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Abstract 3 

Soil contaminated with U was the focus of this study in order to develop in-situ, U bio-4 

immobilization technology. We have demonstrated microbial production of a metal chelating 5 

biopolymer, pyomelanin, in U contaminated soil from the Tims Branch area of the Department of 6 

Energy (DOE) Savannah River Site (SRS) as a result of tyrosine amendments. Bacterial densities 7 

of pyomelanin producers were >106 cells/g wet soil. Pyomelanin demonstrated U chelating and 8 

mineral binding capacities at pH 4 and 7. In laboratory studies, in the presence of goethite or illite, 9 

pyomelanin enhanced U sequestration by these minerals. Tyrosine amended soils in field tests 10 

demonstrated increased U sequestration capacity following pyomelanin production up to 13 11 

months after tyrosine treatments.  12 
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1. Introduction 1 

Humics play a significant role in metal immobilization by binding to both metal oxides 2 

and soluble metals (Gu et al., 1995; Gu et al., 1996). The presence of hydroxyl groups, carboxyl 3 

density, and linear molecular structure of humics contribute to their strong surface complexation to 4 

iron oxides (Gu et al., 1995; Gu et al., 1996). Humic compounds form innersphere complexes with 5 

metals (Xia et al., 1997) and the mobility of metal/humic-colloid complexes decrease as a result of 6 

humic interactions with the soil particles (Artinger et al., 2002). 7 

While naturally occurring soil humics are ubiquitous, their quantities and specific 8 

characteristics vary considerably. Consequently the heterogeneity of humics in-situ and aging 9 

effects decrease their effectiveness and dependability for remedial action.   Microbial production 10 

of humic-type compounds offers potential for increasing the metal sorption capacities of soils.  11 

The class of pigments known as melanins are humic-type compounds and are the most common 12 

pigments produced in nature. Hence, microbial melanin has a role to play in bioremediation 13 

(McLean et al., 1998) and melanin production offers tremendous untapped potential for 14 

immobilization of metals and radionuclides because of its electron shuttling (Turick et al. 2002, 15 

2003) and metal sequestration capacities (McLean et al., 1998). For instance microbial melanin is 16 

responsible for enhanced adsorption of numerous metals and tributyltin chloride with the fungus 17 

Aureobasidium pullulans (Gadd et al., 1990; Gadd and Mowll, 1985; Gadd et al., 1987), Fe(III) 18 

reduction and subsequent Fe(II) assimilation by the yeast Cryptococcus neoformans (Nyhus et al., 19 

1997) and U accumulation by a melanin-containing fungus associated with the lichen Trapelia 20 

involuta (McLean et al., 1998). 21 

Melanin is a generic term describing a ubiquitous humic-type metabolite (Ellis and 22 

Griffiths, 1974).  Microbial melanins account for a measurable portion of naturally occurring soil 23 

humic compounds (Scott and Martin 1990).  Melanin production is often a function of the 24 

enzymes tyrosinase (EC 1.14.18.1) or poly-phenol oxidase. These types are commonly associated 25 

with eukaryotes.  26 
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Another, less-studied type of melanin is pyomelanin. Pyomelanin production (Yabuuchi 1 

and Omyama. 1972) is documented in a number of bacterial species (Yabuuchi and Omyama. 2 

1972; Coon et al., 1994; Kotob et al., 1995; and Ruzafa et al., 1995 and Turick et al. 2002) and 3 

originates from bacterial conversion of tyrosine as part of the fumarate pathway.  Complete 4 

breakdown of tyrosine to acetylacetate and fumarate requires the enzymes 4-5 

hydroxyphenylpyruvic acid dioxygenase (4-HPPD) and  homogentisic acid (HGA) oxidase. In the 6 

absence of this enzyme (or if HGA production exceeds that of HGA-oxidase), HGA is over-7 

produced and excreted from the cell (Coon et al., 1994). Auto-oxidation and self-polymerization 8 

of HGA then results in pyomelanin, an aromatic polymer consisting of numerous quinone moieties 9 

(Ruzafa et al., 1995).   10 

Microbial melanin production by autochthonous bacteria was explored in this study as a 11 

means to increase U immobilization in U contaminated soil. This article demonstrates the 12 

application of bacterial physiology and soil ecology for enhanced U immobilization. 13 

