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Abstract: Over the last 35 years more than 5000 meters of basement core has been recovered
from 26 deep wells at the Department of Energy's Savannah River Site. This core provides the
only known exposure of basement terranes that lie SE of the Carolina terrane in central South
Carolina, beneath Cretaceous and Tertiary sediments the Atlantic Coastal Plain. Core from six of
these- .wells is dominated by metaplutonic rocks ranging from quartz diorite to granite in
composition. Based on their modal and chemical compoéitions, metamorphic grade, and structural
positions, basement cores are divided into two distinct units: the DRB Plutonic Suite (subcrop
north of the Pen Branch Fault in core DRB-1), and the PBF Plutonic Suite (subcrop south of the
Pen Branch fault in cores PBF-7, PBF-8, GCB-4, C-7, C-10, and SA).

Metaplutonic rocks of the DRB Plutonic Suite are represented by hornblende diorites, hornblende
quartz diorites, and tonolites, which intrude metavolcanic wallrock. Metaplutonic rocks of the DRB
Plutonic Suite display a wide compositional range, with SiO,= 50—71%, MgO= 1.0-6.5%, K,O
<1%, TiO,= 0.5-1.2%, and Fe,0,*= 2.9-12.2%, similar to the overall compositional range of the
intruded metavolcanic wallrock. Rocks of the DRB Plutonic Suite were metamorphosed under
upper greenschist to lower amphiblolite facies conditions. Metaplutonic rocks of the PBF Plutonic
Suite were originally granodiorites with SiO,= 55-72%, MgO < 5%, K,0 =1.4-3.2%, TiO,= 0.5-
1.7%, and Fe,0,*= 3.5-10%. Many metaplutonic rocks of the PBF Plutonic Suite have undergone
extensive hydrothermal alteration, during which potassic fluids infiltrating along fractures'replaced
calcic feldspar with K-feldspar, causing severe depletion of CaO (0.5-2%) and Sr (<160 ppm),
adding K,0 (3.2-5.3%) and SiO, (72-77%), and coloring the rocks bright pink. Metamorphism of
the PBF Plutonic Suite occurred primarily under upper amphibolite to lower granulite facies
conditions, but the later hydrothermal alteration took place under greenschist facies conditions.

Metaplutonic rocks of both plutonic suites have calc-alkaline fractionation trends, consistent with
formation in active, subduction-related arc terranes. Reported crystallization ages‘ of =619 Ma to
~626 Ma, however, show that these rocks do not correlate with accreted arc rocks in central South
Carolina (Carolina slate belt, western Charlotte belt) because the latter are too young (=535 to =570
Ma). Based on their compositions and ages, we tentatively correlate these rocks with the Hyco
Formation in southern Virginia and central North Carolina. The Hyco Formation forms the
infractructure of the Carolina terrane in Virginia and North Carolina, where it was affected by the
circa 600 Ma “Virgilina” orogeny. The DRB/PBF arc may represent the infrastructure of the
Carolina slate belt in South Carolina, detached by later tectonic events, or it may represent late

Proterozoic arc infrastructure from another location in the arc that has been moved into its current
location by transcurrent motions.




INTRODUCTION

The hinterland of the Southern Appalachians, which lies SE of Grenville basement exposed in the
Blue Ridge province, comprises a complex mosaic of exotic terranes of uncertain provenance
(e.g., Williams and Hatcher, 1982, 1983; Secor and others, 1983; Horton and others, 1989, 1991;
Samson and others, 1990). These terranes include (from NW to SE) the Inner Piedmont, the
Carolina terrane (including the Carolina slate belt), and the Raliegh belt (figure 1). Further to the
SE, crystalline basement of the Laurentian margin is largely concealed beneath several kilometers
of Mesozoic and Cenozoic sedimentary rocks, commonly referred to as the Atlantic Coastal Plain
(Fallaw and Price, 1995; Colquhoun, 1991). This hidden crystalline basement is divided into
additional terranes based on limited exposures at the margins of the Coastal Plain onlap,
aeromagnetic lineaments that define basement trends in the subsurface, and core data from wells
that penetrate basement (e.g., Horton and others, 1989, 1991).

The Savannah River Site and National Laboratory is located near the NW margin of the Atlantic
Coastal Plain (figure 2), where up to 2 km of Cretaceous and younger sediments overlie crystalline
rocks of the basement and a major Triassic rift basin (Dunbarton basin; Fallaw and Price, 1995;
Cumbest and others, 1992, Snipes and others, 1993). Crystalline rocks of the Savannah River Site
basement include mafic to felsic metavolcanic rocks, metagranitoids that intrude the metavolcanic
rocks, and younger mafic and felsic dikes that cross-cut all older lithologies. These rocks are
juxtaposed against high-grade metamorphic rocks of an unknown terrane to the north, and the
Suwannee terrane (to the south) along major crustal discontinuities which can be mapped in the
subsurface using magnetic and gravity potential field data. Although the Savannah River Site
crystalline basement superficially resembles volcanic arc igneous suites of the Carolina terrane, it is
separated from the greenschist facies rocks of the Carolina terrane, near Clarks Hill lake, by three
separate fault zones. Understanding the development of this geologically complicated area requires
careful characterization of the basement complex, and detailed comparisons with the rocks of
adjacent terranes that may correlate with this basement complex.

In this report we present first a brief review of the regional geologic setting of the Savannah River
Site, descriptions of the plutonic rock units sampled here, whole rock geochemical data on the
plutonic igneous rocks, and finally, a discussion of how the crystalline basement rocks of the
Savannah River Site formed and how they may correlate with other terranes exposed in the
Piedmont of the Carolinas, Georgia, and Virginia.




i

REGIONAL SETTING

The SE margin of the Laurentian shield is generally defined by the eastern limit of the Blue Ridge
province, a complex -assemblage of older Grenville basement, metamorphosed continental margin
sediments, intrusive rocks, and an accretionary complex (?) of metasediments, metabasalts, and
ultramafic rocks (e.g., Bartholomew, 1984, and papers therein). Outboard of this province the
Laurentian margin is plastered with a mosaic of “suspect” terranes that were accreted to the
Lzurentian margin during the Paleozoic, after Laurentia rifted from the western edge of Argentina
and drifted north around the western margin of Gondwana (e.g., Dalziel and others, 1994).
“Suspect” terranes that were accreted to the Laurentian margin during the Paleozoic include the
Piedmont terrane (Inner Piedmont belt), the Carolina terrane (comprising the Kings Mountain belt,
the Charlotte belt, and the Carolina slate belt), the Kiokee-Uchee-Dreher Shoals terrane, the
Milledgeville terrane, and the Belair belt (Augusta terrane; figure 1). Each of these terranes contains
different lithologic assemblages and have distinct geologic histories. Correlatations between these
terranes is difficult because many formed as island arcs, and because age constraints are limited at
this time. In this section we will review briefly the characteristics of these terranes; later we will .
discuss how these terranes may or may not correlate with crystalline basement of the Savannah
River site.

