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A Sample Compositing Strategy for Classifying
Non~Radicactive Hazardous Waste for Transport (U)

Willard ¢. Winn

Westinghouse Savannah River Company
Aiken, South Caroclina 29890

ABESTRACT

A probabilistic strategy for sample compositing is developed
to minimize the radiometric analyses required for classifying
non-radiocactive waste for transport. Such waste must have
concentrations of total radiocactivity that are below an
acceptance limit of L = 2 nCi/g. A composite of N different
samples must have a radicactive concentration below L/N to assure
that no individual sample is unacceptable. Unacceptable samples
are eventually identified by analyses of successive splits
composited with N/2, N/4, ... of the original samples. The
probable number of such analyses is derived using Gaussian
distributions for the composite concentrations, per invoking the
Central Limit Theorem. A preliminary compositing strategy, based
- only on the average concentration g, uses N = L/u to yield a
minimum fraction of =2u/L analyses per total samples. These
approximations are useful for L/u > 4. Refined strategies, based
on both the i and ¢ for the concentration distribution, define
the optimization more precisely. Experimental data from
composites of 880 samples of low-level radiometric waste are
consistent with the calculated predictions .
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1. Introduction

Because of the growing emphasis on the environment, the
analysis volume for waste samples has increased dramatically in
recent years. At the Savannah River Site (SRS), hazardcus waste
that is classified as non-radicactive must be certified as having
less than 2 nCi/g total activity before it can be shipped off-
plant. Compliance with this limit is required by U.S. Department
of Transportation (DOT) regulations [1]. The demand for
establishing acceptable radionuclide levels for off-plant waste
shipments has resulted in strategies for compositing samples to
help alleviate the analysis load. A strategy based on
probabilistic methods is examined and should have broad
application in areas of waste certification. This method is a
variation of sequential statistical analysis [2-4], which
minimizes the required measurements in batch appraisals.

Various composite strategies have evolved over the years.
Farly work by Dorfman (5] developed a compositing method for
screening blood samples, in which the only individual samples
tested were those associated with defective composites. This
approach continues to be useful in current applications [6], and
it is normally optimized relative to the group size of the
composite sample [5-~9). The above method may be cptimized further
if a sequential binary search is applied to identify the
defective samples of defective composites [7-8]. The present work
develops a compositing strategy based on a binary search.



2. General Theory

For transport of non-radiocactive hazardous waste, DOT
requires that the radicactive concentration ¢ be below the limit
of L = 2nCi/g. Normally, the contents of waste containers are
homogenized, and then individual samples are taken and analyzed.
If N waste samples from different containers are equally mixed as
a single composite sample, this sample must have ¢ < L/N, to
assure that no individual component sample of the composite
contains the entire contamination at a level exceeding L. If
measurements on any composite sample yielded c > L/N, then two
recomposites would be made, each from a different N/2 samples
inciuded in the original composite. Each of these recomposites
would be tested against the criteria that c < L/[N/2] or ¢ <
2L/N. This recompositing process would continue as necessary,
until (1) all recomposites have satisfied c < 2!L/N = L. at some
jth recomposite level and (2) any individual component samples
with ¢ > L have been identified. Because each recomposite will
split the preceding composite by a factor of 2, it is recommended
that N = 2", where n is an integer. Both N and 2" notations are
included in the development below. Thus, the jth recomposite
limit is given by

L, = 2iL/N = 2)™ L. (1)

The above recompositing scheme requires some Knowledge of
the probabilities of exceeding the L, limits to project how many
sample analyses are needed for a given N. Suppose some large
number of samples S must be appraised relative to compliance with
the limit L. Then, the initially composited samples will regquire
A, analyses, as given by

A, = S/N = 2"s. (2)
A total of A, P(c, > L,) analyses would fail the compliance
criteria, requiring analysis of A, recomposited samples, which
are composed of paired splits from the first composites. (Here,
P(c, > L;,) is the probability that an initial composite sample
has ¢, > L;). More explicitly, A, is given by

A, = 2 A, P(cy, > Ly)
(3)

2! s/N P(c, > L)

= 2'" s P(c, > Iy)



Continuing this procedure, it is readlly observed that the number
A, of jth recomposite analyses will be given by

Aj = 2B, P(c;, > L)

) J
= 2! s/N 7 P(c;, > L,,)
(4)
in 3
= 2'"s 71 P(c, > L.,

Thus, the total number A of expected analyses is obtained by
summing the A;, viz

n
A = Z Aj (5)
j=0
where in summary
A, = 21'5Nj = 2 )
;= /N 7 P, = 2Ms 71 P
i=0 1=0
P, =1 fori1=20
= P(c;.; > L;y) for i > 0

L, = 2'/N L= 2"

3. Probability Assignments
3.1 Fundamental Considerations

The preceding treatment defines the general formalism;
however, the probabilities P, must be defined to obtain results.
For a composite made of a suff1c1ently large number N of samples,
the Central Limit Theorem predicts that the composite
concentrations have a Gaussian distribution. Subcomposites of
large N/z’ should also have Gaussian distributions. Thus, for
suff1c1ently large composites, the P, of P,, P,, ... should
approximate Gaussian distributions, but the ..« P4, P, cannot in
general be assumed to be Gaussian. Fortunately, the latter P,
normally have only a minor influence on the number of predlcted
analyses A, and thus the Normal distribution can be used for each
P;. The dlscu581on below details the basis for this choice of P,
and develops the resulting formalism for predicted analyses A.



