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EXECUTIVE SUMMARY

The Savannah River National Laboratory (SRNL) uses the Lagrangian Particle Dispersion Model (LPDM) in
conjunction with the Regional Atmospheric Modeling System as an operational tool for emergency response
consequence assessments for the Savannah River Site (SRS). The LPDM is an advanced stochastic atmospheric
transport model used to transport and disperse passive tracers subject to the meteorological field generated by
RAMS from sources of varying number and shape. The Atmospheric Technologies Group (ATG) of the SRNL is
undertaking the task of reviewing documentation and code for LPDM Quality Assurance (QA). The LPDM QA
task will include a model technical description, computer coding descriptions, model applications, and configuration
control. This report provides a comprehensive technical description of the LPDM model.
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1. INTRODUCTION

The Savannah River National Laboratory (SRNL) uses the Lagrangian Particle Dispersion
Model (LPDM, Uliasz, 1993) in conjunction with the Regional Atmospheric Modeling System
(RAMS, Pielke et al., 1992; Chen, 2005) as an operational tool for emergency response
consequence assessments for the Savannah River Site (SRS). The LPDM is an advanced
stochastic atmospheric transport model used to transport and disperse passive tracers subject to
the meteorological field generated by RAMS from sources of varying number and shape. The
Atmospheric Technologies Group (ATG) of the SRNL is undertaking the task of reviewing
documentation and code for LPDM Quality Assurance (QA). The LPDM QA task will include a
model technical description, computer coding descriptions, model applications, and
configuration control. This report provides a comprehensive technical description of the LPDM
model.

2. MODEL EQUATIONS

The Lagrangian particle model follows a particle in space and time. The instantaneous velocity
of the particle is decomposed into a mean and a random (turbulent) component, as shown in Eqgs.
1 through 3 in a three dimensional Cartesian coordinate.

OX
—=U=u+u", 1
p (D
@=V:v+v”, ()
ot
g:W =wW+Ww", 3)
ot

where u, v, and W are mean velocities in the x-, y- and z- direction, respectively. To follow the
same notation in the RAMS Technical Description Report (Chen, 2005), the random component
is denoted by a double prime. The particle location at t + At is

X(t + At) = x(t)+ (u+u")At, (4)
y(t+At) = y(t)+ (v +Vv")At, (5)
2(t + At) = z(t) + (w+ w")At.. (6)

Markov chain (a special type of stochastic process) deals with a sequence of random events. The
occurrence of the current random event is affected by the previous event. The Markov chain for
the random velocity of a Lagrangian particle is proposed by Zanetti (1984) as:
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u"(t)=gu't-At)+7,, (7)
V'(t)= gV (t - At)+ gou"(t) + 7, ®)
W'(t) = g, W'(t - At)+ gV (t) + gU"(E) + 7 )
where 7, 7, and y,, are purely random uncorrelated components, and @,, ..., 4, are

coefficients which represent the memory effects of the previous time step. The follow section
describes the procedures to obtain the coefficients (¢, ..., & ).

2.1 A System of Equations for ¢'s

This section presents derivations of a system of six equations for the six unknowns (¢, , ..., d)
with the known quantities (variances, co-variances and the Lagrangian integral time scales).

After multiplying Eq. 7 by u”(t — At) and taking the average, one obtains

u"(tu"(t — At) = g,u”(t — Atu"(t — At)+y,u"(t — At). (10)

The first term on the right hand of Eq. 10 can be written as:

gu"(t—Atu"(t —At)= g u"(t — At"(t — At) = g0, (11)

where o is the variance of the u component velocity.

u

The last term on the right hand of Eq. 10 is

y Ut —At)=y,u"(t—At)=0. (12)
Substituting Egs. 11 and 12 into Eq. 10, we get

u"(t"(t - At)=go; . (13)
and Eq. 13 can be re-arranged as:

u”(tu"(t — At
p=—""—"=R, (14)

O,

where R, is the Lagrangian autocorrelation of wind velocity u for lag time At, and is defined as:
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u"(tu”(t — At T
RU(M)ZTZG ! (15)

u

where T, is the Lagrangian integral time scale in the x direction, and variance o is u"u”.