Terranes NW of the Modoc Zone

Piedmont terrane: The Piedmont terrane consists of felsic to intermediate gneisses, migmatitic
gneisses, and amphibolites exposed in northern Georgia, the western Piedmont of central South
Carolina, and western North Cafo]ina east of the B}ue Ridge (figure 1). These rocks were
metamorphosed to middle and uppcr amphibolite facies conditions and folded into ‘a series of
recumbent nappes (Griffin, 1971). Recently reported age determinations (Dennis and Wright,
1997a) suggest peak metamorphism =360 Ma, followed by retrograde overprinting =300 Ma
during the Alleghanian orogeny.

Carolina terrane: The Carolina terrane consists of two distinct subunits: the amphibolite facies
western Carolina terrane (Charlotte, Kings Mountain belts) and the greenschist facies eastern
Carolina terrane (Carolina slate belt). The western Carolina terrane comprises mafic to intermediate
metavolcanic rocks penetrated by a series of zoned, mafic-to-ultramafic intrusive complexes
(Dennis and Shervais, 1991, 1996). Age determinations by Dennis and Wright (1997b) show that
the zoned complexes crystallized and were deformed in the interval =575 Ma to 535 Ma. The
metavolcanic rocks are commonly cross-cut by mafic dikes, including some containing abundant
large pseudomorphs of actinolite after clinopyroxene. The protoliths of these pyroxene-megaphyric
dikes were tholeiitic ankaramites that may represent the extrusive equivalent of the zoned mafic-




ultramafic complexes (Dénnis and Shervais, 1991, 1996). These upper greenschist to lower
amphibolite facies rocks are contiguous with somewhat higher grade rocks of the so-called “Juliette
terrane” (Higgens and others, 1988), which forms the southwestern margin of the Carolina terrane
(figure 1). Rocks of ‘the Juliette terrane include felsic gneisses, amphibolites, and zoned mafic-
ultrarhaﬁc complexes — lithologies identical to those found in the Carolina terrane. Based on
correlation of the Juliette terrane with the western Carolina terrane, we recommend that the term
“Juliette terrane” be retired and that these rocks be included with the rest of the western Carolina
terrane (e.g., Hooper and Hatcher, 1989; Dennis and Shervais, 1996).

The eastern Carolina terrane (Carolina slate belt) consists of greenschist facies felsic to intermediate
tuffs, breccias, and flows, mudstones, and scarce mafic metavolcanics (Feiss, 1982; Rogers,
1982; Secor and others, 1982, 1986; Shelley, 1988; Shervais and others, 1996). Succession of the
dominantly felsic metavolcanic rocks of the Persimmon Fork Formation by the mudstones and
mafic metavolcanic rocks of the Richtex Formation (Secor and others, 1982, 1986) is-interpreted to
reflect evolution of the volcanic stratigraphy by intra-arc rifting (Dennis and Shervais, 1991, 1996;
Shervais and others, 1996). The age of the eastern Carolina terrane is well constrained at =550 Ma
by U-Pb zircon crystallization ages of shallow, epizonal granitic plutons that intrude the felsic
metavolcanic rocks (Whitney and others, 1978; Carpenter and othefs, 1982; Dallmeyer and others,

'1986; Barker and others, 1993). An upper age limit is constrained by a Middle Cambrian trilobite

fauna found in the Asbill Pond Formation (Secor and others, 1983; Samson and others, 1990).

Where the Carolina terrane is exposed along the North Carolina-Virginia border, Glover and Sinha
(1973) have shown that it was affected by folding and faulting =620-575 Ma during the Virgilina
orogeny. Older rocks of the Carolina terrane in this area include the Hyco and Aaron formations,
which are deformed and overlain unconformably by the Uwharrie Formation (=Persimmon Fork
Formation in central South Carolina). Most of the Carolina terrane in central South Carolina post-
dates the Virgilina event (Dennis and Wright, 1997b). '

Terranes SE of the Modoc Zone

The Carolina terrane is separated from a series of amphibolite facies subterranes to the SE by the
Modoc zone, an early Alleghanian (=310 Ma; Pray, 1997) normal fault (Snoke and others, 1980;
Secor and others, 1986a; Sacks and Dennis, 1987). This complex fault system juxtaposes low-
grade greenschist facies metavolcanic rocks of the Carolina slate belt against kyanite and
sillimanite-grade rocks of the Uchee belt, Kiokee belt, and Dreher Shoals subterrane (figure 1).
Snoke and Frost (1990) have shown that up to 25 km of structural deletion may have occured on
the Modoc zone. Other. terranes exposed SE of the Modoc zone include the lower grade




Milledgeville and Augusta' terranes, and another, unnamed high-grade terrane exposed in a small
window through sediments of the Coastal Plain (figure 2).

Kudzu terrane: The SE margin of the Modoc zone is bordered by high grade metamorphic rocks
traditionally assigned to the Kiokee belt, Uchee belt, and Dreher Shoals subterrane. All three of
these “terranes” are nearly identical lithologically, and had similar if not identical thermal histories.
It seems likely that these “terranes” were originally one unit that was separated by later tectonic
events or by coastal plain onlap. We propose here that these rocks be referred to as the “Kudzu
terrane” (Kiokee-Uchee-Dreher Shoals-Precambrian Z-Unified terrane).

Kiokee belt (aka “Savannah River terrane”): The Kiokee belt consists of upper amphibolite facies
(sillimantite grade) migmatitic gneiss (biotite-amphibole paragneiss), sillimanite schist, amphibolite,
luecocratic paragneiss, quartzite (chert?), and local ultramafic rocks (Maher, 1978, 1987; Maher and
Sacks, 1987; Maher and others, 1991; Secor and others, 1986a, 1986b; Sacks and others, 1989).
The predominance of migmatitic paragneiss and sillimanite schist indicates temperatures >650°C

and minimum pressures = 3 kb.

Uchee belt (aka “Uchee terrane”): The Uchee belt consists of upper amphibolite facies (sillimantite
grade) migmatitic gneiss, schist, and amphibolite (Bentley and Neathery, 1970; Hanley, 1986;
Chalokwu, 1989). Chalokwu (1989) determined a P-T range of =570-780°C at 7.0 to 9.2 kbars
for amphibolites from this belt. It is nearly identical to the Kiokee belt lithologically.