 14 

2 Methods 15 

2.1. Sediment properties and analysis  16 

The Tims Branch watershed makes up a portion of SRS and parts of this watershed have 17 

been impacted in the past with U (Pickett et al., 1987, and Evans et al., 1992).  Sediments 18 

representative of this watershed were selected to study the affects of microbial metabolites on the 19 

behavior of U in sediment. Sediment samples were collected aseptically and immediately stored 20 

on ice until delivery to the lab. Sediment samples were then refrigerated until processing.  These 21 

sediments were quantified for melanin producing bacteria and U concentration. 22 

The following sediment properties were analyzed: percent organic matter (OM) by loss-23 

on-ignition at a temperature of 375oCand pH was determined from a 1:1 mineral/water 24 

equilibration solution. Also, total concentration of U in a homogenized sediment sample was 25 
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determined by  a total microwave digestion of 0.6 g of homogenized sediment material with 1 

concentrated acids (10 ml of HNO3, 4 ml of H2SO4, and 2 ml of HCl). The resulting extract 2 

solution was analyzed by ICP-MS. 3 

Changes in the organic content of sediments due to pyomelanin production were determined 4 

through percent organic matter determination (above), spectrophotometric determination (absorbance, 5 

400nm) of particle free supernatants and Fourier transform infrared spectroscopy (FTIR) 6 

spectroscopy. Sediment samples were removed (5-10g/column) 28 days after treatment addition for 7 

pore water analysis. Optical density was determined for centrifuged sediment to determine the degree 8 

of pigmentation resulting from tyrosine amendments.  Dried pigments from sediment effluents (60°C) 9 

were then further characterized using FTIR spectroscopy and compared to that of pure tyrosine and 10 

dihydroxyphenylalanine (DOPA) melanin (Aldrich Chemicals).  Bacterial pyomelanin used for FTIR 11 

characterization was obtained as described previously (Turick et al 2002).    12 

 13 

2.2. Analysis of Pigment Producing Microorganisms in Sediment 14 

Sediment was diluted (10-2 – 10-8) with lactate basal salt medium (LBSM) supplemented 15 

with 1g/l tyrosine (Turick et al., 2002). Controls received the same treatment except tyrosine was 16 

omitted. Each tube of the 3 tube most probable number (MPN) assay contained 10 ml of growth 17 

medium and sediment and was incubated for 8 weeks at 25°C and shaken at 100 rpm.  Increased 18 

pigmentation as a result of tyrosine amendments was determined spectrophotometrically by 19 

scanning the supernatant fluid of each test tube from 600-300 nm.  Tubes with increased OD in 20 

this range, relative to controls were marked positive for pigment production from tyrosine.  The 21 

number of positive tubes per dilution was used to calculate the most probable number of pigment 22 

producing cells/g sediment.  23 

To isolate pigment-producing microorganisms, samples were removed aseptically from 24 

the sediment MPNs above and inoculated onto tryptic soy agar supplemented with tyrosine (2g/l) 25 

(TSAT), using the spread plate method. Following incubation at 25°C for 1 week, colonies 26 
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demonstrating pigmentation (relative to plates without tyrosine) were transferred from TSAT to  1 

LBSM agar with and without 2g/l tyrosine and monitored for pigmentation. Pigment production 2 

was determined by comparing coloration from tyrosine amended plates relative to those without 3 

tyrosine.  4 

 5 

2.3. Pigment Characterization 6 

Initial characterization of pigment included intensity of coloration and diffusion through 7 

agar media.  Dark black non-diffusive pigments are indicative of DOPA melanin whereas redish 8 

brown diffusive pigments are more likely pyomelanin. The chemical sulcotrione (supplied gratis 9 

from Zeneca Agrochemicals) was used as a specific competitive inhibitor of 4-HPPD (Secor, 10 

1994); the enzyme required for pyomelanin production. Methods incorporated sulcotrione to 11 

determine if pigment production was a result of 4-HPPD.  Pure cultures of sediment isolates were 12 

grown in LBSM and tyrosine (1g/l) was supplemented to promote pigment production.  13 

Sulcotrione (18µM) was added prior to pigmentation in order to differentiate pyomelanin 14 

production from other pigments that may be produced. Pigment production was monitored and 15 

characterized spectrophotometrically (400 nm) (reference) in cell free culture fluid and visually.  16 

Controls for comparison were without tyrosine or without sulcotrione. 17 

 18 

2.4. Laboratory studies of  pyomelanin complexation with U, goethite and illite. 19 

Bacterial pyomelanin was concentrated and dialyzed from culture as described previously 20 