The Lagrangian autocorrelation of wind velocity components, v, and w, are defined in Egs. 16
and 17, respectively.

R (At)=—§=e : (16)

where T, is the Lagrangian integral time scale in the y direction, and variance o is v'V".

14 " _ ,ﬁ
R (a) = WOWTE-80) 5 (17)

o

w

where T,,, is the Lagrangian integral time scale in the z direction, and variance o is W'W" .

After multiplying Eq. 8 by Vv'(t — At) and taking the average, we obtain:

V(" (t - At) = g,v"(t — ALV (t — At)+ gu"(t V" (t — At) + y, v"(t — AL). (18)
From Eq. 16, the left hand side of Eq. 18 can be written as:

V(N (t-At)=R,0;. (19)

v

The first term of the right hand side of Eq. 18 is:

oVt - AN (L - At)= 9,0, (20)

The second term of the right hand side of Eq. 18 can be derived by multiplying Eq. 7 by
¢3V”(t - At), and then taking the average of the resulting equation, as shown below;

u"(tV"(t — At) = gu”(t — AtN"(t — At)+ ,V"(t — At) = g u"v".

From the above relation, it can be shown the second term of the right hand side of Eq. 18 is

g u" (V" (t - At) = g uv". (21)

The last term of the right hand side of Eq. 18 is zero.
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After substituting Egs. 19 through 21 into Eq. 18, it can be written as:

¢2O-\f +¢1¢3V"_U" = Rvo-vz . (22)

After multiplying Eq. 9 with W”(t — At) and taking the average, we obtain:

w'tw'(t - At) =

: 23
B, W' (t — AW (t — At)+ g v"(tW"(t — At)+ g u”(t W (t — At)+ 7, W"(t — At) =

From Eq. 17, the left hand side of Eq. 23 can be written as:

wwW't—At)=R, o2 (24)

The first term of the right hand side of Eq. 23 is

g W' (t — AW'(t - At) = g, 00 (25)

By replacing V" in the second term of the right hand side of Eq. 23 with Eq. 8 and also utilizing
Eq. 7, the second term of the right hand side of Eq. 23 can be simplified as:

SV (W (t — At) = g (,v"(t — AW"(t — At)+ g, u"(tW"(t — At)+ 7, W"(t — At))
= g, V" (t — AW (t — At)+ g p,u"(t)W"(t — At)+ g7, W'(t — AL)

= 3y VW' + B (g, u" ([t — AW (t — AL)+ 7, W'(t — AL))

= 4, V'W + gy g U"W

(26)

By replacing u” in the third term of the right hand side of Eq. 23 with Eq. 7, the third term of the
right hand side of Eq. 23 can be simplified as:

g u" (W' (t — At) = g (d,u"(t — AtW"(t — At)+ y, W"(t — At))

_ . (27)
= g U’
The last term of the right hand side of Eq. 23 is zero.
Substituting Eq. 24 through 27 into Eq. 23, we obtain
RyOL = B,00 + Gy WN" + §sh b U"W" + BohU"W" . (28)
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Eq. 28 can be re-arranged as:

R,02 =¢,02 +d,d V"W + @, (4305 +  u'W" | (29)

It should be noted that the second term of the right hand side of Eq. 29 is different from that
inUliasz (1990, Eq. 105), and the author believes that Eq. 105 in Uliasz (1990) is not correct.