Dreher Shoals “terrane”: The Dreher Shoals terrane consists of upper amphibolite facies (staurolite-
kyanite grade) schist, gneiss, amphibolite, and granitic orthogneiss (Secor and Snoke, 1978; Secor
and others, 1986a; Dallmeyer and others, 1986; Snoke and Frost, 1990). Snoke and Frost (1990)
determined a P-T range of ~750°C at 7.2 t o 8.2 kbars — that is, nearly identical to the P-T ranges
calculated by Chalokwu (1989) for the Uchee belt.

Milledgeville terrane: The Milledgeville terrane consists of upper greenschist to lower
amphibolite facies mudstones, siltstones, and quartzites (metachert?), with local intercalations of
metavolcanic rock (Pickering, 1976). Lithologically, it resembles rocks of the Richtex and Asbill
Pond formations (Carolina slate belt). It may be fault bounded, or it may sit unconformably on top
of the high-grade “Kudzu terrane”.

Augusta terrane: The Augusta terrane (Maher and others, 1991), more commonly known as the
Belair belt, is a small terrane exposed between the Kiokee belt and the onlap of the coastal plain
(figure 2). The Augusta terrane consists of low-grade (greenschist facies) metavolcanic rocks and
metasedimentary rocks with lithologic similarities to those of the Carolina terrane (Maher, 1978;
Maher and others, 1991; Shervais and others, 1996). The metasedimentary rocks were originally




thin-bedded wackes and siltstones, interbedded with mafic to felsic crystal-lapilli tuff and, less
commonly, amygdaloidal basalt (Shelley, 1988; Shervais and others, 1996). The only age
constraint for rocks of the Augusta terrane is the presence of a lower Paleozoic trilobite segment
(Maher and others, 1981).

~ The Augusta terrane is separated from the Kiokee belt by the Augusta fault, a late Alleghanian
(=275 Ma), low angle normal fault that has Augusta terrane rocks in its hanging wall (Mabher,
1978, 1979; Maher and others, 1991). The Augusta terrane is separated from a higher grade
terrane to the southeast by an aeromagnetic lineament (figure 2). This geophysically defined crustal
block, which includes the Graniteville granite, appears to extend southward toward the Savannah
River Site (figure 2).

Suwannee terrane: The Suwannee terrane, which underlies the coastal plain sediments of south
Georgia, Alabama, and northern Florida; has only been sampled by drill core (Heatherington and
Mueller, 1996; Heatherington and others, 1996; Mueller and others, 1994; Guthrie and Raymond,
1992). 1t consists of low-grade metavolcanic tocl;cs (North Florida Volcanic Series) and intrusive
rocks of diorite to granodioirite composition (the Osceola granite of central Florida and others).
Reported zircon U-Pb ages include 552 Ma for a dacite metavolcanic of the North Florida Volcanic
Series, 551 Ma for the Osceola granite, and 625 Ma for a granodiorite in southern Alabama
(Heatherington and others, 1996; Mueller and others, 1994).

Whole rock geochemistry shows that the North Florida Volcanic Series and related intrusive rocks
formed in a magmatic arc along the margin of Gondwana (Heatherington and Mueller, 1996;
Heatherington and others, 1996; Mueller and others, 1994). Sr and Nd initial ratios indicate the
involvment of both Proterozoic and Archean lithosphere. Metavolcanic and granitic rocks of the
Suwannee terrane are age equivalent with the Carolina terrane, and may have formed in the same
convergent margin setting.

Savannah River Site terrane: Major lithologic units of pre-Cretaceous basement beneath the
Savannah River Site include the Crackerneck Metavolcanic Complex (subgreenschist facies
metavolcanic rocks), the DRB Metavolcanic Complex (epidote-amphibolite facies metavolcanic
rocks), the Pen Branch Metavolcanic Complex (amphibolite to lower granulite facies metavolcanic
rocks), the PBF plutonic suite, the DRB plutonic suite, and clastic sedimentary rocks of the
Triassic Dunbarton basin (figure 2). Metavolcanic rocks of the Crackerneck, DRB, and Pen
Branch volcanic complexes are described in Mauldin et al. (this volume). The inferred occurrence
of a Triassic-Jurassic mafic igneous complex south of the Dunbarton basin is based on
aeromagnetic anomalies (Horton et al., 1991); core data from wells C-7 and C-10 indicate that
much of this basement is *“pinked” granite of the PBF plutonic suite. Younger, undeformed plutons
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(the Devonian Sprihgﬁeld granite and the Carboniferous Graniteville granite) show that these rocks
were last deformed prior to =400 Ma. The subsurface extent of these plutons is based on gravity
anomalies, core data, and limited surface exposures (figure 2).

METHODS

Basement core was logged for 26 wells drilled in and around the Westinghouse/Savannah River
Site, including wells drilled between ~1960 and 1994; the location of these wells and a geologic

' m;ip based on subcrop lithology is shown in figure 4. Core from all wells studied here was logged
for lithology and structural relationships, fractures, folds, foliations, layering, and relict prima;y
intrusive contacts. Over 400 samples were collected, and from this collection 116 samples were
selected for further petrologic study, including petrographic, mineral chemical, and/or whole rock
geochemical analysis.

Qhantitative electron microprobe analyses of major and minor elements were obtained with the
Cameca SX50 four-wavelength-spectrometer automated electron microprobe at the University of
South Carolina. The samples were examined optically and by secondary and backscattered electron
imagery using the electron microprobe; analysis points were precisely located with a 1 pm
precision sample stage. Analyses were made at 15 KV accelerating voltage, 30 nanoamperes probe
current, and counting times of 20-40 seconds, using natural and synthetic mineral standards.
Analyses were corrected for instrumental drift and deadtime, and electron beam/matrix effects

using the “PAP” ¢(pz) correction procedures provided with the Cameca microprobe automation

system; these correction procedures are based on the model of Pouchou and Pichoir (1991).
Analytical precision is =1% of the amount present for oxide concentrations greater than 10 wt%, 1-
2% for oxide concentrations between 1 and 10 wt%, and 5-10% for oxide concentrations between
0.01 and 1 wt%. Relative accuracy of the analyses, based upon comparison of measured and
published compositions of the standards, is ~1-2% for oxide concentrations greater than 1 wt%
and ~10% for oxide concentrations less than 1 wt%. Mineral analyses are presented in Table 1.

