KEY WORDS: Distribution Coefficient, Solubility, Stochastic Modeling, Variability, Heterogeneity,

RETENTION: Permanent

EARLY GUIDANCE FOR ASSIGNING DISTRIBUTION PARAMETERS TO GEOCHEMICAL INPUT TERMS TO STOCHASTIC TRANSPORT MODELS

Daniel I. Kaplan Margaret R. Millings

JUNE 30, 2006

Savannah River National Laboratory Washington Savannah River Company Savannah River Site <u>Aiken, SC 29808</u> **Prepared for the U.S. Department of Energy Under Contract Number DE-AC09-96SR18500**

DISCLAIMER

This report was prepared for the United States Department of Energy under Contract No. DE-AC09-96SR18500 and is an account of work performed under that contract. Neither the United States Department of Energy, nor WSRC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for accuracy, completeness, or usefulness, of any information, apparatus, or product or process disclosed herein or represents that its use will not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, name, manufacturer or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring of same by Washington Savannah River Company or by the United States Government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Printed in the United States of America

Prepared For U.S. Department of Energy

Key Words: Distribution Coefficient, Solubility, Stochastic Modeling, Variability, Heterogeneity,

Retention: Permanent

EARLY GUIDANCE FOR ASSIGNING DISTRIBUTION PARAMETERS TO GEOCHEMICAL INPUT TERMS TO STOCHASTIC TRANSPORT MODELS

Daniel I. Kaplan Margaret R. Millings

JUNE 30, 2006

Savannah River National Laboratory Washington Savannah River Company Savannah River Site <u>Aiken, SC 29808</u> **Prepared for the U.S. Department of Energy Under Contract Number DE-AC09-96SR18500**

REVIEWS AND APPROVALS

Brief I. Kolon

7/20/2006

Date

7/20/2006

Daniel I. Kaplan, Co-author, Waste Processing Technology

Margaret R. Millings Margaret Millings, Co-author, Environmental Science and Biotechnology

James Cook, Peer Reviewer, Waste Processing Technology

Sulcher

B. Thomas Butcher, Level 4 Manager, Waste Processing Technology

Lille E. Storn

William E. Stevens, Authorized Derivative Classifier

J. C. Griffin, Level 3 Manager, Waste Processing Technology

8/22/06

8/22/06

8/23/66

<u>8/22/06</u> Date

TABLE OF CONTENTS

LIST OF FIGURES	iii
LIST OF TABLES	iii
1.0 EXECUTIVE SUMMARY	1
2.0 INTRODUCTION	2
3.0 RESULTS	2
3.1 Range of Values	2
3.2 Distribution of Values	
4.0 CONCLUSIONS	
5.0 REFERENCES	
APPENDIX A: Statistics of Kd Distributions	14
APPENDIX B: Range and Distribution of Kd and solubility values Used in E	- and Z-
Area Performance Assessment Calculations	

LIST OF FIGURES

Figure 1. Probability Plot (top) and Dot Histogram (bottom) for Cs Kd Values	7
Figure 2. Probability Plot (top) and Dot Histogram (bottom) for LnCs-Kd	
Figure 3. Probability Plot (top) and Dot Histogram (bottom) for Sr Kd Values	9
Figure 4. Probability Plot (top) and Dot Histogram (bottom) for U-Kd Values	
Figure 5: Dot Histograms for Sr Kd Values for Layer 1 (top) and Layer 2 (bottom)	(n=10) 16
Figure 6: Probability Plots for Sr Kd Values for Layer 1 (top) and Layer 2 (bottom)	(n=10)
	17

LIST OF TABLES

Table 1. Summary statistics of Kd measurements in Hanford sediments	5
Table 2. Kd (mL/g) Values from Borehole 299-E17-21 at Hanford	15
Table 3: Summary statistics of Kd measurements for Sr for Layers 1 & 2	18
Table 4. Distribution Coefficicients (Kd values, mL/g) ranges and distributions in Sand	y and
Clayey Sediments	21
Table 5. Apparent solubility concentration limits (mol/L) for Oxidizing Cementitious Sc	olids 22
Table 6. Apparent solubility concentration limits (mol/L) for Reducing Cementitious So	blids. 23
Table 7. Distribution coefficients (Kd, mL/g) for Oxidizing Cementitious Solids	23
Table 8. Distribution coefficients (Kd, mL/g) for Reducing Cementitious Solids	25