Taking the product of Eq, 7 and Eq. 8, we obtain
u"(tfgv'(t—at)+ gu"(t)+ 7, )= [du"(t - At)+ », (H). (30)

Re-arranging and averaging Eq. 30, we get

SOV A0+ f0 D)+ 70T =

31
put— AtV (t)+7,v'(t)

The first term of the left hand side of Eq. 31 can be simplified using Eq. 7 as:

U (V" (t — At) = g, p,u"(t — A" (t — At)+ y,V"(t — At)

S . (32)
=g pu'v"

The second term of the left hand side of Eq. 31 is:

pu"(tu"(t) = g0 . (33)

The first term of the right hand side of Eq. 31 can be simplified using Eq. 7 as:

WV ()= gu"(t - AtV () + 7,v"(1).

and

SUTE— AV = U (34)

Substituting Egs. 32 through 34 into Eq. 31, we obtain

$d. UV + oy =u'V'| (35)

Multiplying Eq, 7 and Eq. 9, we obtain

U"(t)g,W'(t — At)+ gV (t) + gou”(t)+ 7, ] = [4"(t — At)+ 7, W' (D). (36)
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Re-arranging and averaging Eq. 36, we get

gou" (W (t — At)+ gou" (V" (t)+ gou"(t"(t)+ 7,u"(t) = Bu"(t — AW (1) + 7, W'(H) . (37)

The first term of the left hand side of Eq. 37 can be simplified by multiplying Eq. 7. We
multiply Eq. 7 by ¢4W"(t - At), and then average the resulting equation. The final equation is

AU (W' (t - At) = g, gu"(t - AW (t - AL)+ 6,7, W'(t = A).

The above equation can be simplified as:

AU W [t - At) = g, g u"w". (38)

The first term of the right hand side of Eq. 37 can also be simplified from Eq. 7 by multiplying
Eq. 7 withw'(t), then averaging the resulting equation. The final equation is

u"(tw"(t) = g u”(t — AW’ (t) + 7, W'(t) .

The above equation can be re-arranged as

gu"(t— AtW'(t) = u"w” (39)

Substituting Eqs. 38 and 39 into Eq. 37, we obtain

G U"W" + g U + gol =u"W'| (40)

Multiplying Eq, 8 and Eq. 9, we get
VWt - A+ gV (1) + gu"(t)+ 7, )= [V (E- A+ 40" 1)+, WD), @D

Re-arranging and averaging Eq. 41, we obtain

PV (W' (= AL+ gV (V1) + U (" () +7,v"() =

(42)
$,V"(t— AW (1) + gyu" (W' () + 7, W' (D)

After replacing the term V"(t) in the first term of the left hand side of Eq. 42 with Eq. §, we
obtain the following equation:

gV OW'(t — At) = g, [4,v"(t - AL+ g,u"(t) + 7, W'(t - AY)
=g, V"(t — AW’ (t — At) + g, p,u"(t )W (t — At) '
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By substituting Eq. 38 into the last term of the right hand side of the above equation, we get

gV [OW'(t — At) = §,6,V'W" + g by, u"W . (43)

The first term of the right hand side of Eq. 42 can be obtained from Eq. 8. After multiplying Eq.
8 by W'(t), and then averaging the resulting equation, the following equation can be obtained.

V(W' (t) = g,v"(t — AW (L) + u"(twW"(t) + 7, W' (t)
= V" (t — ALW"(t) + g,u"(t )W (t)
=g, v"(t — AUW'(t) + p,u"W"

The above equation can be re-arranged to obtain the first term of the right hand side of Eq. 42:

B V"t — AW (1) = V'W" — g, u"W" . (44)

Substituting Egs. 43 and 44 into Eq. 42, we obtain

¢2¢4V”W” + ¢]¢3¢4U"W” + ¢So_5 + ¢6U"V" — V”W” _ ¢3 W”u” + ¢3U”W" , (45)
which simplified to
G N'W' + §hip,UW' + g0y +JuV ='W (46)

2.2 Solving for ¢'s

This section shows the procedures to solve ¢'S as a function of variances, co-variances, and the
Lagrangian integral time scales. The system of equations to be solved is listed next.