Most strategies would use a first composite P, < 0.5, to
assure that no more than 50% of these composites require
recomposites as paired splits. These first recomposites would
have probability P, < P, of requiring the next recomposite step,
because the contaminant limit L., is twice as high for successive
recomposite steps. (The effective o, of the distribution also
increases with successive recomposife steps, but by a smaller
factor = /2, which does not cancel the effect of the increased
L;) . Thus, in general, 0.5 2 P, > P, > .... > P . Consequently,
for the A predicted by eg. (5), each term A; = 2P,2P,...2P;5/N
becomes progressively smaller as j increases, so that the terms
containing ... P,,, P, have only minor influence on the total
sum A. Thus, use of the Gaussian distribution for Py, P,, ... ,
where the Central Limit Theorem applies, and for ... P ,, P,
where the effect on A is minor, should yield reasonable
assignments for the P..

The probabilities P, are defined by the Gaussian
distribution notation

[+ o3
P(x > X) = J[ 1// 27 S exp[ =(x - U)%2 7 2 §% ] dx = G(X|U,S) (6)
X

From the Central Limit Theorem, composites of N individua%
samples, which are distributed with mean g and variance o¢°, have

a Gaussain distribution G(X|g,0//N). Applying this to P,,
P, = P(c, > L) = G(Lolp,0//N) = 6(Lylu,0y) M
and in general we may write

P, = P(C;4 > L;.,) = G(Li_1|p,c/./N/2*") = G(L,.,|&,/2" %0} (8)

1

where o, corresponds to the distribution of the initial
composites. The o, may be obtained directly from a series of
composite measurements or indirectly from a series of sample
measurements. However, if sample measurements are used, caution
should be exercised, because the sample measurements are not
likely to have a Gaussian distribution. The present study
addresses samples that are likely to have log-Normal
distributions, as discussed below.

Log-Normal distributions are often applicable to
environmental radiation measurements [10]. Because non-
radiocactive hazardous waste contains primarily natural
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radionuclides, with the possibility of contamination by man-made
radio-nuclides, it is considered that this waste should have
radicactive concentrations that are log-Normally distributed.
Consistent with this treatment, waste is expected to be generated
from a variety of sources with contamination levels that depend
on numerous multiplicative factors which are randemly
distributed. Distributions that depend on random multlpllcatlve
factors are log-Normally distributed [11].

A log-Normal distribution should be examined if a series of
individual sample measurements is to be studied. The log-Normal
distribution is given by

P(In(x) > 1n(X)) = G(In(X)|1ln(w,).6) , ) (9)

where the log of each measurement yields a Gaussian, with mean
equal to the log of the geometric mean py and sigma of 6. Thus, a
sigma deviaticn of 1ln(x) - 1ln(p) = § corresponds to a one-sigma
factor deviation of F = x/u_ = exp(&) If this distribucion is to-
be examineg in x (as opposeé to 1n(x) ), the resulting mean p and
variance o° are related to the log-Normal parameters as [11]

4= pg exp (6/2)

o? = p? exp(6’) [exp(s) - 1] -

(10)

These values of g and ¢ are the ones that apply to the Gaussian
probabilities defined for P, above.

Although it would be ideal to have values for p and o for
developing a compositing strategy, this is not always practical
in the early phase of a measurement program. Typically, one needs
to define a preliminary compositing strategy at the initiation of
such a program; then, as the measurements data base increases,
refined strategies based on g and ¢ values can evolve. Thus,
approaches for both preliminary and refined compositing
strategies are needed and each is discussed below.

3.2 Preliminary Approach

A few preliminary measurements are usually sufficient to
yield an average concentration p, but the o and functional nature
of the P; can only be determined from larger data sets. However,
the u alone is a very useful parameter, because it is an
approximation of the median for anticipated P, distributions in
many appllcatlons, including the present one. In fact, for the
Gaussian model of P, developed above, the mean and medlan are
identical. Because the median of P, corresponds to P; = 0.5, the
preliminary estimate of p contains some information about the
probabilities. This infermation can be used to develop a
preliminary compositing strategy.