(Turick et al. 2002) stored as a stock solutions in HEPES buffer (pH 7 and pH 4).  Various 21 

pyomelanin dilutions were incorporated into chelating studies with U and sorption studies with 22 

goethite (Alfa Aesar) and illite (Clay Minerals Society) at pH 4 and pH 7.  For U chelating studies, 23 

desired concentrations of pyomelanin stock were added to 15 ml of HEPES buffer (pH 4 and pH 24 

7) containing 100µg/l U (uranyl nitrate, Sigma Chemicals).  The solutions were shaken in sealed 25 

polypropylene vials at 150 rpm at 25°C for 13 days prior to analysis.  U concentrations unbound to 26 
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pyomelanin were measured by removing the pyomelanin through centrifugal concentration (5000 1 

rcf for 1-2 h) with 5 kDa dialysis membranes. Clear, pyomelanin-free liquid was analyzed for U 2 

with ICP/MS.   3 

Pyomelanin sorption studies with goethite and illite (10mg/ml) were conducted in 15 ml 4 

HEPES buffer (pH 4 and pH 7).  Pyomelanin concentrations and incubation were as above.  5 

Pyomelanin sorption was determined through optical density measurements (400 nm) of the 6 

centrifuged samples (5000 rcf for 30-45 min.) and correlated with known pyomelanin standards.  7 

Interactions with U, pyomelanin and goethite or illite were conducted as above for the 8 

mineral studies. U concentrations were determined with ICP/MS.  9 

 10 

2.5. Sediment Column studies – field deployment 11 

2.5.1. Sediment Sampling 12 

Sediment samples taken from each sediment column were analyzed for moisture, organic 13 

matter content and metal concentrations just prior to tyrosine supplementation. Percent organic 14 

matter (OM), pH, and the concentration of U were determined as described above.  15 

 16 

2.5.2. Sediment Column Construction 17 

Sediment columns were constructed to facilitate field testing of the methodology.  These 18 

columns were constructed to allow rainfall to leach through the columns and be collected for 19 

analysis at different depths and at the discharge.  The design consisted of an inner and outer 20 

housing with the inner housing constructed of 10cm diameter Schedule 40 PVC and the outer 21 

housing constructed of 20cm diameter Schedule 40 PVC.  Construction details for the sediment 22 

columns are shown in Figure 1.    23 

 24 
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At the field site, a pit was dug by hand to facilitate installation of the sediment columns.  Sediment 1 

from the pit was homogenized and cleaned of any roots or other debris.  This homogenized, native 2 

sediment was then placed in the inner housing of each sediment column. 3 

After the inner housings were filled with the native sediment, lysimeters (Sediment 4 

Moisture Equipment Corp. Rhizon lysimeters) were installed at three different depths (10, 30 and 5 

50 cm) by inserting them through predrilled holes perpendicular to the long dimension of the 6 

housing.  Figure 1 shows the general orientation for the lysimeters.  Each lysimeter was connected 7 

to the top of the sediment column using color coded nylon tubing. For each sediment column, the 8 

inner housing was then placed inside the outer housing.   9 

After the lysimeters were installed, the annulus between the inner and outer housing was 10 

filled with clean sand.  Nylon tubing was connected to a predrilled hole in the bottom of the outer 11 

housing and extended to the top of the sediment column.  This allowed for the collection of the 12 

leachate exiting the inner housing.  A protective cap with holes to allow for rainfall infiltration 13 

was fitted to the top of the inner housing of each sediment column (Fig. 1).  A cover was placed 14 

over the annulus between the inner and outer housing to prevent rainfall infiltration (Fig. 1).  15 

After assembly, the sediment columns were placed in the pit and void space between the 16 

sediment columns was then filled with the remaining sediment from excavation.  Metal sheeting 17 

was used to protect the sediment columns from animal damage. 18 

 19 

2.5.3. Treatment conditions 20 

Sediment columns remained untreated for 2 months to allow for settling and periodic 21 

lysimeter checks.  Sterile amendments were added to numbered columns chosen randomly for 22 

each treatment on August 3, 2005.  Twenty four hours prior to sampling, excess water was 23 

removed from the sediment columns with a peristaltic pump attached to the tubing connected to 24 

the bottom of the outer housing of the sediment columns.  Triplicate treatments included tyrosine 25 



 8 

(2 g/kg sediment) (10mM), and 100 ml sterile DI water.  Sterile DI water alone served as the 1 

control. One kg of sediment constituted approximately 30% of the volume of each field column. 2 