Thirty-five plutonic rocks were selected for whole rock major and trace element geochemistry.
Each sample was analyzed for 10 major elements (SiO,, TiO,, ALO,, total Fe as Fe,0,*, MnO,
MgO, Ca0, N3a,0, K,0, P,0,) and 12 trace elements (Nb, Zr, Y, Sr, Rb, Zn, Cu, Ni,' Cr, Sc, V,
Ba) using the University of South Carolina's Philips PW-1400 X-ray fluorescence spectrometer.
Major elements were analyzed on fused glass disks using a method similar to Taggart and others
(1987); trace elements were analyzed using pressed powder briquettes prepared using the technique
of Holland and Brindle (1966). Calibration curves and matrix corrections were established uSing a
series of selected USGS and international standards (Potts and others, 1992) and the Philips X41
software package. Replicate analyses of ‘selected standards as unknowns show percent relative
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errors of =1% for éilica, =2-4% for less abundant major eléments, and =6-7% for elements. with
concentrations < 0.5 wt%. Eleven whole rock samples were also analyzed for rare earth element
(REE) concentrations by inductively coupled argon plasma/mass spéctrometry (ICP-MS) at the
University of New Mexico.

DESCRIPTION OF METAPLUTONIC UNITS BENEATH THE SAVANNAH
RIVER SITE

The DRB Plutonic Suite

The DRB Plutonic Suite is sampled exclusively by the 4” diameter Deep Rock Borehole (DRB)
core DRB-1 (Mauldin and others, 1997; Roden and others, 1997). It consists dominantly of diorite
and quartz diorite sheets that intrude preexisting metavolcanic wallrock; both are cut by younger
mafic dikes. The DRB metadiorites were metamorphosed to epldote-amphlbohte facies
assemblages and range texturally from equxgranular to porphyritic gneisses. The porphyritic
gneisses are characterized by large, zoned hornblende and plagioclase porphyroclasts, within a fine
to medium-grain matrix of plagioclase, quartz, chlorite, blue/green amphibole, and epidote (figure
3). Chloritic fractures and chloritized amphiboles may also appear sparsely.

Most amphibole porphyroclasts, and essentially all groundmass amphiboles, are metamorphosed to
blue-green amphibole. However, many amphibole porphyroclasts preserve cores of brown
hornblende, which are interpreted to represent relict igneous hornblende (figure 3a). Relict igneous
hornblende is characterized by higher Mg/Fe ratios (figure 4a), higher Al,O,, and higher TiO, than

- the metamorphic blue-green amphibole. These differences are shown clearly in a plot of tetrahedral

Al vs Ti, where metamorphic amphibole has Al > 1.4 afu (atomic formula units per 23 oxygen)

and Ti < 0.06 afu (figure 5). Coexisting igneous hornblende has higher Ti (0.03 to 0.45 afu, with
most > 0.1 afu Ti) and lower A" (< 1.35 afu; figure 5).

Less commonly, the blue-green 4metamorphic amphiboles contain cores of fibrous actinolite
defining large sub- to anhedral porphyroclasts. Actinolite is characterized by low A"V (~0.4 afu;
figure 5). These actinolite cores may represent pseudomorphs after primary igneous hornblende, or
possibly even pyroxene, that was retrograded to actinolite under later greenschist facies conditions.

The textural relations are interpreted to indicate that the greenschist facies minerals (actinolite,

chlorite) post-date the amphibolite facies assemblage and must represent retrograde metamorphism,

not an older phase of seafloor metamorphism that pre-dates higher grade metamorphism (e.g.,
Roden and others, 1997).

Plagioclase porphyroclasts may show relict igneous features, including oscillatory zoning and
albite twinning (figure 3b). Average plagioclase compositions usually fall between An,; and An,,
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(figure 6). However., individual porphyroclasts may have cores as calcic as An,, and rims as sodic
as An, (figure 6a; Table 1). The calcic cores are interpreted to represent relict igneous plagioclése
compositions; the sodic rims formed during metamorphism along with the blue-green amphibole
(e.g., Roden and others, 1997). Metaplutonic rocks of DRB-1 contain no garnet, consistent with
metamorphism at relatively low temperatures and pressures (lower amphibolite to uppermost
greenschist facies conditions). Biotite is rare to absent in the DRB metadiorites; almost all primary
biotite has been metamorphosed to chlorite.

A number of mylonite zones penetrate the DRB-1 metadiorites. These may be distinguished by
belts of ultrafine-grained quartz, feldspar, amphibole, and epidote bounded on either sid¢ by fine to
medium grained porphyritic gneisses. The mylonite zones are generally meter scale in thickness.

PBF Plutonic Suite

Tﬁc PBF Plutonic Suite forms a thin slice of crystalline basement between the Triassic Dunbarton
basin to the south and the more extensive DRB Metavolcanic Complex to the north (figure 2). The
PBF Plutonic Suite dominates the upper part of -the core recovered from wells PBF-7, PBF-8, C-
10, GCB-4, and the Seismic Attenuation well (SA); metavolcanic rocks of the Pen Branch
Volcanic Complex are found in the deeper core from these wells. The PBF Plutonic Suite
comprises two dominant lithologies: gneissic metagranitoids and “pinked” metagranitoids, formed
by hydrothermal alteration of the normal gneissic metagranitoids (Mauldin and others, 1997;

Dennis and others, this volume).

Gneissic Metagranitoids: "Unpinked" gneissic metagranitoids of the PBF Plutonic Suite are

‘porphyroclastic gneisses with porphyroclasts of amphibole and plaigioclase set in a groundmass of |

amphibole, plagioclase, microcline, biotite, quartz, and epidote (figure 7a). Amphibole
porphyroclasts are unzoned and similar in appearance to the blue-green amphiboles found in the
DRB metadiorites (figure 7b). Amphiboles have Mg/Fe ratios similar to the metamorphic
amphiboles in the DRB metadiorites (figure 4b), but TiO, values range from 0.7% to 1.0%, higher
than metamorphic amphibole in the DRB metadiorites. Blue-green amphibole in the PBF
metaplutonic rocks is clearly distinguished from the relict igneous hornblende of the DRB Plutonic

‘Suite, however, by its higher AIY (> 1.42 afiy; figure 5). Plagioclase porphyroclasts within the

PBF gneisses range from An,, to An,, and have an average composition of An,; (figure 6b).

Despite their superficial similarity to metadiorites of the DRB Plutonic Suite, the PBF gneissic
metagranitoids are distinguished by their lack of relict igneous hornblende, the relaﬁvely high Ti in
blue-green metamorphic amphibole, higher An-content plagioclase, the common occurrence of
microcline, and the preservation of biotite. Some of these characteristics may result from higher’
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metamorphic gradé in the PBF metagranitoids, but others (e.g., common microcline) reflect
fundamental compositional differences between the two intrusive series.

Pinked metagranitoid: Much of the granitic core recovered from wells PBF-7, PBF-8, C-10, and
SA was subjected to partial to extensive hydrothermal alteration that post-dates formation of
foliation. We refer to this alteration as the "pinking” event due to the salmon-pink color imparted
upon rocks affected by the hydrothermal fluids. The effects of this "pinking" event range from
mm-scale selvages on fractures to pervasive alteration of hundreds of meters of core (Dennis and
others, this volume).