1.0 EXECUTIVE SUMMARY

Stochastic modeling is being used in the Performance Assessment program to provide a probabilistic estimate of the range of risk that buried waste may pose. The objective of this task was to provide early guidance for stochastic modelers for the selection of the range and distribution (e.g., normal, log-normal) of distribution coefficients (K_d) and solubility values (K_{sp}) to be used in modeling subsurface radionuclide transport in E- and Z-Area on the Savannah River Site (SRS). Due to the project's schedule, some modeling had to be started prior to collecting the necessary field and laboratory data needed to fully populate these models. For the interim, the project will rely on literature values and some statistical analyses of literature data as inputs. Based on statistical analyses of some literature sorption tests, the following early guidance was provided:

- Set the range to an order of magnitude for radionuclides with K_d values >1000 mL/g and to a factor of two for K_d values of <1000 mL/g. This decision is based on the literature.
- Set the range to an order of magnitude for radionuclides with K_{sp} values $<10^{-6} M$ and to a factor of two for K_d values of $>10^{-6} M$. This decision is based on the literature.
- The distribution of K_d values with a mean >1000 mL/g will be log-normally distributed. Those with a K_d value <1000 mL/g will be assigned a normal distribution. This is based on statistical analysis of non-site-specific data.

Results from on-going site-specific field/laboratory research involving E-Area sediments will supersede this guidance; these results are expected in 2007.

2.0 INTRODUCTION

The objective of this task was to provide early guidance for stochastic modelers who are modeling various aspects of low-level waste disposal in E-Area on the Savannah River Site (SRS). Due to the project's tight schedule, some modeling had to get started prior to collecting the necessary field data needed to fully populate these models. For the interim, we are required to rely on some literature values as inputs. The specific input values that are required are the range and distribution (e.g., normal, log-normal) of distribution coefficients (K_d) and solubility values (K_{sp}) , both parameters that quantify the extent that radionuclides partition between the aqueous and solid phases in the subsurface environment.

The approach taken in this task was to use the literature to determine the range of values that others have measured. We were unsuccessful in identifying any citations of published work on the distributions of sorption parameters in sediments. So we elected to use multiple K_d measurement collected from Hanford Site for Sr, Cs, Sr, and U (Kaplan et al. 1998). The statistics and distribution graphs are presented in the Appendix.

3.0 RESULTS

3.1 RANGE OF VALUES

There has not been any work done to date regarding geochemical parameter input variability as it relates to the SRS performance assessment. However, activity to understand variability and uncertainty associated with these parameters is presently underway. Until this site-specific information is available, the general approach adopted by Wieland and Van Loon (2003) will be used. This approach was one based on professional judgment (Wieland and Van Loon 2003). They calculated an uncertainty factor, f_e , which was used to provide upper and lower limits for sorption values:

$$Kd_{\max} = Kd \ge f_e \tag{1}$$

$$Kd_{\min} = Kd / f_e \tag{2}$$

$$d_{\min} = Kd/f_e \tag{2}$$

The uncertainty range of the sorption values was assumed to be about one order-ofmagnitude for the strongly sorbing radionuclides, with $Kd \cdot 1000 \text{ mL/g}$. The uncertainty accounts for variability associated with environmental conditions (sediment, groundwater conditions, etc.), contaminant concentrations and speciation, and laboratory technique. They assigned an uncertainty factor, f_e , of 3.3 to Kd values • 1000 mL/g and 1.4 to Kd values <1000 mL/g. The f_e of 3.3 yields a range of about one order of magnitude, whereas the f_e , of 1.4 yields a range of about a factor of 2.

For example, if the Kd value is 1000 mL/g, then using Equation (1), $Kd_{max} = 1000 \text{ x } 3.3 =$ 3,300 mL/g, and using Equation (2), $Kd_{min} = 1000/3.3 = 303$ mL/g. The range of values would be 3,300 to 303 mL/g, approximately an order of magnitude difference. Similarly, if Kd value is 10 mL/g, then using equation (1), $Kd_{max} = 10 \times 1.4 = 14 \text{ mL/g}$, and using

Equation (2), $Kd_{\min} = 10/1.4 = 7 \text{ mL/g}$. The range of values would be 14 to 7 mL/g, a factorof-two difference. These estimates of variability will provide early guidance. Both Bradbury and Sarott (1995) and Krupka et al. (2004) recommend that the parameters have a normal distribution. Again, this decision appears to be largely based on professional judgment, rather than on a statistical analysis of data. Additional work clearly needs to be conducted to substantiate the assumptions used to describe the variability of the geochemical parameters.

