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EXECUTIVE SUMMARY 
 

 
The Savannah River National Laboratory (SRNL) uses the Lagrangian Particle Dispersion Model (LPDM) in 
conjunction with the Regional Atmospheric Modeling System as an operational tool for emergency response 
consequence assessments for the Savannah River Site (SRS).  The LPDM is an advanced stochastic atmospheric 
transport model used to transport and disperse passive tracers subject to the meteorological field generated by 
RAMS from sources of varying number and shape.  The Atmospheric Technologies Group (ATG) of the SRNL is 
undertaking the task of reviewing documentation and code for LPDM Quality Assurance (QA).  The LPDM QA 
task will include a model technical description, computer coding descriptions, model applications, and configuration 
control.  This report provides a comprehensive technical description of the LPDM model. 
 

 - v - 



WSRC-STI-2006-00058 
July 20, 2006 

TABLE OF CONTENTS  
 
1. INTRODUCTION 1 
 
2. MDEL EQUATIONS 1 
 2.1 A System of Equations for s'φ  2 
 2.2 Solving for s'φ  6 
 2.3 Evaluation of s'γ  9 
 2.4 Simplified Model 13 
 
3. CONCENTRATION CALCULATION 16 
 3.1 "Cell" Method 16 
 3.2 Kernel Method 17 
 
4. SUMMARY 19 
 
5. ACKNOWLEDGMENT 19 
 
REFERENCES 20 
 
 
 
 
 
 

 - vi - 



WSRC-STI-2006-00058 
July 20, 2006 

 
LIST OF FIGURES  
 
Figure 1: Calculation Sequence for Lagrangian Particle Dispersion Model 21 
 
 
 

 - vii - 



WSRC-STI-2006-00058 
July 20, 2006 

1.   INTRODUCTION 
 
The Savannah River National Laboratory (SRNL) uses the Lagrangian Particle Dispersion 
Model (LPDM, Uliasz, 1993) in conjunction with the Regional Atmospheric Modeling System 
(RAMS, Pielke et al., 1992; Chen, 2005) as an operational tool for emergency response 
consequence assessments for the Savannah River Site (SRS).  The LPDM is an advanced 
stochastic atmospheric transport model used to transport and disperse passive tracers subject to 
the meteorological field generated by RAMS from sources of varying number and shape.  The 
Atmospheric Technologies Group (ATG) of the SRNL is undertaking the task of reviewing 
documentation and code for LPDM Quality Assurance (QA).  The LPDM QA task will include a 
model technical description, computer coding descriptions, model applications, and 
configuration control.  This report provides a comprehensive technical description of the LPDM 
model. 
 
 
2.  MODEL EQUATIONS 
 
The Lagrangian particle model follows a particle in space and time.  The instantaneous velocity 
of the particle is decomposed into a mean and a random (turbulent) component, as shown in Eqs. 
1 through 3 in a three dimensional Cartesian coordinate. 
 

uuU
t
x ′′+==
∂
∂ , (1) 

 

vvV
t
y ′′+==
∂
∂ , (2) 

 

wwW
t
z ′′+==
∂
∂ , (3) 

 
where u, v, and w are mean velocities in the x-, y- and z- direction, respectively.  To follow the 
same notation in the RAMS Technical Description Report (Chen, 2005), the random component 
is denoted by a double prime.  The particle location at t + ∆t is 
 
( ) ( ) ( ) tuutxttx ∆′′++=∆+ , (4) 

   
( ) ( ) ( ) tvvtytty ∆′′++=∆+ , (5) 

 
( ) ( ) ( ) twwtzttz ∆′′++=∆+ . (6) 

 
Markov chain (a special type of stochastic process) deals with a sequence of random events.  The 
occurrence of the current random event is affected by the previous event.  The Markov chain for 
the random velocity of a Lagrangian particle is proposed by Zanetti (1984) as:  
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( ) ( ) uttutu γφ +∆−′′=′′ 1 , (7) 
 
( ) ( ) ( ) vtuttvtv γφφ +′′+∆−′′=′′ 32 , (8) 

 
( ) ( ) ( ) wtutvttwtw γφφφ +′′+′′+∆−′′=′′ 654)( , (9) 

 
where uγ , vγ  and wγ  are purely random uncorrelated components, and 1φ , …, 6φ  are 
coefficients which represent the memory effects of the previous time step.  The follow section 
describes the procedures to obtain the coefficients ( 1φ , …, 6φ ). 
 
2.1  A System of Equations for s'φ  
 
This section presents derivations of a system of six equations for the six unknowns ( 1φ , …, 6φ ) 
with the known quantities (variances, co-variances and the Lagrangian integral time scales).   
 
After multiplying Eq. 7 by and taking the average, one obtains )( ttu ∆−′′
 
( ) ( ) ( ) ( ) ( )ttuttuttuttutu u ∆−′′+∆−′′∆−′′=∆−′′′′ γφ1 . (10) 

 
The first term on the right hand of Eq. 10 can be written as: 
 

( ) ( ) ( ) ( ) 2
111 uttuttuttuttu σφφφ =∆−′′∆−′′=∆−′′∆−′′ , (11) 

 
where  is the variance of the u component velocity. 2

uσ
 
The last term on the right hand of Eq. 10 is 
 

( ) ( ) 0=∆−′′=∆−′′ ttuttu uu γγ . (12) 
 
Substituting Eqs. 11 and 12 into Eq. 10, we get 
 
( ) ( ) 2

1 uttutu σφ=∆−′′′′ . (13) 
 
and Eq. 13 can be re-arranged as: 
 

( ) ( )
u

u

Rttutu
=

∆−′′′′
= 21 σ

φ , (14) 

 
where Ru is the Lagrangian autocorrelation of wind velocity u for lag time ∆t, and is defined as: 
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( ) ( ) ( )
LuT
t

u
u ettututR

∆
−

=
∆−′′′′

=∆ 2σ
, (15) 

 
where  is the Lagrangian integral time scale in the x direction, and variance  is LuT 2

uσ uu ′′′′ . 
 