The preliminary compositing strategy is developed using edq.
(5), and the information for P, = P(c,, > u) = 0.5. Suppose a
strategy using P, = 0.5 is selected whlch corresponds to the
upper limit for reasonable recompositing, as discussed earlier.
Then, u must equal L, = L/N = L/N , where N, is the value of N
that produces this mean condition. The correspondlng P, has the
value of 0.5 when L, = 2L/N = 21/2N = p, or when N 1ncreases to
2N . Continuing thlS progression, in general

P, = 0.5 when N = 2N, = 2"'L/pu, for i >0 (11)

To estimate P; at other N, the ¢ must be known, as indicated by
eg. (8). To examine a 51mp11f1ed overview, o is set equal to
zero, yielding §-function distributions of P;, viz

P, = 0.0 when N < 2''N_

1

0.5 when N = 2N, i>0 (12)

1.0 when N > 2''N,

]

— i-1 _ i1
P, = H(N-2""'N) = H(N/N-2'")

1

where H{..) is the Heaviside function.

Using these P., the number of analyses per total samples is
calculated from eq. (5) as

n )
S/N [ 1+ 3% 2 H(N/N-1)H(N/N-2)...H(N/N-2"") )

A =
j=1
(13)
n . .
=8/N [ 1+ 2% 2 HON/N-2T) ]
j=1
In generalized notations, this may be written
n . -
(4/S)N, = N/N [ 1+ T 2 H(N/N~2"") ] (14)

3=1

which essentlally allows all N, cases to be glven in a single
plot as shown in fig. 1. From this plot, it is recognized that
for a given N, the minimum A/S corresponds to N = N.. If a non-
zero g vere used the plot would smooth out the abrupt changes

7



shown for the §-function P;, but the general behavior would be
similar. As a reference, the figure presents a smoothed average
of this é-function model. In general, for a preliminary strategy
based only on the average u, an initial composite of

N=N = L/u (15)

should be near the optlmum. Furthermore, the figure indicates
that the corresponding minimum A/S N, is between 1 and 3,
vielding the estimate of

(A/S)pin = 2/N, = 2 p/L . (16)

It is also noted that as N increases, the asymptotic values of
A/S N, are between 2 and 4, as indicated in the figure.

3.3 Refined Approach

In the refined approach, sufficient data are available to
obtain both g and ¢ that define the P,. It is wise to test that
the P, are suitably modeled as Gau551an dlstrlbutlons, before
1nvok1ng eqg. (8):; however, given that N is reasonably large, the
Central Limit Theorem virtually assures this. Conformance with a
Gaussian is confirmed if an integral probability plot of the data
yields a straight line.

Upon certifying the above requirements, the probabilities P,
may be dlrectly calculated using eq. (8). Then these P, are
incorporated into eq. (5) to yield the number of analyses

4. Calculations and Measurements

Preliminary data for waste drum samples indicated a u
somewhat below 0.1 nCi/g. Thus, since L = 2 nCi/g, initial
composites with N = 20 = L/u drum samples each were used, per eq.
(15) . This compositing strategy was used for a total of 880 drums
which required A, = 44 analyses on initial composites, A, = 4
analyses on lst recomposites, and A, = 2 analyses on 2nd ‘
recomposites, for a total of A = 50 analyses. Thus, the required
analyses were only about 6% of those that would have been used if
each drum were analyzed individually. This compares favorably
with the =10% projected by eqg. (16).

The refined data resulting from the 44 composite analyses
were sufficient to yield values of u = 0.056 nCi/g and o, = 0.026
nci/g, as shown in the probability plot of fig. 2. The resulting
straight line also confirms that the composite data are
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distributed as a Gaussian. Table 1 shows that the A. predicticns
of the refined approach are in reasonable agreement with the
observed number of analyses. In particular, the refined approach
for N = 20 yields 48 analyses, which is in good agreement with
the 50 observed experimentally.

Table 1 displays a series of refined predictions over the
range of N = 1 to N = S = 880, wherein the g and ¢ from the
experimental measurements are used. It is interesting to compare
the above predictions for N = 20 against those for the minimum
number of analyses. Specifically, a minimum of 46 analyses
results when N = 24, which is only slightly lower. Also, had the
final average of 0.056 nCi/g been used (instead of 0.1 nCi/qg) as
a preliminary p estimate, the corresponding N = L/u = 36 would
have estimated (2u/L)S = 49 analyses for the preliminary
approach, which is very close to the 50 predicted by the refined
approach. Overall, Table 1 illustrates that the choice of N is
not extremely sensitive to the predicted number of analyses A,
provided that N is in the vicinity of the minimum, which is
relatively broad.