 3 

2.5.4. Leachate Sampling 4 

Throughout the 28 days of incubation the top 5 cm of sediment of each column was mixed 5 

with sterile plastic spatulas on day 7 and 14, to assist tyrosine mixing and solubility. During field 6 

incubation rainfall was measured at 12.1 cm.  After incubation sediment pore water was obtained 7 

from each lysimeter (three depths per column).  Samples were removed from sediment by fitting 8 

each lysimeter with a 18 gauge hypodermic needle and inserting the needle into a negative-9 

pressure, gas-tight test-tubes.  The negative pressure in each 10 ml test tube pulled pore water 10 

from the sediment at the lysimeters sediment depth.  Pore water samples were stored immediately 11 

on ice until overnight storage in the lab at 4°C.  Samples were processed the next day and 12 

analyzed for metals and pH.  13 

 14 

3. Results 15 

3.1. Analysis of Pigment Producing Microorganisms in Sediment 16 

Bacterial densities of pigment producers from sediment samples of the study site 17 

demonstrated MPN values of 1.1x106 cells /g wet wt of soil.  Pigment production was evident with 18 

tyrosine treatments but not controls. Dilutions (10-1) of sediment-free pore water (from 5 cm 19 

cores) effluents demonstrated a significant increase in pigmentation one month after tyrosine 20 

addition, with an average absorbance (OD400) of 1.78 (SD = 0.6) for tyrosine treated sediments 21 

compared to an absorbance of 0.01 for controls.  22 

 23 

3.2. Pigment Characterization 24 
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Extracellular bacterial pigmentation was evident on TSAT and LBSM plates with tyrosine 1 

48-72 h after inoculation and increased in intensity for several weeks.  The pigment was redish-2 

brown in color and diffused throughout the agar. DOPA melanin would be expected to be dark 3 

back in color and diffuse poorly in agar.  Pigment production was halted in bacterial cultures with 4 

sulcotrione, relative to pigment production without the inhibitor (data not shown), indicating that 5 

pyomelanin was the pigment produced.   6 

Effluents from soils incubated for 30 days with tyrosine were analyzed to determine if 7 

differences existed in FTIR response relative to treatments. Tyrosine amended soils demonstrated 8 

a characteristic response similar to that of pyomelanin (Fig. 2) but dissimilar to pure tyrosine or 9 

DOPA melanin (Fig. 3).   In particular, similarities between bacterial pyomelanin and tyrosine 10 

amended soils were observed at wavenumbers corresponding to C=O, aromatic rings, phenolic 11 

OH groups, acetate, benzene rings, and C-O bonds associated with alcohols (Conley, 1966; 12 

MacCarthy and Rice, 1985; Turick, et al. 2002; van der Mei, et al. 1989).  FTIR scans of 13 

pyomelanin were different from the other compounds used as standards (Figs. 2 and 3), 14 

demonstrating the potential to discriminate between pyomelanin and other related compounds. 15 

 16 

3.3. Pore water analysis. 17 

Pore water samples taken 30 days after treatments, from 10, 30 and 50 cm depths 18 

demonstrated significantly decreased U in tyrosine treated sediments compared to controls (Fig. 19 

4).  U concentrations were only slightly higher one year after tyrosine amendments occurred, 20 

indicating a capacity for U immobilization for an extended time.  Pore water from any depth 21 

sampled of tyrosine amended sediment was not pigmented.  This is in contrast to surface 22 

sediments of the same treatments one month after tyrosine was applied. 23 

 24 

3.4. Sediment analysis  25 
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Following tyrosine additions, organic matter content of tyrosine amended sediment was 1 

1.76% compared to 1.14% for untreated sediment (P<0.1).  pH values did not change significantly 2 

over time nor with treatment conditions.  For soil depths of 10 and 30cm, pH was 4.2(+0.3) and 3 

for 50cm depth, pH values were 5.0(+0.3). 4 

 5 

3.5. Laboratory studies of pyomelanin complexation with U, goethite and illite 6 

Pyomelanin demonstrated the ability to complex U as a function of pH and pyomelanin 7 

concentration (Fig. 5). Nearly complete complexation of the 100µg/l spike at pH 4 took place with 8 

all pyomelanin concentrations analyzed.  Pyomelanin demonstrated complete adsorption to 9 

geothite at both pH 4 and pH7 and illite at pH4 (Fig. 6).  Adsorption also occurred with illite at pH 10 