The Lagrangian autocorrelation of wind velocity components, v, and w, are defined in Eqs. 16 
and 17, respectively. 
 

( ) ( ) ( )
LvT
t

v
v ettvtvtR

∆
−

=
∆−′′′′

=∆ 2σ
, (16) 

 
where  is the Lagrangian integral time scale in the y direction, and variance  is LvT 2

vσ vv ′′′′ . 
 

( ) ( ) ( )
LwT
t

w
w ettwtwtR

∆
−

=
∆−′′′′

=∆ 2σ
, (17) 

 
where  is the Lagrangian integral time scale in the z direction, and variance  is LwT 2

wσ ww ′′′′ . 
 
After multiplying Eq. 8 by  and taking the average, we obtain: ( ttv ∆−′′ )
 
( ) ( ) ( ) ( ) ( ) ( ) ( )ttvttvtuttvttvttvtv v ∆−′′+∆−′′′′+∆−′′∆−′′=∆−′′′′ γφφ 32 . (18) 

 
From Eq. 16, the left hand side of Eq. 18 can be written as: 
 
( ) ( ) 2

vvRttvtv σ=∆−′′′′ . (19) 
 
The first term of the right hand side of Eq. 18 is: 
 

( ) ( ) 2
22 vttvttv σφφ =∆−′′∆−′′ . (20) 

 
The second term of the right hand side of Eq. 18 can be derived by multiplying Eq. 7 by 

( ttv ∆−′′3 )φ , and then taking the average of the resulting equation, as shown below; 
 
( ) ( ) ( ) ( ) ( ) vuttvttvttuttvtu u ′′′′=∆−′′+∆−′′∆−′′=∆−′′′′ 11 φγφ . 

 
From the above relation, it can be shown the second term of the right hand side of Eq. 18 is 
 

( ) ( ) vuttvtu ′′′′=∆−′′′′ 133 φφφ . (21) 
 
The last term of the right hand side of Eq. 18 is zero. 
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After substituting Eqs. 19 through 21 into Eq. 18, it can be written as: 
 

2
31

2
2 vvv Ruv σφφσφ =′′′′+ . (22) 

 
After multiplying Eq. 9 with  and taking the average, we obtain: ( ttw ∆−′′ )
 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )ttwttwtuttwtvttwttw

ttwtw

w ∆−′′+∆−′′′′+∆−′′′′+∆−′′∆−′′

=∆−′′′′

γφφφ 654

)(
. (23) 

 
From Eq. 17, the left hand side of Eq. 23 can be written as: 
 

( ) 2)( wwRttwtw σ=∆−′′′′ . (24) 
 
The first term of the right hand side of Eq. 23 is 
 

( ) ( ) 2
44 wttwttw σφφ =∆−′′∆−′′ . (25) 

 
By replacing  in the second term of the right hand side of Eq. 23 with Eq. 8 and also utilizing 
Eq. 7, the second term of the right hand side of Eq. 23 can be simplified as: 

v ′′

 
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( )

wuwv

ttwttwttuwv

ttwttwtuttwttv

ttwttwtuttwttvttwtv

u

v

v

′′′′+′′′′=

∆−′′+∆−′′∆−′′+′′′′=

∆−′′+∆−′′′′+∆−′′∆−′′=

∆−′′+∆−′′′′+∆−′′∆−′′=∆−′′′′

53152

13552

53525

3255

φφφφφ

γφφφφφ

γφφφφφ

γφφφφ

. (26) 

 
By replacing  in the third term of the right hand side of Eq. 23 with Eq. 7, the third term of the 
right hand side of Eq. 23 can be simplified as: 

u ′′

 
( ) ( ) ( ) ( ) ( )( )

wu

ttwttwttuttwtu u

′′′′=

∆−′′+∆−′′∆−′′=∆−′′′′

61

166

φφ

γφφφ
. (27) 

 
The last term of the right hand side of Eq. 23 is zero. 
 
Substituting Eq. 24 through 27 into Eq. 23, we obtain 
 

wuwuvwR www ′′′′+′′′′+′′′′+= 1631525
2

4
2 φφφφφφφσφσ . (28) 
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Eq. 28 can be re-arranged as: 
 

( ) wuwvR www ′′′′++′′′′+= 653152
2

4
2 φφφφφφσφσ . (29) 

 
It should be noted that the second term of the right hand side of Eq. 29 is different from that 
inUliasz (1990, Eq. 105), and the author believes that Eq. 105 in Uliasz (1990) is not correct. 
 