¢ =R,| (14)
¢, +¢pN'U" =R o2, (22)
ROy = 4.0 + G VW + (4,65 + W' (29)
G UN + g ol =uN" . (35)
G P UW + S UV + g0l =u"W". (40)
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G VW' + b UW + h 5]+ PUN = VW (46)
After substituting Eq. 14 into Eq. 22 and Eq. 35, Eq. 22 becomes

$,0l +R,pV'U" =R,02, (47)
and Eq. 35 becomes

R, U + g0l =u'v". (48)

Eqgs. 47 and 48 can be expressed in a matrix form as:

2 AN R 2
o, Ru viu ¢2 — V_O-v ( 49)
Ru u ﬂvﬂ o uZ ¢3 u !!V"

The solution of ¢, is

R,c. R,VU"

uI!VI! 02 2
¢ — u _ _ v-u
) = = =
2 "o
o, R, VU

R,u"v" o

R, -R, (v

4. = = (50)
(uv’)

u'v
1-R?

2
O-V

The solution of ¢, is

2 2
Gv Rv Gv

Ru u ”V 14 u ”V 14

_oJuVv'-R,0;RUV o uV'(1-R,R,)
O_Vzaj _ Ru v'u NRU uv" O'Vzauz _ Ruz (W)Z

Py =

02 Ru V”u”

\

Ru u ”V” o 2

u

",n

(I_RVRU)U\:
P, = ——— (51)
I_RZ (u”V”)z

u 2 2
u

o,0
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Eq. 29 can be re-arranged as:
2 AN "ol "ol 2
O-w¢4+(¢sz + PP u"W s + guW'g, =R, 0, .

Eq. 46 can be re-arranged as:

2
(¢2V"W"+¢1¢3UNWN»4 +Uv ¢5 +U”V” s — V”W”,

Egs. 40, 52 and 53 can be expressed in a matrix form as:

g u'w” u'v" Guz P,
O_vzv (¢2 V”W” + ¢1 ¢3 u nWrr) ¢1 u rrWrr ¢5
( ¢2 V"W” + ¢1 ¢3 u !!WII o 3 u "V " ¢6

@,, ¢, and ¢, in Eq. 54 are given by Egs. 14, 50 and 51, respectively.

U”W” U”V " o j
) - - -
RWO_W (¢2V”W” + ¢1¢3 U”W”) ¢1 U”W”
V”W” o 5 u "V "
¢4 - ¢1 u "W" u ﬂV " o UZ ’
2 Mo oot AN
o2 (bW + W) 4
(¢2V”W” + ¢1¢3U”W”) O_VZ U”V”
ot ot 2
@ u"w u"w o,
2 2 "ot
oy, R,o0., ¢u'w
¢ ( ¢2VNWN + ¢1 ¢3U"W ) V”W” uﬂvﬂ
5 = g
¢1 u an u ﬂV " GUZ
2 AN AN AN
o2 6.y W + W) guw
(¢2V”W”+ ¢1¢3uﬂwﬂ) O_VZ U"V”

(52)

(53)

(54)

(55)

(56)
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¢1 u ”W " W u "W!I
o: bW +gpuW) R0l
(¢2 V”W” + ¢1 ¢3 U "WVI) GV V"W"
¢6 - ¢ !l " u ”V” O_Z (5 7)
1 u
ol bW + g uW) guw
(¢2 V”W” + ¢1 ¢3 u "W” GV u ﬂv n

2.3 Evaluation of the y5

The terms, y,, 7, and y,, are randomly uncorrelated. It is assumed that y,, », and y,,
describe a Gaussian distribution, and the mean value of y, and y, is zero. However, the mean

value of y,, 1s not zero. This section presents the derivations of the variances of y,, 7, and y,,.
The instantaneous value of y, can be expressed as:

Yu=ra+ri =70, (58)

where Z is the mean value and is zero, and y| is the deviation from the mean.

Substituting Eq. 58 into Eq. 7, one obtains
yi=u"(t)-gu"(t-At). (59)

Form Eq. 59, the variance of y, is

=yiry =u"(t)-4u"(t- At)u"(t) - gu"(t - At)]

—u ( W) - 26,u"(O"(t - At + ¢2u"(t — AUt — AL) (©0
From Eq. 7, the term, u"(t)u”(t — At), can be expressed as:
u"(tu"(t — At) = g,u"(t — Athu"(t — At)+ y,u"(t — At) = g, (61)
Substituting Eq. 61 into Eq. 60, the variance of y, is

o, =0, -2¢'c, +4io; =0, — 4o,

o =a(l-42) (62)