The method of Wieland and Van Loon will be extended to represent the variability of solubility concentration limits (K_{sp}). K_{sp} values will be varied in a similar manner as Kd:

$$K_{sp-,\max} = K_{sp} \times f_e \tag{3}$$

$$K_{sp-\min} = K_{sp} / f_e \tag{4}$$

The uncertainty factors, f_e , will be assigned similar values as those assigned for the *Kd* values in Equation (1) and (2) and the K_{sp} values will be assumed to have a normal distribution. Set the range to an order of magnitude for radionuclides with K_{sp} values $\leq 10^{-6} M$ and to a factor of two for K_{sp} values of $>10^{-6} M$.

Kd values and K_{sp} values appropriate for SRS are reported in Kaplan (2006).

3.2 DISTRIBUTION OF VALUES

For the performance assessments, it is important to understand the distributions of Kd values within a specific sorption medium. For example, for describing radionuclide transport through the E-Area surface aquifer, we are interested in the variability associated with the Kd values within a specific aquifer, not the variability of all the Kd values in the literature or not the variability of Kd values in various sediments at the SRS.

There is no site specific data available for calculating the distribution of *Kd* values or solubility constants. Furthermore, there are no reports of the distribution of these parameters in the literature. Consequently, we calculated these based on a data set from the Hanford site (Kaplan et al. 1998). Table A1 in the Appendix provides the laboratory measured *Kd* values for the Hanford boring 299-E17-21. These *Kd* values represent the mean of three replicates for each sample. The reported *Kd* values were collected primarily from two formations. It was statistically determined that the *Kd* values between the two formations were not statistically different for Cs and U. However, the *Kd* values between the two formations were found to be significantly different for Sr. These differences were attributed to differences in pH and cation exchange between the two formations (Kaplan et al. 1998). Statistical analyses were conducted on data sets combining the *Kd* values from both formations (n = 20) for all of the chemical parameters as well as for each formation (n = 10; Appendix) for Sr.

Table 1 in the Appendix shows summary statistics for the *Kd* values from the Hanford boring. The table includes the (arithmetic) sample mean, a minimum and maximum value of

the sample population, the variance of the sample population, and the variance of the sample mean. The variance of the sample population is defined by:

$$s_{X_i}^2 = \frac{1}{n-1} \sum \left(X_i - \overline{X} \right)^2$$
 (5)

where $s_{X_i}^2$ is the variance of the sample population (s_{X_i} is the standard deviation of the sample population), *n* is the number of samples, X_i represents each observation and \overline{X} reflects the mean of a randomly sampled population. It reflects the amount of spread in the sample data.

The variance of the sample mean is defined by:

$$s_{\overline{X}}^2 = \frac{s_{X_i}^2}{n}$$
 or $s_{\overline{X}} = \frac{s_{X_i}}{\sqrt{n}}$ (6)

where $s_{\overline{x}}$ is the estimated standard deviation of the (arithmetic) sample mean, s_{x_i} is the estimated standard deviation of the population, and *n* is the number of samples (Walpole and Myers 1978). $s_{\overline{x}}$ is the standard error of the mean.

Table 1 also includes skewness and kurtosis. Understanding these two parameters is key for determining if a data set is normally distributed. Skewness is a measure of the symmetry of a distribution about a mean. A skewness value that is far from zero indicates an asymmetric distribution (positive value corresponds to a long right tail and a negative value corresponds to a long left tail). The coefficients of skewness are provided on Table 1. One method of evaluating the skewness value is by comparing it to the standard error of skewness. Values equal to two standard errors of skewness or more can be considered to be significantly skewed. Only Cs has a skewness value (2.1) that is greater than two standard errors of skewness of Cs is discussed further below in the graphical evaluation of the parameter distributions.

A kurtosis value far greater than zero indicates that the distribution has longer tails than a normal distribution whereas a value far less than zero reflects a distribution that is flatter than a normal distribution. The coefficients of kurtosis are provided on Table 1. Values equal to two standard errors of kurtosis or more can be considered to be significant. The kurtosis values for Cs and U are greater than two standard errors of kurtosis and indicate that their distributions have longer tails than what would be expected with a normal distribution. Again, the kurtosis value improves for Cs when the dataset is transformed (LnCs).

For this evaluation, summary statistics were performed in Excel and confirmed by using SYSTAT 10.2. Numerical calculations such as skewness and kurtosis can be used as guides for evaluating distributions. However, it should be noted that the values can widely vary for small datasets even for populations that are normally distributed.