Taking the product of Eq, 7 and Eq. 8, we obtain 
 
( ) ( ) ( )[ ] ( )[ ] ( )tvttututtvtu uv ′′+∆−′′=+′′+∆−′′′′ γφγφφ 132 . (30) 

 
Re-arranging and averaging Eq. 30, we get 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )tvtvttu

tutututtvtu

u

v

′′+′′∆−′′

=′′+′′′′+∆−′′′′

γφ

γφφ

1

32 . (31) 

 
The first term of the left hand side of Eq. 31 can be simplified using Eq. 7 as: 
 

( ) ( ) ( ) ( ) ( )
vu

ttvttvttuttvtu u

′′′′=

∆−′′+∆−′′∆−′′=∆−′′′′

21

122

φφ

γφφφ
. (32) 

 
The second term of the left hand side of Eq. 31 is: 
 

( ) ( ) 2
33 ututu σφφ =′′′′ . (33) 

 
 
The first term of the right hand side of Eq. 31 can be simplified using Eq. 7 as: 
 
( ) ( ) ( ) ( ) ( )tvtvttutvtu u ′′+′′∆−′′=′′′′ γφ1 .  

 
and 
 

( ) ( ) vutvttu ′′′′=′′∆−′′1φ  (34) 
 
 
Substituting Eqs. 32 through 34 into Eq. 31, we obtain 
 

vuvu u ′′′′=+′′′′ 2
321 σφφφ . (35) 

 
Multiplying Eq, 7 and Eq. 9, we obtain 
 
( ) ( ) ( ) ( )[ ] ( )[ ] )(1654 twttututvttwtu uw ′′+∆−′′=+′′+′′+∆−′′′′ γφγφφφ . (36) 
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Re-arranging and averaging Eq. 36, we get 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) )()(1654 twtwttututututvtuttwtu uw ′′+′′∆−′′=′′+′′′′+′′′′+∆−′′′′ γφγφφφ . (37) 
 
The first term of the left hand side of Eq. 37 can be simplified by multiplying Eq. 7.  We 
multiply Eq. 7 by ( ttw ∆−′′4 )φ , and then average the resulting equation.  The final equation is 
 

( ) ( ) ( ) ( ) ( )ttwttwttuttwtu u ∆−′′+∆−′′∆−′′=∆−′′′′ γφφφφ 4144 . 
 
The above equation can be simplified as: 
 

( ) ( ) wuttwtu ′′′′=∆−′′′′ 144 φφφ . (38) 
 
The first term of the right hand side of Eq. 37 can also be simplified from Eq. 7 by multiplying 
Eq. 7 with , then averaging the resulting equation.  The final equation is )(tw ′′
 
( ) ( ) )()()( 1 twtwttutwtu u ′′+′′∆−′′=′′′′ γφ . 

 
The above equation can be re-arranged as 
 

( ) wutwttu ′′′′=′′∆−′′ )(1φ  (39) 
 
Substituting Eqs. 38 and 39 into Eq. 37, we obtain 
 

wuvuwu u ′′′′=+′′′′+′′′′ 2
6541 σφφφφ . (40) 

 
Multiplying Eq, 8 and Eq. 9, we get 
 
( ) ( ) ( ) ( )[ ] ( ) ( )[ ] )(32654 twtuttvtutvttwtv vw ′′+′′+∆−′′=+′′+′′+∆−′′′′ γφφγφφφ . (41) 

 
Re-arranging and averaging Eq. 41, we obtain 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) )()()( 32

654

twtwtutwttv

tvtvtutvtvttwtv

v

w

′′+′′′′+′′∆−′′

=′′+′′′′+′′′′+∆−′′′′

γφφ

γφφφ
. (42) 

 
After replacing the term  in the first term of the left hand side of Eq. 42 with Eq. 8, we 
obtain the following equation: 

( )tv ′′

 
( ) ( ) ( ) ( )[ ] ( )

( ) ( ) ( ) ( )ttwtuttwttv

ttwtuttvttwtv v

∆−′′′′+∆−′′∆−′′=

∆−′′+′′+∆−′′=∆−′′′′

4342

3244

φφφφ

γφφφφ
. 
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By substituting Eq. 38 into the last term of the right hand side of the above equation, we get 
 

( ) ( ) wuwvttwtv ′′′′+′′′′=∆−′′′′ 431424 φφφφφφ . (43) 
 
The first term of the right hand side of Eq. 42 can be obtained from Eq. 8.  After multiplying Eq. 
8 by , and then averaging the resulting equation, the following equation can be obtained. )(tw ′′
 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) wutwttv

twtutwttv

twtwtutwttvtwtv v

′′′′+′′∆−′′=

′′′′+′′∆−′′=

′′+′′′′+′′∆−′′=′′′′

32

32

32

)(

)(

)()(

φφ

φφ

γφφ

. 

 
The above equation can be re-arranged to obtain the first term of the right hand side of Eq. 42: 
 

( ) wuwvtwttv ′′′′−′′′′=′′∆−′′ 32 )( φφ . (44) 
 
Substituting Eqs. 43 and 44 into Eq. 42, we obtain 
 

wuuwwvvuwuwv v ′′′′+′′′′−′′′′=′′′′++′′′′+′′′′ 336
2

543142 φφφσφφφφφφ , (45) 
 
which simplified to 
 

wvvuwuwv v ′′′′=′′′′++′′′′+′′′′ 6
2

543142 φσφφφφφφ . (46) 
 
 
2.2   Solving for s'φ   
 
This section shows the procedures to solve s'φ  as a function of variances, co-variances, and the 
Lagrangian integral time scales.  The system of equations to be solved is listed next. 
 