10



WSRC-ST1-2006-00058
July 20, 2006

Using the same procedures shown above, the variance of y, can be derived from Eq. 8, as
shown below:

oy, =ryry =V t)- gV (t— A= gu"(O)]v'(t) - 4V (t - AL) - gy (1))
—WﬁWW)+ (0 "(t)+ 7 vt - ALVt - At - 2¢,u"(EN" (1)
+ 2¢2¢3 u "(t)\/”(t - At)_ 2¢2 V”(t)vﬂ(t - At)

The above equation can be simplified as:

ol =0, +4i0] +¢;0) —20,uN" +26,4,U" [tV (t — AL) - 26,V (V"L - AL).  (63)
From Eq. 21, the second to last term of the right hand side of Eq. 63 can be expressed as:

24,¢,u" (V" (t — At) = 26,6, p,u"V" . (64)

From Eq. 22, the last term of the right hand side of Eq. 63 can be expressed as:

26,V N[t~ At = 24, |p,07 + 44,V'U"| = 20202 +24,6,4,VU" (65)

Substituting Eqs. 64 and 65 into Eq. 63, Eq. 63 becomes:

a;v =0 +dic) +diol —24,u" "+2¢1¢2¢3u'v”—2¢2 2¢1¢2¢3

(66)
= (1-¢2)+ 202 20UV

In order to conform the expression of Eq. 66 with the expression of Eq. 115 in Uliasz ‘s paper
(1990), Eq. 35 is used to modify the last term of the right hand side of Eq. 66. The modified Eq.
66 is
o =ol(i-¢)+ piol 2% [¢1¢2 '+ 4o

o (1-¢: )+ pio 2¢1¢2¢3 UV’ 240,

Re-arrange the above equation to obtain the following equation which is the Eq. 115 in Uliasz ‘s
paper (1990):

072\/ - O-\f (1 - ¢22 )_ 326u2 - 2¢1¢2¢3 u"v’ . (67)

The vertical component, y,,, has a Gaussian distribution with a non-zero mean, and is expressed
as:

Vo =Tu 70 (68)

11



WSRC-ST1-2006-00058
July 20, 2006

Substituting Eq. 68 into Eq. 9, the term, y;, (deviation from the mean), is

7o =W (0 - 0t~ M) 4" (0) - 40707, (69)
The variance of y,, is

N 14

o, =Vl
= [~ g, Wt - A0) - 40" (0) - 40" 0) - 7, W' ©) - Wt — A - 49"(0) - 40 ()- 7,
= W' (HW(t) + g, W"(t — At)p,w"(t — At) + V" (t)pv"(t) + g u”(t ) ”(t)+ e
— W D)Wt — AL)— 20 (v (1) - 2W (D) gu" (1) - 2w (D)7,
+24,W'(t — AV (t) + 20, W' (t — At)g,u"(t) + 20, W"(t — At)y,,
+ 2.V ([)pu"(t) + 20,V (t)y,, +20,u"(t )y,

(70)
Eq. 70 can be simplified as:

—\2
2 2 2 2 2 2 2 2
ol =ol+glol+plol +hlol + ()

—2W' (1), W"(t — At)— 25V'W" — 26, u"W" . (71)

+ 20,6 W't — AV (t)+ 24,6, W' (t — A" (t)+ 26,6, u"V"

The term, (_W)Z , 1s a constant which can be lumped into the vertical drift velocity. The term,

2W'(t)¢,W'(t — At), can be evaluated by Eq. 29 as:

20O~ A = 2.[g.07 + 4.0.0W + 6,9 + 9w |

(72)
= 2¢426\:2v + 2¢2¢4¢5V W"+ 2¢1¢3¢4¢5U W"+ 2¢1¢4¢6u w”
In addition, the term, 2¢,¢; w'(t— AtV (t i, can be evaluated by Eq. 26 as:
2¢4¢5 W't —AtV(t)= 2¢4 [¢2¢5 W'+ ¢1¢3¢5 " ”] (73)