Statistic	$K_d (mL/g)^1$									
	Cs	LnCs	Sr	U						
mean	2055.1	7.60	14.74	0.62						
min	1373.9	7.23	12.18	0.30						
max	4068.2	8.31	16.92	0.94						
median	2034.3	7.62	14.25	0.60						
count	20.0	20	20	20						
std deviation of sample mean (standard error)	133.4	0.06	0.36	0.03						
std deviation of sample population	596.5	0.25	1.60	0.12						
skewness	2.1	1.03	0.09	0.10						
standard error skewness ²	0.55	0.55	0.55	0.55						
kurtosis	6.4	2.35	-1.22	3.57						
standard error kurtosis ²	1.10	1.10	1.10	1.10						
distribution	lognormal	normal	normal	normal						

 Table 1. Summary statistics of Kd measurements in Hanford sediments.

¹Average pH of samples = 8.75, with min of 8.5 and maximum of

8.96

²Standard error of skewness approximated by sqrt(6/n) and standard error of kurtosis approximated by sqrt(24/n), where n equals the count

Graphical methods are also helpful in evaluating whether a distribution is normal. Figures 1 through 6 provide graphs for Cs, the natural log of Cs (LnCs), Sr, and U, were generated using SYSTAT 10.2. For each parameter, the top graph shows a normal probability plot in which the measured values are plotted against the expected values (assuming a normal distribution). On these graphs, the straight line reflects a normal distribution. The left side of the each plot shows the number of standard deviations with "0" corresponding to the mean value of the graphed population. The size of the data points show the influence that each point has on a linear fit (or the amount that the correlation would change if that particular point was deleted). A small box plot along the top of each graph also shows the distribution of the data. 50% of the data lie within the box with the box ends representing the 25^{th} and 75^{th} percentiles. The vertical line inside the box reflects the median of the data. Whiskers on the outside of the box show the 10^{th} and 90^{th} percentile. Data outside of the 10^{th} and 90^{th} percentile are plotted as lone points. In addition to the probability plots, a dot histogram with a smoothing line is also provided to show each parameter's distribution.

For Cs, all the data except one, are represented by a small Pearson r Influence dot in the upper Probability Plot in Figure 1. The one data point representing a Kd value of 4068 mL/g, is larger than the rest because it influences the representation of the distribution more than the other data points (*i.e.*, it pulls the data more from a normal to a log-normal distribution).

Given the high skewness value, 2.1 and kurtosis value, 6.4 (Table 1) of this data set, the data was replotted in a log-normal distribution (Figure 2). Note that the skewness and kurtosis in Table 1 decrease and that deviation of the data from the line in the probability plot is smaller in Figure 2. Also the influence of the single large Kd value, $\ln(CsKd) = 8.31$, was greatly diminished.

Strontium *Kd* value distributions are presented in Figure 3. The data are scattered and the data are normally distributed. As noted above, Kaplan et al. (1998) determined that Sr *Kd* values were significantly different between the two formations. Therefore, separate statistics were conducted on the *Kd* values from each of the two individual formations (Table 3 in Appendix). The statistics became weaker due to the smaller population size (n=10 for layer 2 and n=9 for layer 1), but the result was the same, that Sr was normally distributed (Appendix).

Uranium was normally distributed and the dot histogram shows a near classical distribution of data with a few data points at the extremes and most points in the middle (Figure 4; Table 1).

The two data sets that had low *Kd* values, Sr and U, had normal distributions, whereas the only data set with a high *Kd* value, Cs, was log-normally distributed. The cause for this is not known.

Figure 1. Probability Plot (top) and Dot Histogram (bottom) for Cs Kd Values

Figure 2. Probability Plot (top) and Dot Histogram (bottom) for LnCs-Kd

Figure 3. Probability Plot (top) and Dot Histogram (bottom) for Sr Kd Values

Figure 4. Probability Plot (top) and Dot Histogram (bottom) for U-Kd Values

4.0 CONCLUSIONS

Based on statistical analyses of some literature sorption tests, the following early guidance has been provided:

- Set the range to an order of magnitude for radionuclides with K_d values >1000 mL/g and to a factor of two for K_d values of <1000 mL/g. This decision is based on the literature.
- Set the range to an order of magnitude for radionuclides with K_{sp} values $<10^{-6} M$ and to a factor of two for K_d values of $>10^{-6} M$. This decision is based on the literature.
- The distribution of K_d values with a mean >1000 mL/g will be log-normally distributed. Those with a K_d value <1000 mL/g will be assigned a normal distribution. This is based on our field measurements.

The range and distribution of solubility and Kd values based on the above guidance and the mean values provided in Kaplan (2006) are provided in Appendix B.