“Pinked” PBF metagranites commonly contain large plagloclase microcline, and garnet ‘

porphyroblasts set in a finer-grained matrix of quartz, plagioclase, microcline, and chlorite.
Plagioclase porphyroblasts are much less common in pinked rocks. Amphibole is almost
completely chloritized, but some relict blue-green amphibole is preserved. Microcline in the pinked
metagranitoids commonly occurs as large megacrysts up to ~Smm across, and may account for as
much as 40% of the modal mineralogy. Partially pinked rocks have plagioclase An,; to. An,,
(figure 6Db). Plagioclase in the thoroughly pinked granites is completély albitized (An,), and
subsequently, partially sericitized (figure 6b). Biotite, like amphibole, also has been almost
completely chloritized.

WHOLE ROCK GEOCHEMISTRY

Whole rock geochemical data by x-ray fluorescence ahalysis for 35 samples of plutonic rock are
presented in Table 2; REE analyses of 11 samples by ICP-MS are presénted in Table 3. All of the

samples are metamorphosed but because these samples were recovered. by deep coring of the
basement, none was subjected to subaerial weathering,

DRB Plutonic Suite

Metaplutonic rocks sampled by core from DRB-1 may be classified as diorites. or quartz. diorites
based on their normative mineralogy (figure 8). Whole rock geochemical data for the DRB-1
metadiorites show major and trace element trends typical of calc-alkaline intrusive suites: MgO,
Fe,0,*, TiO,, Ca0, Al,O,, Sr, Cr, and Ni all decrease with increasing SiO,, whereas Na,0, K,0,
and Rb all increase (figure 9). At any given silica mode, the DRB metadiorites are lower in mafic
elements (Mg, Fe, Ti, Cr, Ni), K,0, and Rb than the PBF metagranitoids described below, and
higher in plagiophile elements (Ca, Na, Al). The DRB metadiorites are calc- alkaline on an AFM
plot (figure 10), consistent with their observed lack of Fe or Ti enrichment on Harker diagrams.

Four samples were chosen for REE analysis (Table 3). All are enriched in the light rare earth
~elements (LREE) relative to the heavy rare earth elements (HREE), with La ~10x—30x chondrite,
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and La/Lu ratios of ~2.3x-3.8x chondrite (figure 11). The La/Lu ratios are lower than those
observed in rocks of the DRB Metavolcanic Complex (Mauldin and others, this volume). All four
samples have small negative Eu anomalies, which imply that plagioclase fractionation played a role
in the petrogenesis of these rocks.

PBF. Plutonic Suite

Metagranitoids: Gneissic metagranitoids sampied by core from PBF-7, PBF-8, C10, GCB-4, and
the Seismic Attenuation well (SA) may be classified as “quartz monzodiorites” and *“granodiorites”
using their normative mineralogy (figure 8). Whole rock geochemical data for the PBF
metagranitoids show major element trends similar to those of DRB-1: MgO, Fe,0,*, TiO,, Ca0O,
Al,0,, Sr, Cr, and Ni all decrease with increasing SiO,, whereas Na,O, K,0, and Rb all increase
(figure 9). At any given silica mode, the PBF metagranitoids are higher in mafic elements (Mg, Fe,
Ti; Cr, Ni), K,0, and Rb than the metadiorites of DRB-1, and lower in plagiophile elements (Ca,
Na, Al). Like the DRB-1 diorites, the PBF metagranitoids are strongly calc-alkaline on an AFM
plot (figure 10). i

Six “unpinked” metagranitoids of the PBF intrusive complex were analyzed for REE
concentrations (Table 3). All are enriched in LREE relative to HREE, with La =30x-100x
chondrite, and La/Lu ratios of =3.6x to =5.4x chondrite (figure 11); Both the La/Lu ratios and total
REE are higher than those observed in metadiorites of the DRB plutonic suite. Five of these
samples have small negative Eu anomalies, suggesting plagioclase fractionation, whereas one has a
significant positive Eu anomaly, suggesting plagioclase accumulation (figure 11).

Pinked metagranitoids: Almost all of the metagranitoids in the PBF-7 core between ~950m to
~1100m below the surface (footage 3100’ to 3600’) were partially to completely altered by a
greenschist facies hydrothermal event that increased the modal K-feldspar content, albitized
plagioclase, and altered biotite and hornblende to chlorite (see description of the lithologic units,
above). The most striking physical feature of these altered rocks is their bright salmon-pink color,
which may form selvages on fractures in partially altered rocks, or completely color the rock in
more intensely altered horizons. Similar pink granitoids are found in other deep cores from the
PBF formation (PBF-8, SA, C10).

Metagranitoid samples that were thoroughly “pinked” are characterized by higher SiO,, K,0, and
Rb than their unaltered equivalents, and by lower MgO, Fe,0,*, TiO,, Al,O,, CaO, Na,O, and Sr
(figure 9). As a result, these rocks are classified as “granites” using their normative mineralogy
(figures 8). They extend the strong calc-alkaline trend of the “uhpinked” metagranitoids (figures 9
and 10), but this apparent calc-alkaline “fractionation trend” results from hydrothermal alteration,
not igneous processes.
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Only one sample of “pinked” PBF-7 was analyzed for REE concentrations (PBF-7-3568). This
sample is characterized by modest LREE enrichment (La/Lu ~2.1x chondrite) and by a pronounced
negative Eu anomaly not seen in the “unpinked” PBF-7 metagranitoids (figure 11). This suggests
that Eu™* (and possibly other LREE) was mobilized along with Ca? during the “pinking event” and
removed from the system.

DISCUSSION

M‘é‘taplutorﬁc rocks of the DRB and PBF plutonic suites exhibit compositional ranges and phase
assemblages consistent with formation in subduction-related volcanic arcs. Deciphering the nature
of these arcs requires consideration of the magmatic evolution of each complex, its age and isotopic
composition, its trace element characteristics, and its subsequent metamorphic history.

Fractionation Modeling: The smooth compositional trends exhibited by these rocks on Harker
diagrams suggest fractional crystallization as the dominant process controlling composition (figure
9). Other processes which could have played an important role in the petrogenesis of these rocks
are magma mixing and assimilation. Tn order to evaluate fractional crystallization as the controlling
process, we chose three relatively primitive compositions from our analyzed dataset as potential
“parent magmas” and modeled their fractionation paths using the computer program COMAGMAT
(Ariskin and others, 1993). The three samples chosen as potential parent magmas are DRB-1-1438
(an older amphibolite dike), DRB-1-1047 (the most primitive diorite), and DRB-4-1758 (a mafic
metavolcanic rock). Fractionation trends were calculated for two different sets of conditions: (1)
QFM oxygen buffer, 2 kb total pressure, pyroxene = pigeonite, no water and (2) NNO+1.0
oxygen buffer, 3 kb total pressure, pyroxene = opx, and 1% water. The different conditions seem
to have only a minor effect on calculated fractionation trends, which depend mostly on the starting
magma composition (figure 9). These models are limited by the inability of the program to model
hornblende fractionation directly, especially since hornblende is the most prominent mafic igneous
phase.

