogenous Fe(II) affected melanin production by S. algae BrY 12 

(Fig. 3B).  The highest rate of melanin production was achieved with 0.18 mM Fe(II), while 13 

higher Fe(II) concentrations decreased the rate of melanogenesis. Melanin production in control 14 

cultures receiving 3.76 mM Na2SO4 was greater than those cultures receiving 3.76 mM FeSO4, 15 

demonstrating that effect on melanin production was specific to iron (Fig. 3B).  The addition of 16 

20µM Cu(II) did not affect melanin production in S. algae BrY indicating a copper-dependent 17 

enzyme such as tyrosinase was not involved melanin production.   18 

  To determine if this decrease in melanin production was caused by Fe(II)-melanin 19 

precipitation, 4.0 mM of Fe(II) (as ferrous sulfate) was added to cell-free melanin. The addition 20 

of Fe(II) did not alter the spectral scan of the melanin, which indicates that exogenously added 21 

Fe(II) did not cause the precipitation of melanin (data not shown).  Although iron will precipitate 22 
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melanin (Turick et al 2002; Swan 1974; Ellis and Griffiths 1974), the concentrations used in this 1 

study were insufficient for melanin precipitation.  2 

The effect of exogenous Fe(II) was complex. Low levels of Fe(II) resulted in greater 3 

melanin production than Fe(II) in excess of 0.376 mM, which had  an  inhibitory effect (Fig. 3C). 4 

Exogenous Fe(II) concentrations greater than 10-5 M inhibit 4-HPPD activity in Pseudomonas sp. 5 

P.J. 874 (Lindstedt et al. 1977).  It is possible that an inhibitory effect from elevated Fe(II) 6 

concentrations may be the result of oxygen radicals that were generated during growth with 7 

Fe(II). Oxygen radicals have been implicated in the inhibition of 4-HPPD activity (Lindbald et 8 

al. 1977; Fellman et al. 1972).  When grown aerobically, S. putrefaciens 200P produces 30 µM 9 

of extracellular H2O2 which reacts with Fe(II) and produces oxygen radicals (McKinzi and 10 

DiChristina 1999). It is possible that culture conditions in the present study may have resulted in 11 

oxygen radical concentrations high enough to inhibit 4-HPPD activity. Melanin production 12 

occurred sooner at 37°C than at 28°C even though the optimum growth temperature of S. algae 13 

is 25-35°C (Caccavo et al 1992). This difference would suggest that the early development of 14 

melanin at 37°C was not the result of an increased growth rate but may be related to increased 4-15 

HPPH activity as a function of lower oxygen solubility at the higher temperature.   16 

For this study, the pH of the medium was also evaluated during growth to determine its 17 

contribution to melanin production.  Extracellular melanin production is related to an increase in 18 

the pH of the growth medium (Fuqua et al. 1993; Ruzafa et al 1994).  In all cultures in this study, 19 

the pH remained near 7 for the first 24 h of growth, until the onset of melanin production (Fig.  20 

3C). Elevated pH values were recorded after 40h in cultures with higher FeSO4 concentrations 21 

(Fig. 3C).  However, these cultures produced the least melanin suggesting that culture pH did not 22 

play a role in accelerating melanogenesis.  23 
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The appearance of melanin coincided with a pH increase to 7.6 – 7.8, except for the 0.376 1 

mM and 3.76 mM Fe(II) supplemented cultures which demonstrated a pH of 8.6 (Fig. 3B and 2 

3C).  Hence, the added iron did not result in decreased pH but rather an increase.  Consequently, 3 

the decrease in melanin production at the higher iron concentrations was not a function of pH.  4 

Since there were higher cell densities in cultures with more iron, low cell density was not a factor 5 

in decreased melanin production.  6 

Conclusions 7 

Several lines of evidence demonstrate that pyomelanin was produced by S. algae BrY.  8 

First, the MW of the melanin produced by S. algae BrY was within the range of 12,000 –14,000 9 

(Turick et al. 2002).  Second, the antioxidant ascorbate, which inhibits auto-oxidation in solution, 10 

inhibited melanin production but not extracellular HGA production. Third, tyrosine was 11 

converted to extracellular HGA but not DOPA. Fourth, sulcotrione, a specific inhibitor of 4-12 

HPPH activity, inhibited melanin production.  Fifth, iron affected melanin production by S. algae 13 

BrY, but copper had no effect. Lastly, FTIR analysis of the melanin is consistent with 14 

pyomelanin (Truick et al. 2002). These results are consistent with pyomelanin production in the γ 15 

Proteobacteria indicating that S. algae BrY produced pyomelanin. 16 

The ability of S. algae BrY to produce pyomelanin and exploit its electrochemical properties 17 

for growth and iron mineral reduction may provide this organism a significant survival advantage.  18 

S. algae BrY is a facultative anaerobe that inhabits the oxic/anoxic zone of sediments (Caccavo et 19 

al. 1992; Venkateswaran et al.1999).  Pyomelanin production may be important during the 20 

transition from oxic to anoxic conditions and therefore offer a means for this organism to adapt to 21 

this transition.  This would be especially important for S. algae BrY because it is capable of using 22 

pyomelanin to accelerate the rate of dissimilatory iron mineral reduction.  Excessive production of 23 
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pyomelanin may not be necessary since only femtogram quantities per cell are required to 1 

significantly increase iron mineral reduction rates (Turick et al. 2002; 2003).  In addition, the redox 2 

cycling nature of this pigment allows it to be reused as an electron shuttle during anaerobic 3 

respiration with iron minerals (Turick et al. 2002; 2003). However, other pyomelanin producing 4 

members of the γ Proteobacteria are not known to be dissimilatory metal reducers. Alternatively, 5 

melanin is used to reduce Fe(III) to Fe(II) for assimilation (Nyhus et al. 1997: Cianciotto et al. 6 

2002).  Because pyomelanin production by S. algae BrY is enhanced by decreasing concentrations 7 

of Fe(II), its production by S. algae BrY and other bacteria may also be related to Fe(III) reduction 8 

for Fe(II) assimilation under Fe limiting concentrations.  9 
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Figure Legends 1 

 2 

Figure 1. HPCE analysis for melanin precursors. After 18 h and 48 h S. BrY spent culture 3 

supernatant liquids were analyzed as described in the Methods. Panels: (A) 18 h S. algae BrY 4 

(B) 48 h S. algae BrY (C) 18 h S. algae BrY in ascorbate supplemented medium.(D) HGA and 5 

DOPA standards 6 

 7 

Figure 2. Inhibitory effects of sulcotrione on melanin production by S. algae BrY. Melanin 8 

production as measured A400. Cells were grown in lactate basal medium supplement with 9 

tyrosine. 10 

 11 

Figure 3. The effect of Fe(II) concentration on growth and melanin production by S. algae BrY.  12 

(A) cell density over time, (B) Melanin production as measured A400, and (C) medium pH.  Cells 13 

were grown in tyrosine (2g liter-1) supplemented lactate basal medium with 0.18 mM FeSO4 14 

(g), 0.376 mM FeSO4 (▲), 3.76 mM FeSO4 (n), 3.76 mM Na2SO4 (X), and lactate basal 15 

medium without tyrosine (♦).   16 
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