 

uR=1φ . (14) 
 

2
31

2
2 vvv Ruv σφφσφ =′′′′+ . (22) 

 
( ) wuwvR www ′′′′++′′′′+= 653152

2
4

2 φφφφφφσφσ . (29) 
 

vuvu u ′′′′=+′′′′ 2
321 σφφφ . (35) 

 
wuvuwu u ′′′′=+′′′′+′′′′ 2

6541 σφφφφ . (40) 
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wvvuwuwv v ′′′′=′′′′++′′′′+′′′′ 6
2

543142 φσφφφφφφ . (46) 
 
After substituting Eq. 14 into Eq. 22 and Eq. 35, Eq. 22 becomes 
 

2
3

2
2 vvuv RuvR σφσφ =′′′′+ , (47) 

 
and Eq. 35 becomes 
 

vuvuR uu ′′′′=+′′′′ 2
32 σφφ . (48) 

 
Eqs. 47 and 48 can be expressed in a matrix form as: 
 

⎥
⎦

⎤
⎢
⎣

⎡
′′′′

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

′′′′
′′′′

vu
R

vuR
uvR vv

uu

uv
2

3

2
2

2 σ
φ
φ

σ
σ

 (49) 

 
The solution of 2φ  is 
 

( )
( )2222

222

22

22

2

2

2

2

2
vuR

vuRR
vuRuvR
vuuvRR

vuR
uvR

vu
uvRR

uuv

uuvv

uuuv

uuvv

uu

uv

u

uvv

′′′′−

′′′′−
=

′′′′′′′′−

′′′′′′′′−
=

′′′′
′′′′

′′′′
′′′′

=
σσ

σσ
σσ
σσ

σ
σ

σ
σ

φ  

 
( )

( )
22

2
2

22

2

2

1
uv

u

uv
uv

vuR

vuRR

σσ

σσ
φ

′′′′
−

′′′′
−

= . (50) 

 
The solution of 3φ  is 
 

( )
( )2222

2

22

22

2

2

22

3
1

vuR

RRvu
vuRuvR
vuRRvu

vuR
uvR

vuvuR
R

uuv

uvv

uuuv

uvvv

uu

uv

u

vvv

′′′′−

−′′′′
=

′′′′′′′′−

′′′′−′′′′
=

′′′′
′′′′

′′′′′′′′
=

σσ

σ
σσ

σσ

σ
σ

σσ

φ  

 

( )

( ) 2

22
2

2

3

1

1

uv
u

u
uv

vuR

vuRR

σσ

σ
φ

′′′′
−

′′′′
−

= . (51) 
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Eq. 29 can be re-arranged as: 
 

( ) 2
6153124

2
www Rwuwuwv σφφφφφφφσ =′′′′+′′′′+′′′′+ . (52) 

 
Eq. 46 can be re-arranged as: 
 
( ) wvvuwuwv v ′′′′=′′′′++′′′′+′′′′ 65

2
4312 φφσφφφφ . (53) 

 
Eqs. 40, 52 and 53 can be expressed in a matrix form as: 
 

( )
( ) ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′′′′

′′′′

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′′′′′′′′+′′′′
′′′′′′′′+′′′′

′′′′′′′′

wv
R

wu

vuwuwv
wuwuwv

vuwu

ww

v

w

u
2

6

5

4

2
312

1312
2

2
1

σ
φ
φ
φ

σφφφ
φφφφσ
σφ

 (54) 

 
1φ , 2φ  and 3φ  in Eq. 54 are given by Eqs. 14, 50 and 51, respectively. 

 

( )

( )
( ) vuwuwv

wuwuwv
vuwu

vuwv
wuwuwvR

vuwu

v

w

u

v

ww

u

′′′′′′′′+′′′′
′′′′′′′′+′′′′

′′′′′′′′

′′′′′′′′
′′′′′′′′+′′′′

′′′′′′′′

=

2
312

1312
2

2
1

2
1312

2

2

4

σφφφ
φφφφσ
σφ

σ
φφφφσ
σ

φ , (55) 

 
 

( )

( )
( ) vuwuwv

wuwuwv
vuwu

vuwvwuwv
wuR

wuwu

v

w

u

www

u

′′′′′′′′+′′′′
′′′′′′′′+′′′′

′′′′′′′′

′′′′′′′′′′′′+′′′′
′′′′

′′′′′′′′

=

2
312

1312
2

2
1

312

1
22

2
1

5

σφφφ
φφφφσ
σφ

φφφ
φσσ
σφ

φ , (56) 
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( )
( )

( )
( ) vuwuwv

wuwuwv
vuwu

wvwuwv
Rwuwv

wuvuwu

v

w

u

v

www

′′′′′′′′+′′′′
′′′′′′′′+′′′′

′′′′′′′′

′′′′′′′′+′′′′
′′′′+′′′′

′′′′′′′′′′′′

=

2
312

1312
2

2
1

2
312

2
312

2
1

6

σφφφ
φφφφσ
σφ

σφφφ
σφφφσ

φ

φ . (57) 

 
 
2.3  Evaluation of the sγ ′  
 
The terms, uγ , vγ  and wγ  are randomly uncorrelated.  It is assumed that uγ , vγ  and wγ  
describe a Gaussian distribution, and the mean value of  uγ  and vγ  is zero.   However, the mean 
value of wγ  is not zero.  This section presents the derivations of the variances of uγ , vγ  and wγ . 
 