= 20,4,V W' +26,6,6, 4 U"W'
The term, 24,0, W'(t—At”(t), can be evaluated by Eq. 27, as:

2¢,¢; w'(t—Ath"(t)= 2¢,4,4u"W" . (74)

12
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After substituting Eqs. 72 through 74 into Eq. 71, Eq. 71 becomes:

2
672 oo+dion+Piol +Plo. +(W)

— il +20,0,8,W +26,0.6,$0W +24,0,6,0W |- 245 =240 (79
+ 2,0 b VW + 2,60, UW |+ 26,6,6,UW' + 256, UV

After re-grouping, we obtain

2 2 2 2 2 __2
o, =0, t¢50, +¢;0,

_¢4 2¢1¢3¢4¢5u” ” 2¢1¢4¢6 " ”_2¢5V” ” 2¢6 ” g (76)
+ 26,40, $UW' + 26, 4,6,U"W + 26 p UV

The term, 2¢,u u"w”, in Eq. 76 can be replaced by Eq. 40 and we get:

20,0 = 24, | g UW + § UV + 4,07 |= 20,0,8,0W + 26,60V + 26007 (TT)

Also the term, 2¢,v"W", after being replaced by Eq. 46, becomes:

2¢5 l’ " 2¢5 |:¢2¢4V” ”+¢1¢3¢4U” ”+¢SO- +¢6 ", l’]

(78)
= 2¢2¢4¢5V”W" + 2¢1¢3¢4¢5 U"W" + 2¢5 O-v + 2¢6¢5 u'v’

After substituting Eqgs. 77 and 78 into Eq. 76, Eq. 76 becomes:

afw = 02 +¢5202 + ¢620'2

- ¢4 2¢1 ¢3¢4¢5 u ”W" 2¢1 ¢4¢6

- 2¢2¢4¢5 V”W” - 2¢1¢3¢4¢5 u ”W” 2¢5 2¢6¢5 ’ (79)
- 2¢1¢4¢6W - 2¢5¢6W - 2¢6 O-

+20,0,0,0;U"W" +2¢,,6,U"W" + 26,6 uv’

Eq. 79 can be simplified as:

o2 =02(1-g2)- 202 - §200 ~ 204, UN" ~ 264,485 + b WW 20,4, VW|  (80)

It should be noted that the second term of the right hand side of Eq. 80 is different from that in
the Eq. 116 of Uliasz (1990), and the author believes that Eq. 116 in Uliasz (1990) is not correct.

13
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The random fluctuations are generated at each time step as:

Yo =0, Mys (81)
V=0, 0, (82)
and

Yw =0, 1+, (83)

where n,, 7,, 1, are random numbers from a normalized Gaussian distribution, and @, is a
vertical drift velocity.

The Lagrangian time scales are derived from the diagonal elements of the eddy diffusivity
tensor, Ky, Ky, and K as:

KXX

T, =—%, (84)
O_u
K

T, =—2, (85)
KZZ

Tw="%" (86)
O

The eddy diffusivity tensor is derived from the second order closure scheme in the RAMS
model.

The time step, At, used in the LPDM calculation varies in inhomogeneous turbulent flow and
dependson T, :

At = max(0.1T,,,,At,_. ). (87)

The minimum time step, At_. , is an arbitrarily pre-scribed input value to avoid zero time step

min ?

near the ground surface.
2.4 Simplified Model

If the covariance terms of the turbulence are ignored, the model is simplified. From Eq. 50, ¢, is
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R, - R, 5
¢2 = O’:V :)-Zu = Rv. (88)
l—RZ@V>
oo,

From Eq. 51, ¢, is

!I 14

(1-RR )L
(o3
P = —=0. (89)
1—R%@1)
2
O'O'

From Eq. 55, ¢, is

A 2
u” uv o,
2 II " ", o
R4 (¢2 WA uW) gu'w
"o A
V'W O'v uv
¢4 - ¢1 u”W" U”V" o UZ
2 " " o
o v W+ gguw) 0w
(¢2V” ”+¢1¢3U”W”) O_V u""
) (90)
0 0 o,
Ro. 0 0
2
— O O-v 0 RWO_VZ\IUV O-j _ R
N 2| 2 2 2 w
0 0 o, 0,0,0,
c. 0 0
0 o 0