In general, the calculated fractionation trends provide good matches to the observed range in data,
with some suggestion that more than one parent magma is required to explain the observed
compositions. Only a few samples have compatible element concentrations (Cr, Ni) that plot above
calculated fractionation trends, which sﬁggests that magma mixing between evolved melts and
influxes of primitive magma was not an important process in these rocks. The incompatible
elements K and Rb have observed concentrations that plot above calculated fractionation trends,
but only for PBF granitoids and “pinked” granites (figure 9). This is consistent with post-
crystallization enrichment in these elements during the “pinking” event, as discussed earlier. In
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addition, the parent magma compositions used in the models may not be appropriate for the PBF
series granitoids.

Age Constraints and Tracer Isotopes: Two samples were dated using the U-Pb zircon method
(Dennis and others, 1997). Quartz monzodiorite from PBF-7 is slightly older at 626.1+4.4 Ma;
DRB-1 quartz diorite is 619.2+3.4 Ma (Dennis and others, 1997). These late Proterozoic ages are
too old to correlate with the Carolina slate belt (=550 Ma; Whitney and others, 1978; Carpenter and
others, 1982; Dallmeyer and others, 1986; Barker and others, 1993) or the western Carolina
terrane (=535 Ma to 580 Ma; Dennis and Wright, 1997b), but similar ages have been determined
for the Hyco Formation in central North Carolina (Harris and Glover, 1988). The Hyco Formation
represents the infrastructure of the Slate Belt arc in North Carolina and Virginia, where it is
overlain unconformably by the Uwharrie formation (=Persimmon Fork Formation of the Carolina
Slate Belt in South Carolina).

Tracer isotopes indicate derivation of both the DRB diorites and PBF granodiorites from similar,
relatively primitive sources. The DRB-1 diorite has a calculated initial ¥’Sr/*Sr ratio of 0.70194

and Ex4+3.5; PBF granodiorite has a calculated initial *'Sr/*Sr ratio of 0.70318 and €+2.0
(Dennis and others, 1997). The PBF-7 initial Sr ratio was calculated in two steps to correct for the
effects of “pinking” on the measured Rb concentration. These values of initial Sr and Eng are

similar to those that have been measured on meta-igneous rocks of the Carolina terrane and other .
peri-Gondwana “Avalonian™ terranes (e.g., Nance and others, 1991; Nance and Murphy, 1996).

Metamorphism: Meta-igneous rocks of both the DRB and PBF plutonic suites preserve evidence
for similar metamorphic histories. These histories are best illustrated by the changes in amphibole
composition (figure 5). Relict igneous hornblende compositions are preserved in the cores the
larger plutonic amphiboles. These compositions are overprinted by the pervasive growth of bh;e-
green metamorphic amphibole, consistent with amphibolite facies metamorphism. The high
temperature blue-green amphiboles were susequently retrograded to the greenschist facies minerals
actinolite and chlorite. Garnet-biotite geothermometry of metavolcanic rocks associated with the
plutonic rocks in core suggest equilibration temperatures of =650°C for the DRB Metavolcanic
Complex (amphibolite facies), and =700°C to ~840°C for the Pen Branch Metavolcanic Complex
(upper amphibolite to granulite facies; Mauldin and others, this volume)

Hydrothermal Alteration: The Big Pink: Many metaplutonic rocks of the PBF formation were
affected by a post-metamorphic hydrothermal alteration event whose characteristic signature is a
pervasive discoloration of the normally gray rocks to various shades of bright salmon-pink. The
metamorphic phase assemblage associated with this event (actinolite, chlorite, albite, K-feldspar)
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indicates greenschist facies metamorphism at temperatures =350°C to =~450°C. The primary
geochemical characteristic of this event is Si, K, and Rb metasomatism of the affected rocks by
hydrothermal fluids, and concommitant leaching of Ca and Eu**. We suggest that the breakdown
of primary biotite to chlorite, which is nearly complete in the pinked samples and affects much of
the DRB plutonic suite, is the most likely source of these alkalis.

Data presented by Dennis and others (this volume) and by Heath and Bartholomew (this volume)
show that the “pinking” event pre-dates the formation of most filled-fractures. The best estimate for
the absolute age of this event is the Rb-Sr “isochron” presented by Kish (1992) for granite from
core C10. This two point pseudo-isochron, based on the whole rock and a K-feldspar separate,
must represent the age of the “pinking” event because the pervasive K and Rb metasomatism of

- this event would thoroughly reset the isotopic systematics of the K-feldspar, which controls the

slope of the isochron. The “isochron” yields a model age of =220 Ma (early Triassic), which
1mp11es that the “pinking” event was associated with early Mesozoic rifting of North America from
NW Africa, and the formation of the Dunbarton basin. This is consistent with the conclusions of
Heath and Bartholomew (this volume), based on fracture relations observed in quarries.

Origin of the DRB/PBF Volcanic Arcs: Despite their gross similarity, plutonic rocks of the DRB
and PBF plutonic suites exhibit significant differences which lead us to conclude that they do not
represent the same rock series, although they may be related. Major differences include:

1. The DRB plutonic suite is dominated by quartz diorite, the PBF plutonic suite is dominated by
quartz monzodiorite (unpinked) and granite (pinked).

-2. Diorites of the DRB plutonic suite and quartz monzodiorites of the PBF plutonic suite have

distinct, subparallel trends on Harker diagrams that are offset from one another. At any given
silica content, the DRB metadiorites are lower in mafic elements (Mg, Fe, Ti, Cr, Ni), X,0,
and Rb than PBF metagranitoids, and higher in plagiophile elements (Ca, Na, Al). These
differences must reflect different parent magmas and different magma source regions.

3. Diorites of the DRB plutonic suite have lower REE concentrations, and lower La/Lu ratios than
plutonic rocks of the PBF plutonic suite. These differences are too large to result from

fractionation processes, and must reflect different ‘parent magmas and different magma source
regions.
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4. Diorite of the DRB plutonic suite has lower initial 'Sr/*Sr (0.70194) and higher €y, (+3.5)

than PBF granodiorite (initial ¥’Sr/*Sr = 0.70318, €,+2.0). These data indicate an oceanic

affinity for the DRB intrusive complex, and a weak continental influence on the PBF intrusive
complex. ’

5. Rocks of the PBF plutonic suite were metamorphosed to higher grades than those of the DRB

-. plutonic suite (upper amphibolite to granulite facies versus lower to middle amphibolite facies).