This guidance for stochastic modeling will provide a probabilistic estimate of the range of risk that buried waste may pose. Results from on-going site-specific field/laboratory research involving E-Area sediments will supersede this guidance; these results are expected in 2007.

5.0 REFERENCES

- Bradbury, M. H., and F. A. Sarott. 1995. Sorption Databases for the Cementitious Near-field of a L/ILW Repository for Performance Assessment. PSI Bericht Nr. 95-06. Paul Scherrer Institut, Villigen, Switzerland.
- Kaplan, D. I. 2006. Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site. WSRC-TR-2006-00004, Rev. 0. Washington Savannah River Company, Aiken, SC.
- Kaplan, D. I., K. E. Parker, and I. Kutnyakov. 1998. Radionuclide Distribution Coefficients of Sediments Collected from Borehole 299-E17-21. PNNL-11966. Pacific Northwest National Laboratory, Richland, WA.
- Krupka, K. M., R. J. Serne, and D. I. Kaplan. 2004. *Geochemical Data Package for the 2005 Hanford Integrated Disposal Facility Performance Assessment*. PNNL-13037, Rev. 2, Pacific Northwest National Laboratory, Richland, WA.
- Walpole, R. E., and R. H. Myers. 1978. *Probability and Statistics for Engineers and Scientists*, 2nd ed. Macmillan Publishing, New York, New York, 580 p.
- Wieland, E., and L. R. Van Loon. 2003. *Cementitious Near-Field Sorption Data Base for Performance Assessment of an ILW Repository in Opalinus Clay.* PSI Bericht 03-06, Paul Scherrer Institut, Villigen, Switzerland.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX A: STATISTICS OF Kd DISTRIBUTIONS

Sample ID	Dont	h (m)	лЦ	CEC(mag/100g)	Cs		Sr		U	
Sample ID	Dept	.n (m)	рп	CEC (meq/100g)	value (mL/g)	+/-	value (mL/g)	+/-	value (mL/g)	+/-
07A	14	14.6	8.54	5.07	2044.8	275	14.09	0.83	0.94	0.12
10A	17.6	18.2	8.8	4.73	2090	305	14.25	0.49	0.67	0.08
12A	21.2	21.6	8.77	4.6	2023.8	305	13.81	0.78	0.64	0.1
14A	24.5	25.2	8.73	4.62	1969.8	39.5	13.94	0.5	0.67	0.05
15A	27.6	28.3	8.75	4.11	1502.1	80.1	13.64	0.85	0.74	0.05
16A	30.6	31.4	8.77	2.32	1535.9	270	12.81	0.33	0.57	0.04
17A	33.5	34.2	8.52	4.98	2267.2	388	15.46	0.33	0.68	0.15
19A	36.9	37.6	8.5	4.72	2861.7	396	14.25	0.45	0.51	0.08
20A	39.5	40.3	8.52	4.67	2251.8	292	15.32	0.37	0.65	0.08
21A	43.1	43.9	8.56	4.56	2072.5	409	14.91	0.63	0.57	0.09
22A	46.3	47.1	8.94	7.33	1373.9	332	12.18	0.29	0.59	0.08
23A	48.9	49.7	8.82	8.41	2295.2	280	13.04	0.95	0.58	0.05
24A	55.1	55.7	8.81	9.03	2213.3	455	16.92	0.92	0.55	0.05
25A	57.8	58.5	8.89	6.63	1716.9	484	12.35	0.85	0.56	0.07
27A	59.2	61.4	8.88	8.36	1563	259	16.17	1.42	0.59	0.08
29A	64.3	64.4	8.84	7.77	2128.7	423	14.22	0.34	0.5	0.13
31A	65.4	67.8	8.56	10.98	4068.2	259	16.9	0.11	0.3	0.12
32A	69.8	70.5	8.93	8.39	1792	315	16.89	1.72	0.7	0.11
34A	72	72.6	8.92	6.21	1897	178	16.92	1.53	0.61	0.16
35A	73	73.6	8.89	6.65	1435	133	16.79	2.68	0.68	0.13

Table 2. Kd (mL/g) Values from Borehole 299-E17-21 at Hanford.