From Eq. 56, ¢, is
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¢1 u !!Wﬂ u rrWn o 5
o R,o5 W
(¢2VI(WI( + ¢1¢3uﬂwﬂ) VI!WII uﬂvll
¢, =
5 ¢1 n ” u "V " o j
( O_VZV ) (¢2V” /r+¢1¢3 ", ﬂ) ¢ﬂv”
¢ VI!WI! + ¢ ¢ uﬂWﬂ O_V uﬂvll
2 173 (91)
0 0 o
c. R,o. 0
0 0 0
0 0 o
oc. 0 0
0 o 0
From Eq. 57, ¢, is
¢1 u I!WH u ”V 14 u ”W”
szv ( 2W + ¢ psu ”W”) Rwo_vzv
(¢2V”W” + ¢1¢3U”W"> sz V"W"
¢, =
6 ¢1 u ﬂWﬂ u ﬂV ” o uZ
o2 bW +gpuw) guw
V”W”+ UNWN GV u V”
(6.7 + g, o)
0 0 0
c. 0 R,o.
0 o) 0
= =0
0 0 o
oc. 0 0
0 o 0
Substituting Eqs. 88 and 89 into Eq. 67, Eq. 67 becomes:
O'yzv =0, (1 - sz),
and Eq. 82 becomes;
1
7v:O-yu77u:O-v(1_sz)ZT7V' (93)
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Substituting Egs. 90, through 92 into Eq. 80, Eq. 80 becomes:

or <oili-R2),

w

and Eq. 83 becomes:

1

Y =0, My + 0 =GW(1—RV2V)277W+a)d. (94)

Substituting Eqs. 14 and 62 into Eq. 81, Eq. 81 becomes:

1

yu:O-yuﬂu:O-u(l_Ruz)Enu‘ (95)

Substituting Eqgs. 14 and 95 into Eq. 7, Eq. 7 becomes:

1

u'(t)=R,u"(t - At)+ o, (1-R2 } 7y, . (96)
Substituting Egs. 88, 89 and 93 into Eq. 8, Eq. 8 becomes:
1
V(t)=RV'(t-At)+ o, (LR 7, 97)
Substituting Egs. 90, 91, 92 and 94 into Eq. 9, Eq. 9 becomes:
1
w'(t) = R,W'(t—At)+ o, (1-R2 P 5, + @, . (98)

Egs. 96, 97 and 98 which neglect the covariance terms are used in the current LPDM model.
The LPDM is going to be upgraded to include all the covariance terms.

3. CONCENTRATION CALCULATION
3.1 “Cell” Method
In the Lagrangian particle transport calculation, the calculated particle concentration at a given

time and space can be determined by counting the number of particles in a sampling volume,
described as:

C(x,y,zt)= ( il

—, 99
AXAYAZ), ©9)
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where (AXAyAZ )I is a sampling volume at location |, m; is the mass of particle i, and N is the

number of particles in the sampling volume. Normally known as the “Cell” method, Eq. 99
shows that the calculated particle concentration is dependent on the number of particles to be
simulated and the sampling volume size. If the sampling volume is too large, the calculated
concentration can be over-smoothed. On the other hand, if the sampling volume is too small, the
calculated concentration is very noisy. One may increase the number of sampling particles to
minimize the noise. However, this increase in sampling particles results in higher computational
cost..