7, albeit to a lesser degree than that of pH4.  U adsorption to goethite and illite at pH4 was 11 

enhanced in the presence of pyomelanin compared to samples without pyomelanin (Fig. 7).  At 12 

pH7, U sorption to goethite and illite was complete in the absence of pyomelanin (Fig. 7).  The 13 

amount of U sorbed at pH7 did not decrease as a function of increasing pyomelanin 14 

concentrations, indicating that pyomelanin was not detrimental to U-mineral sorption at this pH.       15 

 16 

4. Discussion 17 

Melanin producing microorganisms are common in sediments and melanin pigments are 18 

capable of binding metals and actinides as well as sorbing to clays and iron minerals.  This project 19 

incorporated the physiological potential of bacteria to retard U mobility through the production of 20 

the recalcitrant, humic-type pigment, pyomelanin. 21 

The quantity of pigment producing bacteria determined through MPN assays from 22 

sediment at the study site demonstrated potential for melanin production in-situ. Tyrosine 23 

amended soils and pure cultures from the study site confirmed this, and resulted in pyomelanin 24 
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production as the most abundant pigment produced, as determined by growth observations, 1 

enzyme inhibitor studies and FTIR analysis.        2 

Pyomelanin was abundant in surface sediments of tyrosine treatments, but absent in pore 3 

water at 10-50 cm depths from the same treatments throughout the study.  The lack of 4 

pigmentation at depth indicated pyomelanin sorption to soil.  Laboratory studies with pyomelanin 5 

confirmed complete pyomelanin sorption to iron minerals at pH4 and pH7 as well as complete 6 

sorption to clay at pH4.  The laboratory studies demonstrated the high probability of pyomelanin 7 

sorption to iron and clay minerals in the pH 4 sediments of the study site.   8 

U complexation with pyomelanin was also demonstrated in the laboratory with nearly 9 

100% of U associated with pyomelanin in all concentrations studied at pH4. The ability of 10 

pyomelanin to complex with U and also sorb well to clay and iron minerals at pH4 was further 11 

demonstrated in laboratory studies, with significant increases of U associated with goethite and 12 

illite in the presence of pyomelanin.  One possible scenario is that pyomelanin served to “tether” U 13 

to goethite and illite and thereby enhance U immobilization.  14 

Field studies corroborate the laboratory results with significant U immobilization in pore 15 

water from tyrosine amended sediments. The low U concentrations in pore water more than one 16 

year after tyrosine addition to the sediment indicates that pyomelanin, a humic-type compound, is 17 

recalcitrant and thereby contributes to U immobilization for an extended time.   18 

This study demonstrated the physiological potential of subsurface bacteria to produce 19 

metabolites capable of U sequestration for extended periods. The one-time addition of tyrosine to 20 

sediment exploited the ability of indigenous microbes to produce pyomelanin, resulting in U 21 

immobilization for at least 13 months. To our knowledge, this is the first demonstration of the 22 

stimulation of in-situ melanin-type pigment production for contaminant immobilization.   23 

 24 

 25 

 26 
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Figure legends 1 

 2 

Figure 1.  Construction details for the sediment columns used for field studies. 3 

 4 

Figure 2.  FTIR spectra from pore water one month after addition of tyrosine.   5 

Comparison of pore water pigment to pyomelanin produced from a pure bacterial culture 6 

demonstrate similarities between peaks as indicated on graph.   7 

 8 

Figure 3.  FTIR spectra of tyrosine and DOPA-melanin.  FTIR data of soil effluents 9 

following 30 days incubation with tyrosine (Fig. 2) were not similar to pure tyrosine or 10 

DOPA-melanin.  11 

 12 

Figure 4.  Pore water uranium concentrations.  Uranium concentrations were consistently 13 

lower in tyrosine treated soil (TY-U) compared to controls (DI-U) measured at 3 depths, 14 

1month (2005) and 13 months (2006) after treatments were added. 15 

 16 

 Figure 5. U complexation with pyomelanin. U complexed with various pyomelanin 17 

concentrations, demonstrating U complexation, with the greatest degree occurring at pH 4. 18 

 19 

Figure  6. Pyomelanin sorption to goethite and illite. Pyomelanin sorbed completely to 10 20 

mg/ml goethite at pH 4 and 7, and illite at pH 4.  Sorption decreased with illite at pH 7. 21 

 22 

Figure 7.  U sorption to minerals as a function of pyomelanin concentration. U sorption to 10 23 

mg/ml of goethite and illite was significantly enhanced in by pyomelanin at pH 4.    24 
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