 The instantaneous value of uγ  can be expressed as: 
 

uuuu γγγγ ′′=′′+= , (58) 
 
where uγ  is the mean value and is zero, and uγ ′′  is the deviation from the mean. 
 
Substituting Eq. 58 into Eq. 7, one obtains 
 

( ) ( )ttutuu ∆−′′−′′=′′ 1φγ . (59) 
 
Form Eq. 59, the variance of uγ  is 
 

( ) ( )[ ] ( ) ( )[ ]
( ) ( ) ( ) ( ) ( ) ( )ttuttuttutututu

ttututtutuuuu

∆−′′∆−′′+∆−′′′′−′′′′=

∆−′′−′′∆−′′−′′=′′′′=
2

11

11
2

2 φφ

φφγγσ γ . (60) 

 
From Eq. 7, the term, ( ) ( )ttutu ∆−′′′′ , can be expressed as: 
 
( ) ( ) ( ) ( ) ( ) 2

11 uu ttuttuttuttutu σφγφ =∆−′′+∆−′′∆−′′=∆−′′′′ . (61) 
 
Substituting Eq. 61 into Eq. 60, the variance of uγ  is 
 
  22

1
222

1
22

1
22 2 uuuuuu

σφσσφσφσσ γ −=+−=
 

( )2
1

22 1 φσσ γ −= uu
. (62) 
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Using the same procedures shown above, the variance of vγ  can be derived from Eq. 8, as 
shown below:  
 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )ttvtvttvtu

tvtuttvttvtututvtv

tuttvtvtuttvtvvvv

∆−′′′′−∆−′′′′+

′′′′−∆−′′∆−′′+′′′′+′′′′=

′′−∆−′′−′′′′−∆−′′−′′=′′′′=

232

3
2
2

2
3

3232
2

22

2

φφφ

φφφ

φφφφγγσ γ

 

 
The above equation can be simplified as: 
 

( ) ( ) ( ) ( )ttvtvttvtuvuvuvv
∆−′′′′−∆−′′′′+′′′′−++= 2323

22
2

22
3

22 222 φφφφσφσφσσ γ . (63) 
 
From Eq. 21, the second to last term of the right hand side of Eq. 63 can be expressed as: 
 

( ) ( ) vuttvtu ′′′′=∆−′′′′ 32132 22 φφφφφ . (64) 
 
From Eq. 22, the last term of the right hand side of Eq. 63 can be expressed as: 
 

( ) ( ) [ ] uvuvttvtv vv ′′′′+=′′′′+=∆−′′′′ 321
22

231
2

222 2222 φφφσφφφσφφφ . (65) 
 
Substituting Eqs. 64 and 65 into Eq. 63, Eq. 63 becomes: 
 

( ) vu

uvvuvu

uv

vvuvv

′′′′−+−=

′′′′−−′′′′+′′′′−++=

3
22

3
2
2

2

321
22

23213
22

2
22

3
22

21

2222

φσφφσ

φφφσφφφφφσφσφσσ γ . (66) 

 
In order to conform the expression of Eq. 66 with the expression of Eq. 115 in Uliasz ‘s paper 
(1990), Eq. 35 is used to modify the last term of the right hand side of Eq. 66.  The modified Eq. 
66 is 
 

( ) [ ]
( ) 22

3321
22

3
2
2

2

2
3213

22
3

2
2

22

221

21

uuv

uuv

vu

vu
v

σφφφφσφφσ

σφφφφσφφσσ γ

−′′′′−+−=

+′′′′−+−=
. 

 
Re-arrange the above equation to obtain the following equation which is the Eq. 115 in Uliasz ‘s 
paper (1990): 
 

( ) vuuvv
′′′′−−−= 321

22
3

2
2

22 21 φφφσφφσσγ . (67) 
 
The vertical component, wγ , has a Gaussian distribution with a non-zero mean, and is expressed 
as: 
 

www γγγ ′′+= . (68) 
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Substituting Eq. 68 into Eq. 9, the term, wγ ′′  (deviation from the mean), is 
 

( ) ( ) ( ) ww tutvttwtw γφφφγ −′′−′′−∆−′′−′′=′′ 654)( . (69) 
 
The variance of wγ  is 
 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ww

w

w

ww

ww

ww

tutvtutv

ttwtuttwtvttw

twtutwtvtwttwtw

tututvtvttwttwtwtw

tutvttwtwtutvttwtw

w

γφγφφφ

γφφφφφ

γφφφ

γγφφφφφφ

γφφφγφφφ

γγσ γ

′′+′′+′′′′+

∆−′′+′′∆−′′+′′∆−′′+

′′−′′′′−′′′′−∆−′′′′−

+′′′′+′′′′+∆−′′∆−′′+′′′′=

−′′−′′−∆−′′−′′−′′−′′−∆−′′−′′=

′′′′=

6565

46454

654

665544

654654

2

222

222

)(2)(2)(2)(2

)()(

)()(

 

 (70) 
 
Eq. 70 can be simplified as: 
 

( )
( )

( ) ( ) ( ) ( ) vututtwtvttw

wuwvttwtw
wuvwww

′′′′+′′∆−′′+′′∆−′′+

′′′′−′′′′−∆−′′′′−

++++=

656454

654

222
6

22
5

22
4

22

222

22)(2

φφφφφφ

φφφ

γσφσφσφσσ γ

. (71) 