3.2 Kernel Method

To improve the computational efficiency, Yamada and Bunker (1988) proposed a kernel density
estimator method to calculate the particle concentration. The main idea of the kernel density
estimate method is that statistically, one could imaging that there would be a probability
distribution of particles associated with a sampling particle at location i. Yamada and Bunker
(1988) assumed this probability distribution is a Gaussian distribution and the mean location of
this distribution is at the sampling particle location i. This distribution would contribute some
particle concentrations at a location . Therefore, the particle concentration at the location |
could be estimated by summing the contributions from all the sampling particles in the space.
This kernel method does not need a sampling volume and can produce a smooth concentration
distribution with a much smaller number of sampling particles. Therefore, it would improve the
computational efficiency significantly. The mathematical expression of this kernel method is

R N I e 2 L-X, L,=Y I +zZ
C(IX,Iy,IZ)_m;hXihh LK[ N ]+K( . H (100)

yi''zi Xi yi zi Xi yi zi

where

C(IX, l,, IZ) = particle concentration at location |,
(X,.Y;,Z,) = coordinates of the i-th sampling particle,

m = particle mass,

N = number of the sampling particle,

hg,h,,h,; = parameters to determine the distribution bandwidth in X, Y, Z direction
respectively,

K = probability distribution function.

The last term in Eq. 100 accounts for the particles reflected from the ground surface.

Yamada and Bunker (1988), and Uliasz (1990) assumed that the bandwidth (h,;,h,;,h,;) are

calculated separately for each particle, and were assumed to be proportional to the standard
deviation (oyi, Gyi, 0zi,) of a Gaussian puff with a center at the particle coordinates:

hg =aoy, (101)
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h, =aoy, (102)
h, =ao,, (103)

where a is a proportional constant. Based on Taylor’s homogeneous diffusion theory, Yamada
and Bunker (1988) derived the standard deviations (o, Oyi, Gzi,) by time integration of the
velocity variances encountered during the history of the particle. For example, oy for the i-th
particle (the subscript i is dropped in the following derivations for convenience) is

tr

o; =20} [[R,(¢)ddr. (104)

00

< N

Substituting Eq. 16 into Eq. 104, we obtain:

tz ‘% t N
o, :203”e :dg”drz2afj. ~-T,e ™ | dr
00 0
0
t _r _t
=20, j [TLV ~T,e™ sz- =20V2[TLVt+TL2Ve T T@]. (105)
0

t
=20.T,, [t+TLVe T —TLVJ

t
For t <2T,,, the term T, € " can be approximated as T, . Therefore, Eq. 105 is approximated
as:

t

ol =202T, [t +Te ™ -T, J = 202T, t~ olt? . (106)

From Eq. 106, the standard deviation can be approximated as:

o, =0,t. (107)

y %
t

For t > 2T ,, the term T, e ™ can be approximated as zero. Therefore, Eq. 105 is

approximated as:

Lv»

t

ol =262, [t +T e —TLVJ ~ 20T, (t-T,, )~ 20T, t. (108)
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From Eq. 108, the standard deviation can be approximated as:
o, =20,Tt. (109)
The standard deviation in the y-direction is summarized as:

o, =0t for t<2T, (107)

y v
o, =20,Tt for t>2T, (109)

It is assumed that this theory ia applicable over a short time period, such as the time step At used
in the particle transport simulations:

o,(t+At)=0,(t)+ o At for t<2T, (110)
o (t+At)=0(t)+20.T,, At for t>2T, (111)

The standard deviations for the other directions (o, and 65,) can be derived in a similar manner.

The Gaussian distribution function was used for the distribution function K by Yamada and
Bunker (1988), and Uliasz (1990). After substituting the distribution function, K, in Eq. 100
with the Gaussian distribution function, the concentration equation, Eq. 100 becomes:

()Z()(JH[_U“_H .

T (2z):hghyh s .

xi'lyi' zi

xi yi
Problems have been encountered when trying to implement the kernel method estimator.
Therefore, NTS generally uses the “Cell” method (Eq. 99).
4. SUMMARY
The tedious derivations are presented in Sections 2 to 4. To provide a clear picture of the

Lagrangian particle dispersion model, Table 1 summarizes the calculation sequence of the
LPDM. The block at the beginning or the end of an arrow contain the equations used to
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calculate the required parameters. The block next to an arrow contain the output parameters
from the block at the beginning of that arrow, and those output parameters become input to the
block at the end of that arrow.
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Figure 1 Calculation Sequence for Lagrangian Particel Dispersion Model
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