Note: values for each sample represent mean +/- standard deviation based on 3 replicates; only one replicate was used for pH and cation exchange (CEC)

Page 16 of 25

Figure 6: Probability Plots for Sr Kd Values for Layer 1 (top) and Layer 2 (bottom) (n=10)

Layer 1

Page 17 of 25

Statistia	$K_d (mL/g)^1$						
Statistic	Layer 1 Sr	Layer 2 Sr					
mean	15.58	14.06					
min	12.35	12.18					
max	16.92	15.46					
median	16.79	14.10					
count	9	10					
std deviation of sample mean	0.62	0.33					
(standard error)	0.02	0.55					
std deviation of sample population	1.86	1.04					
skewness	-1.03	-0.40					
standard error skewness ²	0.82	0.77					
kurtosis	-0.78	-0.23					
standard error kurtosis ²	1.63	1.55					

 Table 3: Summary statistics of Kd measurements for Sr for Layers 1 & 2

¹Average pH of samples = 8.75, with min of 8.5 and maximum of 8.96

 2 Standard error of skewness approximated by sqrt(6/n) and standard error of kurtosis approximated by sqrt(24/n), where n equals the count

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX B: RANGE AND DISTRIBUTION OF Kd AND SOLUBILITY VALUES USED IN E- AND Z-AREA PERFORMANCE ASSESSMENT CALCULATIONS

		Sandy S	Sedimer	nt	Clayey Sediment						
				Lower	Upper				Lower	Upper	
Radionuclide	Best Kd	Distribution	fe	Limit	Limit	Best Kd	Distribution	fe	Limit	Limit	
³ H, Kr, Rn, Ar	0	Normal	1.4	0	0	0	Normal	1.4	0	0	
Cl, Nb	0	Normal	1.4	0	0	0	Normal	1.4	0	0	
Ac, Am, Bk, Cf,											
Cm, Eu, Gd, Sm	1100	Log-Normal	3.3	333	3630	8500	Log-Normal	3.3	2576	28050	
Inorganic C	0	Normal	1.4	0	0	0	Normal	1.4	0	0	
Cs, Rb, Fr	50	Normal	1.4	36	70	250	Normal	1.4	179	350	
Со	7	Normal	1.4	5	10	30	Normal	1.4	21	42	
I, At	0	Normal	1.4	0	0	0.6	Normal	1.4	0	1	
Ni	7	Normal	1.4	5	10	30	Normal	1.4	21	42	
Np, Pa	0.6	Normal	1.4	0	1	35	Normal	1.4	25	49	
Pu(V/VI)	16	Normal	1.4	11	22	5000	Log-Normal	3.3	1515	16500	
Pu(III/IV)	300	Normal	1.4	214	420	6000	Log-Normal	3.3	1818	19800	
Pu(combo)	270	Normal	1.4	193	378	5900	Log-Normal	3.3	1788	19470	
Th,Zr	900	Normal	1.4	643	1260	2000	Log-Normal	3.3	606	6600	
Pb, Po, Sn	2000	Log-Normal	3.3	606	6600	5000	Log-Normal	3.3	1515	16500	
Sr, Ra, Ba	5	Normal	1.4	4	7	17	Normal	1.4	12	24	
Se, Te	1000	Log-Normal	3.3	303	3300	1000	Log-Normal	3.3	303	3300	
Tc, Re	0.1	Normal	1.4	0	0	0.2	Normal	1.4	0	0	
U	200	Normal	1.4	143	280	300	Normal	1.4	214	420	

Table 4. Distribution Coefficients (Kd values, mL/g) ranges and distributions in Sandy and Clayey Sediments.

Best Kds taken from Table 10 in Kaplan (2006).

"fe" = uncertainty factor, defined in equations 1 and 2.

Young Cement, 1st Stage						Ν	Moderately-aged		Aged Cement, 3rd Stage						
Radionuclide	Best	Distribution	fe	Low Kd	Upper Kd	Best	Distribution	fe	Low Kd	Upper Kd	Best	Distribution	fe	Low Kd	Upper Kd
³ H, Cl, Tc, Re, Kr, Rn, Ar, Nb, Se, Te, I, At, Cs,															
Fr, Rb	NA			NA	NA	NA			NA	NA	NA			NA	NA
C Ac, Am, Bk,	1.00E-06	Log-Normal	3.3	3.0E-07	3.3E-06	1.00E-04	Normal	1.4	7.1E-05	1.4E-04	1.00E-04	Normal	1.4	7.1E-05	1.4E-04
Gd, Sm	1.00E-11	Log-Normal	3.3	3.0E-12	3.3E-11	1.00E-08	Log-Normal	3.3	3.0E-09	3.3E-08	1.00E-07	Log- Normal Log-	3.3	3.0E-08	3.3E-07
Co, Ni	1.00E-07	Log-Normal	3.3	3.0E-08	3.3E-07	1.00E-07	Log-Normal	3.3	3.0E-08	3.3E-07	1.00E-06	Normal Log-	3.3	3.0E-07	3.3E-06
Np, Pa	1.00E-08	Log-Normal	3.3	3.0E-09	3.3E-08	1.00E-08	Log-Normal	3.3	3.0E-09	3.3E-08	1.00E-07	Normal Log-	3.3	3.0E-08	3.3E-07
Ra	1.00E-06	Log-Normal	3.3	3.0E-07	3.3E-06	1.00E-06	Log-Normal	3.3	3.0E-07	3.3E-06	1.00E-06	Normal	3.3	3.0E-07	3.3E-06
Sr, Ba Pb, Po, Pu(V/VI), Pu(III/IV),	1.00E-05	Normal	1.4	7.1E-06	1.4E-05	1.00E-05	Normal	1.4	7.1E-06	1.4E-05	NA	Lee		NA	NA
Th, Zr, Sn	1.00E-08	Log-Normal	3.3	3.0E-09	3.3E-08	1.00E-08	Log-Normal	3.3	3.0E-09	3.3E-08	1.00E-07	Log- Normal Log-	3.3	3.0E-08	3.3E-07
U(VI)	1.00E-07	Log-Normal	3.3	3.0E-08	3.3E-07	1.00E-07	Log-Normal	3.3	3.0E-08	3.3E-07	1.00E-06	Normal	3.3	3.0E-07	3.3E-06