 
The term, ( )2wγ , is a constant which can be lumped into the vertical drift velocity.  The term, 

( )ttwtw ∆−′′′′ 4)(2 φ , can be evaluated by Eq. 29 as: 
 

( ) ( )[ ]
wuwuwv

wuwvttwtw

w

w

′′′′+′′′′+′′′′+=

′′′′++′′′′+=∆−′′′′

6415431542
22

4

653152
2

444

2222

2)(2

φφφφφφφφφφσφ

φφφφφφσφφφ
. (72) 

 
In addition, the term, ( ) ( )tvttw ′′∆−′′542 φφ , can be evaluated by Eq. 26 as: 
 

( ) ( ) [ ]
wuwv

wuwvtvttw

′′′′+′′′′=

′′′′+′′′′=′′∆−′′

5431542

53152454

22

22

φφφφφφφ

φφφφφφφφ
. (73) 

 
The term, ( ) ( )tuttw ′′∆−′′642 φφ , can be evaluated by Eq. 27, as: 
 

( ) ( ) wututtw ′′′′=′′∆−′′ 64164 22 φφφφφ . (74) 
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After substituting Eqs. 72 through 74 into Eq. 71, Eq. 71 becomes: 
 

( )
[ ]
[ ] vuwuwuwv

wuwvwuwuwvw

wuvwww

′′′′+′′′′+′′′′+′′′′+

′′′′−′′′′−′′′′+′′′′+′′′′+−

++++=

656415431542

656415431542
22

4

222
6

22
5

22
4

22

2222

222222

φφφφφφφφφφφφ

φφφφφφφφφφφφσφ

γσφσφσφσσ γ

. (75)  

 
After re-grouping, we obtain 
 

vuwuwu

wuwvwuwuw

uvww

′′′′+′′′′+′′′′+

′′′′−′′′′−′′′′−′′′′−−

++=

656415431

656415431
22

4

22
6

22
5

22

222

2222

φφφφφφφφφ

φφφφφφφφφσφ

σφσφσσ γ

. (76) 

 
The term, wu ′′′′62φ , in Eq. 76 can be replaced by Eq. 40 and we get: 
 

[ ] 22
665641

2
654166 22222 uu vuwuvuwuwu σφφφφφφσφφφφφφ +′′′′+′′′′=+′′′′+′′′′=′′′′ . (77) 

 
Also the term, wv ′′′′52φ , after being replaced by Eq. 46, becomes: 
 

[ ]
vuwuwv

vuwuwvwv

v

v

′′′′++′′′′+′′′′=

′′′′++′′′′+′′′′=′′′′

56
22

55431542

6
2

54314255

2222

22

φφσφφφφφφφφ

φσφφφφφφφφ
. (78) 

 
After substituting Eqs. 77 and 78 into Eq. 76, Eq. 76 becomes: 
 

vuwuwu

vuwu

vuwuwv

wuwu

u

v

w

uvww

′′′′+′′′′+′′′′+

−′′′′−′′′′−

′′′′−−′′′′−′′′′−

′′′′−′′′′−−

++=

656415431

22
665641

56
22

55431542

6415431
22

4

22
6

22
5

22

222

222

2222

22

φφφφφφφφφ

σφφφφφφ

φφσφφφφφφφφ

φφφφφφφσφ

σφσφσσ γ

. (79) 

 
Eq. 79 can be simplified as: 
 

( ) [ ] wvwuvuuvww
′′′′−′′′′+−′′′′−−−−= 5426534165

22
6

22
5

2
4

22 2221 φφφφφφφφφφσφσφφσσ γ . (80) 
 
It should be noted that the second term of the right hand side of Eq. 80 is different from that in 
the Eq. 116 of Uliasz (1990), and the author believes that Eq. 116 in Uliasz (1990) is not correct. 
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The random fluctuations are generated at each time step as: 
 

uu u
ησγ γ= , (81) 

 
vv v

ησγ γ= , (82) 
 
and 
 

dww w
ωησγ γ += , (83) 

 
where uη ,  vη , wη  are random numbers from a normalized Gaussian distribution, and  dω  is a 
vertical drift velocity. 
 
The Lagrangian time scales are derived from the diagonal elements of the eddy diffusivity 
tensor, Kxx, Kyy, and Kzz as: 
 

2
u

xx
Lu

K
T

σ
= , (84) 

 

2
v

yy
Lv

K
T

σ
= , (85) 

 

2
w

zz
Lw

K
T

σ
= . (86) 

 
The eddy diffusivity tensor is derived from the second order closure scheme in the RAMS 
model. 
 