The higher grade of the PBF plutonic suite indicates equilibration at deeper crustal levels
relative to the DRB plutonic suite.

The evidence listed above shows that metaplutonic rocks of the DRB and PBF plutonic suites are
not equivalent, and must represent different magmatic systems. They may have formed within the
same arc in different places, or at different times; alternately, they may also have formed in
unrelated arc terranes and only been qutaposed later. Their closely similar ages and isotopic
compositions argue against both of the latter hypotheses, and strongly suggest that they formed
within the same arc system, in somewhat different places.

The lack of Fe and Ti enrichment, the range in SiO, contents, and the calc-alkaline trends on AFM
diagrams all suggest that both the DRB and the PBF plutonic suites represent relatively mature
arcs. Diorites of the DRB plutonic suite are confined to relatively primitive compositions, and do
not exhibit the more extended compositional range seen in the DRB Metavolcanic cbmplex
(Mauldin and others, this volume). The low normative quartz contents, relatively primitive major

element compositions, low total REE, low La/Lu, low initial ’Sr/**Sr, and high €4 of the DRB

diorites are interpreted to indicate that this plutonic suite formed in a magmatic arc that was built on
older oceanic or arc crust, and that continental crust was not part of its autochonous basement.

In contrast, quartz monzodiorites of the PBF plutonic suite are more potassic than the DRB
diorites, and are enriched in mafic elements (at similar silica modes), have higher total REE, higher

La/Lu, higher initial *’Sr/**Sr, and high €. This suggests derivation from a more evolved source,
such as an older, more mature oceanic arc terrane or a continental margin arc built on “transitional”
crust. These differences may be analogous to the “quartz diorite line” in the western Sierra Nevada

arc, which separates arc plutons intruded through accreted oceanic or arc-derived crust on one side

(quartz diorites) from arc plutons intruded through older cratonic crust on the other side (granites,
granodiorites). '

Correlation of the DRB and PBF Plutonic Suites: The data presented here show that fnetaplutonic
rocks of the DRB and PBF plutonic suites formed in subduction-related volcanic arcs during the
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late Proterozoic, ~620-625 Ma. They share similar Sr and Nd isotopic systematics, which are also
similar to other peri-Gondwana arc terranes (e.g., Nance and others, 1991; Nance and Murphy,
1996). The closely similar ages and isotopic compositions argue against formation in different arcs
or at different times in the same arc. The DRB/PBF arc cannot be correlated with the proximal
Carolina slate belt (Persimmon Fork Formation) in central South Carolina because (a) the
Persimmon Fork Formation is too young at =550 Ma, and (b) the Persimmon Fork formation is
dominated by felsic to intermediate composition volcanic rocks, not the basalt to dacite volcanic
rocks that dominate the DRB/PBF arc. The DRB/PBF volcanic arc is also older than the western
Carolina terrane (e.g., Dennis and Wright, 1997b), although the DRB/PBF metagranitoids are
lithologically similar to rocks of the western Carolina terrane.

. The DRB/PBF volcanic arc may correlate with the Hyco Formation in central North Carolina and
southern Virginia (Harris and Glover, 1988). The Hyco Formation consists of mafic to felsic
m;:tavolcanic rocks dated at =620 Ma (Glover and Sinha, 1973). These rocks were deformed and
metamorphosed during the =600 Ma “Virgilina orpgeny” of Glover and Sinha (1973), and then
overlain unconformably by younger arc rocks of the Uwharrie Formation and Albermarle Group
(Harris and Glover, 1988). The Uwharrie Formation was affected by minor deformation and low-
grade metamorphism, but lacks fabric elements of the older Virgilina event.

The Uwharrie Formation correlates with the Persimmon Fork Formation of central South Carolina
both lithologically and in age. Thus, one possible interpretation of the DRB/PBF volcanic arc is
that it represents infrastructure of the Carolina terrane in South Carolina that was detached by later
tectonic events. Alternatively, it may represent late Proterozoic arc infrastructure from another
location in the arc, that was moved into its current location by transcurrent motions.
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure Captions

Provisional terrane map of the eastern Piedmont in South Carolina, Georgia, and Alabama
(modified in part after Horton and others, 1991, with additional data from West and others,
1995, Dennis and Wright, 1997, and Dennis and Shervais, 1996). Carolina terrane

includes Carolina slate belt, the Charlotte belt, the Kings Mountain belt, and the putative

Juliette “non-terrane”. The Kiokee belt, Uchee belt, and Dreher Shoals subterrane comprise
the newly defined KUDZU terrane. CPS = Central Piedmont Suture.

Geologic map showing the distribution of crystalline basement lithologic units in and
around the Savannah River Site and National Laboratory. Major units beneath the
Savannah River Site include the Crackerneck Metavolcanic Complex (low-grade
metavolcanic rocks), the Deep Rock Metavolcanic Complex (epidote-amphibolite grade
metavolcanic rocks), the DRB Plutonic Suite, the Pen Branch Metavolcanic Complex
(amphibolite to lower granulite grade metavolcanic rocks), PBF Plutonic Suite, and clasti¢
sedimentary rocks of the Triassic Dunbarton basin. Triassic-Jurassic mafic igneous
complex south of the Dunbarton basin is based on aeromagnetic anomalies; core data from
wells C-7 and C-10 indicate that much of this basement is pinked granite of the PBF
Plutonic Suite. Subsurface extents of the Devonian Springfield pluton and the
Carboniferous Graniteville pluton are based on gravity anomalies. The Graniteville pluton

- is sampled by core from well C-2 and in limited surface exposures (outlined on map). The

Springfield pluton is sampled by well SAL-1. AFZ = Augusta fault zone, EPES = Eastern
Piedmont Fault System.

Photomicrographs'of DRB metadiorites: (a) Relict igneous hornblende (brown) surrounded
by mantle of metamorphic blue-green amphibole (UPL); (b) Primary igneous zoning and
albite twinning in relict plagioclase porphyroclast (UXN). Field of view 2.3 mm in both.

Ca-Mg-Fe plot showing compositions of metamorphic and relict igneous amphiboles in
metaplutonic rocks of the DRB and PBF plutonic suites.

Tetrahedral aluminum afu vs titanium afu (atomic formula units) in metamorphic and relict
igneous amphiboles of the DRB and PBF plutonic suites, based on 23 oxygens. Relict
igneous hornblende (Q) is higher in Ti and lower in Al" than coexisting metamorphic
amphibole (diamonds) in metadiorites of DRB plutonic suite. Metagranitoids of the PBF
plutonic suite contain no relict igneous hornblende, but the metamorphic blue-green

amphibole (A) is higher in Ti than metamorphic amphibole in the DRB metadiorites,
suggesting higher equilibration temperatures.
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Figure 6.
Figure 7.