Table 5. Apparent solubility concentration limits (mol/L) for Oxidizing Cementitious Solids

Best Kds taken from Table 11 in Kaplan (2006).

"fe" = uncertainty factor, defined in equations 3 and 4.

		Young Cement, 1st Stage		Moderately-aged Cement, 2nd	Stage	Aged Cement, 3rd Stage				
Radionuclide	Best	Distribution fe Low Kd	Upper Kd	Best Kd Distribution fe Low Kd	Upper Kd	Best Kd I	Distribution	fe Low Kd	Upper Kd	
³ H, Cl, Kr, Rn, Sr, Ra, Zr, Th, Nb, Sn, I, Cs, Ac, Am, Cf, Cm, Eu, Po, Se, C, Co, Ni, Pb, Bk, Sm, Fr, Gd, At, Ar, Te, Ba Tc (IV), Re(IV)	See Oxid 1.00E-10	lizing Cementitious Solids (See Table 5)) Log-Normal 3.3 3.0E-11	3.3E-10	1.00E-10 Log-Normal 3.3 3.0E-11	3.3E-10	1.00E-10 I	.og-Normal	3.3 3.0E-11	3.3E-10	
Np(IV), Pa(IV) Pu(III/IV)	1.00E-06 1.00E-10	5 Log-Normal 3.3 3.0E-07 D Log-Normal 3.3 3.0E-11	3.3E-06 3.3E-10	1.00E-06 Log-Normal 3.3 3.0E-07 1.00E-10 Log-Normal 3.3 3.0E-11	3.3E-06 3.3E-10	1.00E-05 1.00E-09 I	Normal Log-Normal	1.4 7.1E-06 3.3 3.0E-10	1.4E-05 3.3E-09	
Pu(combo) U Best Kds taken fro	1.00E-10 1.00E-06 m Table	Log-Normal 3.3 3.0E-11Log-Normal 3.3 3.0E-0712 in Kaplan (2006).	3.3E-10 3.3E-06	1.00E-10 Log-Normal 3.3 3.0E-11 1.00E-07 Log-Normal 3.3 3.0E-08	3.3E-10 3.3E-07	1.00E-09 I 1.00E-07 I	.og-Normal .og-Normal	3.3 3.0E-10 3.3 3.0E-08	3.3E-09 3.3E-07	

Table 6. Apparent solubility concentration limits (mol/L) for Reducing Cementitious Solids.

"fe" = uncertainty factor, defined in equations 3 and 4.