The time step, ∆t, used in the LPDM calculation varies in inhomogeneous turbulent flow and 
depends on : LwT
 

( min,1.0max tTt Lw ∆=∆ ) . (87) 
 
The minimum time step, , is an arbitrarily pre-scribed input value to avoid zero time step 
near the ground surface. 

mint∆

 
2.4  Simplified Model 
 
If the covariance terms of the turbulence are ignored, the model is simplified.  From Eq. 50, 2φ  is 
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( )

( ) v

uv
u

uv
uv

R
vuR

vuRR
=

′′′′
−

′′′′
−

=

22

2
2

22

2

2

1
σσ

σσ
φ . (88) 

 
From Eq. 51, 3φ  is 
 

( )

( ) 0

1

1

2

22
2

2

3 =
′′′′

−

′′′′
−

=

uv
u

u
uv

vuR

vuRR

σσ

σ
φ . (89) 

 
From Eq. 55, 4φ  is 
 

( )

( )
( )

w
uvw

uvww

v

w

u

v

ww

u

v

w

u

v

ww

u

R
R

R

vuwuwv
wuwuwv

vuwu

vuwv
wuwuwvR

vuwu

===

′′′′′′′′+′′′′
′′′′′′′′+′′′′

′′′′′′′′

′′′′′′′′
′′′′′′′′+′′′′

′′′′′′′′

=

222

222

2

2

2

2

2

2

2
312

1312
2

2
1

2
1312

2

2

4

00
00

00

00
00

00

σσσ
σσσ

σ
σ

σ

σ
σ

σ

σφφφ
φφφφσ
σφ

σ
φφφφσ
σ

φ

. (90) 

 
From Eq. 56, 5φ  is 
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( )

( )
( )

0

00
00

00

000
0

00

2

2

2

22

2

2
312

1312
2

2
1

312

1
22

2
1

5

==

′′′′′′′′+′′′′
′′′′′′′′+′′′′

′′′′′′′′

′′′′′′′′′′′′+′′′′
′′′′

′′′′′′′′

=

v

w

u

www

u

v

w

u

www

u

R

vuwuwv
wuwuwv

vuwu

vuwvwuwv
wuR

wuwu

σ
σ

σ

σσ
σ

σφφφ
φφφφσ
σφ

φφφ
φσσ
σφ

φ

. (91) 

 
From Eq. 57, 6φ  is 
 

( )
( )

( )
( )

0

00
00

00
00

0
000

2

2

2

2

22

2
312

1312
2

2
1

2
312

2
312

2
1

6

==

′′′′′′′′+′′′′
′′′′′′′′+′′′′

′′′′′′′′

′′′′′′′′+′′′′
′′′′+′′′′

′′′′′′′′′′′′

=

v

w

u

v

www

v

w

u

v

www

R

vuwuwv
wuwuwv

vuwu

wvwuwv
Rwuwv

wuvuwu

σ
σ

σ

σ
σσ

σφφφ
φφφφσ
σφ

σφφφ
σφφφσ

φ

φ

. (92) 

 
Substituting Eqs. 88 and 89 into Eq. 67, Eq. 67 becomes: 
 

( )222 1 vv R
v

−= σσ γ , 
 
and Eq. 82 becomes; 
 

( ) vvvuv R
u

ησησγ γ
2
1

21−== . (93) 
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Substituting Eqs. 90, through 92 into Eq. 80, Eq. 80 becomes: 
 

( )222 1 ww R
w

−= σσ γ , 
 
and Eq. 83 becomes: 
 

( ) dwwwdww R
w

ωησωησγ γ +−=+= 2
1

21 . (94) 
 
Substituting Eqs. 14 and 62 into Eq. 81, Eq. 81 becomes: 
 

( ) uuuuu R
u

ησησγ γ
2
1

21−== . (95) 
 
Substituting Eqs. 14 and 95 into Eq. 7, Eq. 7 becomes: 
 

( ) ( ) ( ) uuuu RttuRtu ησ 2
1

21−+∆−′′=′′ . (96) 
 
Substituting Eqs. 88, 89 and 93 into Eq. 8, Eq. 8 becomes: 
 

( ) ( ) ( ) vvvv RttvRtv ησ 2
1

21−+∆−′′=′′ . (97) 
 
Substituting Eqs. 90, 91, 92 and 94 into Eq. 9, Eq. 9 becomes: 
 

( ) ( ) dwwww RttwRtw ωησ +−+∆−′′=′′ 2
1

21)( . (98) 
 
Eqs. 96, 97 and 98 which neglect the covariance terms are used in the current LPDM model.  
The LPDM is going to be upgraded to include all the covariance terms. 
 
 
3.  CONCENTRATION CALCULATION 
 
3.1  “Cell” Method 
 
In the Lagrangian particle transport calculation, the calculated particle concentration at a given 
time and space can be determined by counting the number of particles in a sampling volume, 
described as: 
 

( ) ( )l

N

i
i

zyx

m
tzyxC

∆∆∆
=

∑
=1,,, , (99) 
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where (  is a sampling volume at location l, m)lzyx ∆∆∆ i is the mass of particle i, and N is the 
number of particles in the sampling volume.  Normally known as the “Cell” method, Eq. 99 
shows that the calculated particle concentration is dependent on the number of particles to be 
simulated and the sampling volume size.  If the sampling volume is too large, the calculated 
concentration can be over-smoothed.  On the other hand, if the sampling volume is too small, the 
calculated concentration is very noisy.  One may increase the number of sampling particles to 
minimize the noise.  However, this increase in sampling particles results in higher computational 
cost.. 
 