Figure 8.

Figure 9.

Plagiclz;se compositions in DRB metadiorites and PBF metagranitoids. DRB plagioclase =
*#*, PBF unpinked plagioclase = O, PBF partially pinked gneiss = A, PBF thoroughly
pinked granites = A.

Photomicrographs of PBF metagranitoids: (a) Microcline with characteristic tartan twinning

in quartz-plagioclase-amphibole granite (UXN); (b) Metamorphic amphibole (extinct)

intergrown with quartz, plagioclase, and k-feldspar (UXN). Field of view 2.3 mm in both.

Plutonic rock compositions based on normative mineralogy in the quartz-alkali feldspar-
plagioclase ternay: (a) metaplutonic rocks of the DRB plutonic suite (M) are low in both
quartz and alkali feldspar; compositions range from diorite to tonalite, but most are quartz
diorites; (b) normal (i.e., not “pinked”) metaplutonic rocks of the PBF plutonic suite (filled
diamonds) are low in quartz but have slightly higher normative and alkali feldspar than the
DRB diorites; most are quartz monzodiorites. “Pinked” PBF metagranitoids (unfilled
diamonds) are high in both quartz and alkali feldspar, and plot within the “Granite” field.

Harker diagrams for DRB and PBF metaplutonic rocks. DRB diorites = M, unpinked PBF

quartz monzodiorites = A, pinked PBF granites = V. Solid lines indicate anhydrous
fractionation paths calculated with the program COMAGMAT (Ariskin and others, 1994).

Figure 10. AFM diagrams for (a) DRB metadiorites and (b) PBF metagranitoids, with calc-alkaline /

tholeiite dividing line of Irvine and Barager (1974). DRB diorites = M, unpinked PBF
quartz monzodiorites = filled diamonds, pinked PBF granites = open diamonds.

Figure 11. Chondrite-normalized REE plots ‘for metaplutonic rocks of DRB and PBF intrusive

complexes. PBF metagranitoids have higher total REE and higher La/Lu than DRB
metadiorites. Note large negative Eu anomaly in pinked granodiorite.
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Appendix 1: Formal Description of New Units Defined in the Publication

All of the units defined here are exposed in core obtained from deep wells in and around the
Savannah River Site. Core is stored at the SRS Core Repository. Well locations are shown in
figure 2 of this report, and listed below in UTM coordinates, SE USA baseline.

DRB Plutonic Suite

Named for the the DRB-1 well in which it occurs. All DRB (Deep Rock Borehole) core is 4” in
diameter. Because basement was the target of this core series, thousands of feet of core are
available for study.

Type section: Core DRB-1; Northing: 3684171  Easting: 437524.7, Total Depth: 1904

Description: ~ footage 892°-1904": Diorite and quartz diorite gneiss, with common
' hornblende porphyroclasts in finer-grained, foliated
groundmass of quartz, plagioclase, amphibole, and
chlorite. Minor intercalated metavolcanics and cross-
cutting amphibolite dikes.

PBF Plutonic Suite
Named for the PBF well series in which it principally occurs. All PBF core is 2.5” in diameter.

Type section: Core PBE-7,  Northing: 3678485  Easting: 442463.6, Total Depth:
Description:  footage 2550’ to 3100: Unpinked, foliated granodiorite gneiss.
footage 3140’ to 3480’: Transition zone, unpinked granodiorite and diorite
gneiss with some partly pinked granodiorite gneiss.
footage 3500 to 3600’ - Pinked granitic gneiss. Lower contact at 3600’ is
mylonite zone which separates PBF plutonic suite
from high-grade metavolcanic rocks of the Pen
Branch Metavolcanic Complex.

Reference section #1: Seismic Attenuation Core, Northing: 3679655  Easting: 440618
Description:  footage 1078°-1118’: Pinked granitic gneiss.
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Figure 1. Provisional terrane map of the eastern Piedmont in South Carolina, Georgia, and Alabama
(modified in part from Horton et al., 1991, with additional data from West and others, 1995,
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A




. aeromag lin
Clark Hill Lake \\"/< A L‘ erosional window
\ i\\: through ACP
fault offsetting - R
Tettiary strata  * ¢ _Offsite well

\ 7 location ,
s Sy

——— Tr mafic FAPL
-*-*.7 igneous rocks  ~ ~f-

= Tr sedimentary
: basin

<=y =] Post meta plutons

v~ ] Crackerneck fm

- Fo= -
g |- = _"|DRBfm
= ol = -
Se
£E| E=== PoF{
n Bl """ m
o | B
///
=, 72 m
=~ //E§ ’_5'_‘><F 10 k
q > 7 4 N C-GS
= d NI N
= = -
’\// s &S v v <Aikent NV
x O~ = = X >
4 ,,/\////;“27;9 S p=N, = 1y,
o SwEms DN N T =y
= // ~ = = ~ = = // =~
e\:’o §\\§ F . ‘\_Q\\ﬁ = I\§“\\4// :i A
.. » < <Graniteville plujon.s J /
Do = 70 v = v 2 P4 .
% WA ARAYE 7 G
a : X ! 4,
&
. \ /s
K] *‘.Oi" 9 \/54”//0 N
-A .‘}A'l, 4

|
]
CAROLINA :
!

Plaln\
]

s

nappe limb & EPFS’Y ©
dextral shear zone ;%73
. i G"}Sq K]

. . . . e oor o X /I ‘.;\ a3 o
aeromag lineament: Tinker Cr. >y — | < %, o N / /

0/0 <
ec?o 7‘5.' Lt ..

DX
Martin f.: southern _ - Foade s
border of Dun'be}rt_orj-: Tl
basin . e e e -é. ...

LI S
o e e P * o o o s s o
.

+1- e - Tr-J mafic ignequs- -
.*.* * complex from aeromag‘.’.‘.'.Xoofs,-,'.'.’ :

. o o
. . " @ ¢ s & 8 ° e s & * o .co,
. ® & & e+ o ¢ & o * B * L
e = o & » & & » & o L] *
e o o s o & & e e o o o . .
» o o s s s s 8 o e [SAS .
« s e s s s e . . .
«. & & & & “ & s+
Q « o e s [
‘0
L[]




Photomicrographs of DRB metadiorites: (a) Relict igneous hornblende (brown)
surrounded by mantle of metamorphic blue-green amphibole (UPL); (b) Primary
igneous zoning and albite twinning in relict plagioclase porphyroclast (UXN). Field
of view 5.6 mm in both.
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