	Young Cement, 1st Stage						Moderately-aged Cement, 2nd Stage					Aged Cement, 3rd Stage			
	Best			Low	Upper	Best			Low	Upper	Best			Low	Upper
Radionuclide	Kd	Distribution	fe	Kd	Kd	Kd	Distribution	fe	Kd	Kd	Kd	Distribution	fe	Kd	Kd
Tc(VII), Re,															
Kr, Rn, Ar,	0	Normal	1.4	0	0	0	Normal	1.4	0	0	0	Normal	1.4	0	0
3-H	0	Normal	1.4	0	0	0	Normal	1.4	0	0	0	Normal	1.4	0	0
Cl	0.8	Normal	1.4	0.6	1.1	2	Normal	1.4	1	3	0	Normal	1.4	0	0
I, At	8	Normal	1.4	6	11	20	Normal	1.4	14	28	0	Normal	1.4	0	0
Inorganic C	20	Normal	1.4	14	28	10	Normal	1.4	7	14	0	Normal	1.4	0	0
Ac, Am, Bk,															
Cf, Cm, Eu,							Log-								
Gd, Sm	5000	Log-Normal	3.3	1515	16500	5000	Normal	3.3	1515	16500	500	Normal	1.4	357	700
Co Ni	1000	Log Normal	2.2	202	2200	1000	Log- Normal	22	202	2200	500	Normal	1 /	257	700
C0, INI,	1000	Log-mormal	5.5 1.4	505	140	1000	Normal	5.5 1.4	505	140	500	Normal	1.4	557	/00
ка, Ба	100	Normal	1.4	/1	140	100	Normal	1.4	/1	140	/0	Normal	1.4	50	98
Sr	1	Normai	1.4	1010	12200	1	Normal	1.4	1212	12200	2000	Normal	1.4	1	1
Sn G	4000	Log-Normal	3.3	1212	13200	4000	Log-Normal	3.3	1212	13200	2000	Log-Normal	3.3	606	0000
Cs, Fr	2	Normal	1.4	1	3	4	Normal	1.4	3	6	2	Normal	1.4	1	3
Nb	1000	Normal	1.4	714	1400	1000	Log-Normal	3.3	303	3300	500	Normal	1.4	357	700
Nn Pa	2000	I og-Normal	33	606	6600	2000	Log- Normal	33	606	6600	200	Normal	1 /	1/13	280
Se Te	300	Normal	1 /	214	420	300	Normal	1.4	214	420	150	Normal	1.4	143	200
Dh Do	500	Normal	1.4	214	420 700	500	Normal	1.4	214	700	250	Normal	1.4	107	210
Ph Po	500	Nomiai	1.4	557	700	500	Normai	1.4	557	700	230	Normai	1.4	1/9	550
Pu(V/VI).															
Pu(III/IV),															
Pu(combo),							Log-								
Th, Zr	5000	Log-Normal	3.3	1515	16500	5000	Normal	3.3	1515	16500	500	Normal	1.4	357	700
U	1000	Log-Normal	3.3	303	3300	1000	Log-Normal	3.3	303	3300	70	Normal	1.4	50	98

Table 7. Distribution coefficients (Kd, mL/g) for Oxidizing Cementitious Solids.

Best Kds taken from Table 13 in Kaplan (2006). "fe" = uncertainty factor, defined in equations 1 and 2.

	Young Cement, 1st Stage					Μ	oderately-aged	Cemen	it, 2nd St	tage		Aged Cement, 3rd Stage				
	Best			Low	Upper	Best			Low	Upper	Best			Low	Upper	
Radionuclide	Kd	Distribution	fe	Kd	Kd	Kd	Distribution	fe	Kd	Kd	Kd	Distribution	fe	Kd	Kd	
All rads except the following	Same	values as report	ed in T	able7												
Tonowing	Same	values as report		auter.								Log-				
Tc, Re	5000	Log-Normal	3.3	1515	16500	5000	Log-Normal	3.3	1515	16500	5000	Normal	3.3	1515	16500	
U	5000	Log-Normal	3.3	1515	16500	5000	Log-Normal	3.3	1515	16500	5000	Normal	3.3	1515	16500	
Best Kds taken	from Ta	ble 14 in Kapla	ın (200	6).												
"fe" = uncertai	inty facto	or, defined in eq	uations	s 1 and 2	2.											

Table 8. Distribution coefficients (Kd, mL/g) for Reducing Cementitious Solids.

DISTRIBUTION

Savannah River Site

B. T. Butcher	773-43A, Rm. 216
L. B. Collard	773-43A, Rm. 207
J. R. Cook	773-43A, Rm. 209
K. P. Crapse	773-43A, Rm. 212
G. P. Flach	773-42A, Rm. 211
W. T. Goldston	705-3C, Rm. 105
J. C. Griffin	773A, Rm. A-231
M. Millings	773-42A, Rm. 220
R. A. Hiergesell	773-42A, Rm. 251
D. I. Kaplan (3 copies)	773-43A, Rm. 215
M. A. Phifer	773-42A, Rm. 252
W. E. Stevens	773-A, Rm. A-261
R. F. Swingle	773-42A, Rm. 122
G. A. Taylor	773-41A, Rm. 156
E. L. Wilhite	773-43A, Rm. 214
WPT File (2 copies)	773-43A, Rm. 213
STI (3 copies)	703-43A