3.2  Kernel Method 
 
To improve the computational efficiency, Yamada and Bunker (1988) proposed a kernel density 
estimator method to calculate the particle concentration.   The main idea of the kernel density 
estimate method is that statistically, one could imaging that there would be a probability 
distribution of particles associated with a sampling particle at location i.  Yamada and Bunker 
(1988) assumed this probability distribution is a Gaussian distribution and the mean location of 
this distribution is at the sampling particle location i.  This distribution would contribute some 
particle concentrations at a location l.  Therefore, the particle concentration at the location l 
could be estimated by summing the contributions from all the sampling particles in the space.  
This kernel method does not need a sampling volume and can produce a smooth concentration 
distribution with a much smaller number of sampling particles.  Therefore, it would improve the 
computational efficiency significantly.  The mathematical expression of this kernel method is 
 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +−−
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−−
= ∑

= zi

iz

yi

iy

xi

ix

zi

iz

yi

iy

xi

ix
N

i ziyixi
zyx h

Zl
h

Yl
h

Xl
K

h
Zl

h
Yl

h
Xl

K
hhh

mlllC ,,,,1,,
1

, (100) 

 
where 
 
( )zyx lllC ,,  = particle concentration at location l, 

( iii ZYX ,, ) = coordinates of the i-th sampling particle, 
m = particle mass, 
N = number of the sampling particle, 

ziyixi hhh ,,  = parameters to determine the distribution bandwidth in X, Y, Z direction 
respectively, 
K = probability distribution function. 
 
The last term in Eq. 100 accounts for the particles reflected from the ground surface. 
 
Yamada and Bunker (1988), and Uliasz (1990) assumed that the bandwidth ( ) are 
calculated separately for each particle, and were assumed to be proportional to the standard 
deviation (σ

ziyixi hhh ,,

xi, σyi, σzi,) of a Gaussian puff with a center at the particle coordinates: 
 

xixi ah σ= , (101) 
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yiyi ah σ= , (102) 

 
zizi ah σ= , (103) 

 
where a is a proportional constant.  Based on Taylor’s homogeneous diffusion theory, Yamada 
and Bunker (1988) derived the standard deviations (σxi, σyi, σzi,) by time integration of the 
velocity variances encountered during the history of the particle.  For example, σyi for the i-th 
particle (the subscript i is dropped in the following derivations for convenience) is 
 

( ) τζζσσ
τ

ddR
t

vvy ∫ ∫=
0 0

22 2 . (104) 

 
Substituting Eq. 16 into Eq. 104, we obtain: 
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−==

−

−−

−
−

∫

∫∫ ∫ ==

LV
T

t

LVLVv

Lv
T

t

LvLVv

t
T

LVLVv

t
T

Lvv

t T

vy

TeTtT

TeTtTdeTT

deTdde

LV

LVLV

Lv
Lv

2

222

0

2

0
0

2

0 0

22

2

22

22

σ

στσ

τστζσσ

τ

τζτ
ζ

. (105) 

 

For , the term LvTt 2≤ LVT
t

LV eT
−

 can be approximated as .  Therefore, Eq. 105 is approximated 
as: 

LVT

 

22222 22 ttTTeTtT vLVvLV
T

t

LVLVvy
LV σσσσ ≈≅

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+=

−

. (106) 

 
From Eq. 106, the standard deviation can be approximated as: 
 

tvy σσ = . (107) 

For , the term LvTt 2> LVT
t

LV eT
−

 can be approximated as zero.  Therefore, Eq. 105 is 
approximated as: 
 

( ) tTTtTTeTtT LVvLVLVvLV
T

t

LVLVvy
LV 2222 222 σσσσ ≈−≅

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+=

−

. (108) 
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From Eq. 108, the standard deviation can be approximated as: 
 

tTLVvy
22 2σσ = . (109) 

 
The standard deviation in the y-direction is summarized as: 
 

tvy σσ =                                for     (107) LvTt 2≤
 

tTLVvy
22 2σσ =                       for    (109) LvTt 2>

 
It is assumed that this theory ia applicable over a short time period, such as the time step ∆t used 
in the particle transport simulations: 
 

( ) ( ) tttt vyy ∆+=∆+ σσσ                               for   LvTt 2≤   (110) 
 

( ) ( ) tTttt LVvyy ∆+=∆+ 222 2σσσ                       for    (111) LvTt 2>
 
The standard deviations for the other directions (σxi, and σzi,) can be derived in a similar manner. 
 
The Gaussian distribution function was used for the distribution function K by Yamada and 
Bunker (1988), and Uliasz (1990).  After substituting the distribution function, K, in Eq. 100 
with the Gaussian distribution function, the concentration equation, Eq. 100 becomes: 
 

( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛−

= ∑
=

22

1 2
3

22

2
1exp

2
1exp

2

2
1exp

2
1exp

,,
zi

iz

zi

iz
N

i
ziyixi

yx

zyx h
Zl

h
Zl

hhh

rr
mlllC

π
 (112) 

 
where  
 

xi

ix
x h

Xl
r

−
=   , and 

yi

iy
y h

Yl
r

−
= . 

 
Problems have been encountered when trying to implement the kernel method estimator.  
Therefore,  NTS generally uses the “Cell” method (Eq. 99). 
 
 
4.  SUMMARY 
 
The tedious derivations are presented in Sections 2 to 4.  To provide a clear picture of the 
Lagrangian particle dispersion model, Table 1 summarizes the calculation sequence of the 
LPDM.  The block at the beginning or the end of an arrow contain the equations used to 
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calculate the required parameters.  The block next to an arrow contain the output parameters 
from the block at the beginning of that arrow, and those output parameters become input to the 
block at the end of that arrow. 
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Figure 1  Calculation Sequence for Lagrangian Particel Dispersion Model 
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