Calculations were alsc performed to examine how accurate the
preliminary predictions would be for similar cases with different
L and ¢. For this examination, the L and ¢ for the experimental
results were varied by multiplicative factors. Fig. 3 shows
A/S N vs N curves for L multiplied by factors ranging from 1/4
to 4. Over this range the absolute minima of A/S N, deviated by
less than * 25%. Also, the minimum for each curve 1s no more than
25% lower than that obtained with the preliminary approach using
N = N . Fig. 4 gives similar data for o, which is also varied by
factors ranging from 1/4 to 4. Here, the absolute minima are
within + 40%, and the minimum for each curve is no more than 35%
lower than that obtained with the preliminary approach using N =
N,. Thus, the preliminary approach is useful for a wide range of
condltlons, and the refined approach can be applied for further
optimization as data become available. :

Figs. 3 and 4 contain curves that are smoothed relative to
the é-function P; model of fig. 1. All curves examined lie within
the extremes of the §-function curve. In fig. 3, increasing L
causes the curve to approach the é-function curve, because the
correspondingly greater N [per larger N, = L/pu] yields narrower
P, [per oy = o/J/N of egs. (7) and (8}]. In fig. 4, dlrectly
decreasing o, per decreasing ¢ has a similar effect in causing

the curve to approach the é-function curve of fig. 1.

It should be pointed out that the above ranges of ¢ can
infer corresponding log-Normal distributions for the individual
samples. From eg. (10), a log-Normal sigma § is solved to yield

= /In(1 + o/u) (17)



from which one-sigma factors of F = exp(é) are shown to range
from 1.6 to 7.9 for the o-cases examined in fig. 4. Thus, the
log-Normal sample distributions can be guite broad and still

permit the preliminary method to be applied.

5. Conclusions

For a binary compositing strategy, the present study
illustrates that the choice of N = L/u samples per composite
yields a near-optimum reduction in the analyses required.
Furthermore, an optimally low fraction of =2u/L analyses per
sample is predicted. This choice of N is most useful for
preliminary compositing strategies, where insufficient data are
available to model the probability distributions in detail. As .
data evolve to better describe the probability distributions, the
strategy can be modified for further optimization using the
refined approcach.

Predictions with the above approaches apply quite well for
SRS radiation measurements that classify non-radicactive waste
for transport, and the relative insensitivity to wide variations
from the probability distributions for this waste suggest a
broad range of applications. Gaussian probability models were
applicable for the present analysis; however, other probability
models may alsc lead to the preliminary choice of N = L/u,
provided that their means are reasonable estimates of their
medians.

In figs. 1, 3, and 4, the A/S does not increase dramatically
above its minimum as N increases beyond the vicinity of N_.
Although near optimum A/S would result from choosing these higher
N, their use is not recommended, as much larger numbers of the
initial composites would have to be recomposited, causing the
bockwork to become more involved. As mentioned already, a
strategy with P, £ 0.5 is the more reasonable approach. Alsoc, for
Nm- L/u < 4, relatlvely little advantage is predicted with these
binary compositing strategies.

The general theory of this compositing strategy should also
have applications in other areas of regulation and quality
control, provided that the acceptance limits L are defined. In
addltlon, should an L be redefined by new requirements, the new
sampling strategy is easily deduced, using the g and o already
developed for the earlier L. Of course, if no prior compositing
data exist, the new strategy can be developed according to the
general approach whereby a p from initial data defines the
preliminary approach and both u and o from sufficient later data
define the refined approach.
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_Table 1. Results for Refined Approach

Data is for S = 880 paint/solvent waste-drum samples
grouped as A, = S/N initial composites. All predictions
use 4 = 0.056 nCi/g and o = /No, = /20 x 0.026 nCi/g from
the measurements data.

Results N A, A, A, Ag A, A
Measurements (a 20 44 4%2 2+2 0 5043
Predictions

Minimum N 1 880 0 - 880.0

Low N 10 88 0 £8.0

N =2""=N/2 16 55 1.0 0 56.0

Measurements N 20 44 4.0 0 48.0

Optimum N 24 36.7 9.2 0 45.9

Intermediate N 28 31.4 15.2 0.1 0 46.7

N =2"= N 32 27.5 20.7 0.4 0 48.6

N = N, 36 24.4 24.% 1.1 0 50.4

Practical N = N, 40 22 27.6 2f5 0 o 52.1

High N 55 16 28.6 12.9 0.1 o 57.6

Maximum N 880 1 2.0 4.0 8.0 (b) 72.6

a) Experimental uncertainties are approximated from
Poisson statistics.

b) A, = 16.0, A; = 28.6, A, = 12.9, A, = 0.1, and A, = 0, which
is the same sequence exhibited in the High N = 55 case.
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Figure Captions

Fig.

Fig.

Fig.

Fig.

A/S as a

Integral

A/S as a

A/S as a

Function of N for §-Function P,.
Probability Plot for Liquid Waste Composites
with N = 20.

Function of N for P, from Liquid Waste Data
for different L values.

Function of N for P; from Liquid Waste Data
for different ¢ values.
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