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  Abstract 

 

The radiological consequence of interest for a documented safety analysis (DSA) is the 

centerline Total Effective Dose Equivalent (TEDE) incurred by the Maximally Exposed Offsite 

Individual (MOI) evaluated at the 95
th

 percentile consequence level. An upgraded version of 

HotSpot (Version 2.07) has been developed with the capabilities to read site meteorological data 

and perform the necessary statistical calculations to determine the 95
th

 percentile consequence 

result. These capabilities should allow HotSpot to join MACCS2 (Version 1.13.1) and GENII 

(Version 1.485) as radiological consequence toolbox codes in the Department of Energy (DOE) 

Safety Software Central Registry. Using the same meteorological data file, scenarios involving a 

one curie release of 
239

Pu were modeled in both HotSpot and MACCS2. Several sets of release 

conditions were modeled, and the results compared. In each case, input parameter specifications 

for each code were chosen to match one another as much as the codes would allow. The results 

from the two codes are in excellent agreement. Slight differences observed in results are 

explained by algorithm differences. 

 

 

Introduction 
 

An upgraded version of HotSpot (Version 2.07) has been developed with the capabilities to read 

site meteorological data and perform the statistical calculations to determine the 95
th

 percentile 

consequence result.
1
 Specifically, HotSpot Version 2.07 is capable of reading meteorological 

data in the format required by MACCS2 (Version 1.13.1).
2
 

 

The 95
th

 percentile result from the distribution of consequence results is established by the DOE 

in Appendix A to DOE-STD-3009-94 as the basis for comparison against the evaluation 

guideline for nonreactor nuclear facilities.
3
 The statistical procedure to determine the 95

th
 result 

is prescribed to be consistent with that used to determine 95
th

 percentile χ/Q values described in 

regulatory position 3 of NRC Regulatory Guide 1.145.
4
 The χ/Q parameter represents the 

amount of dilution that the plume has undergone at given distance during atmospheric transport 

as predicted by the Gaussian plume transport and dispersion model. This statistical treatment 

relies upon one or more years of representative meteorological data consisting of hourly averages 

of wind speed and measure of atmospheric stability at minimum. In regulatory position 3 of NRC 

Regulatory Guide 1.145, a χ/Q value is calculated for each hourly record of meteorological data 

and sorted. The χ/Q value that is exceeded by 5% of the calculated χ/Q values establishes the 

95
th

 percentile result. 
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The added statistical capabilities for calculating χ/Q values in accordance with Appendix A to 

DOE-STD-3009-94 should, after necessary SQA review requirements are met, allow HotSpot to 

join MACCS2 (Version 1.13.1)a and GENII (Version 1.485)b as radiological consequence 

toolbox codes in the Department of Energy (DOE) Safety Software Central Registry (i.e., the 

Toolbox).c This paper compares consequence results from HotSpot against those from MACCS2. 

Benchmark cases were performed in which input parameter specifications for each code were 

chosen to match one another as much as the codes would allow. In addition, a few sensitivity 

cases were performed to highlight unique capabilities of each code. 

 

 

Overview of the Gaussian Plume Model 
 

Both HotSpot and MACCS2 use the Gaussian plume model to transport and disperse a release of 

radiological material to the atmosphere. A review of the model and its inputs is given to show 

how meteorological data are used. 

 

Atmospheric Turbulence and Measure of Stability 

 

In the Gaussian transport and dispersion model, horizontal and vertical dispersion coefficients 

(σy and σz, respectively) are typically determined from established curves showing σy and σz as a 

function of atmospheric stability and downwind distance. Atmospheric stability is inferred from 

measured and/or observed meteorological data.
6
 

 

Atmospheric boundary layer turbulence is thought of as having two sources. First, mechanical 

turbulence caused by roughness elements, e.g., irregular surface features, vegetation, trees, 

buildings, etc. that generate turbulence as wind blows over their rough surfaces and turbulent 

wakes form. As wind speed increases mechanical turbulence increases due to increased wind 

shear near the surface. Second, buoyancy (or thermally) generated turbulence is caused by the 

sun’s heating of the earth’s surface, or by any mechanism that provides a source of warm, 

buoyant air near the surface. Warm air near the surface can produce large thermal eddy structures 

and unstable vertical thermal gradients under low wind speed conditions. As the wind speed 

becomes very strong, however, the large thermal eddy structures are destroyed by wind shear. 

 

The Pasquill-Gifford (P-G) categories for atmospheric dispersion are a simplified way to 

determine the turbulence intensity level. Turbulence intensity is the underlying factor for 

determining the amount of spread of a dispersing cloud as it moves downwind. Pasquill first used 

                                                 

a
 Version 2.4 of MACCS2 has been released by Sandia National Laboratory (SNL) in 2009, but 

this version has not yet been added to the DOE toolbox. 

 
b
 Version 2.0 of GENII was released by Pacific Northwest National Laboratory (PNNL) in 2002, 

but this version has not yet been added to the DOE toolbox.
5 

 
c
 http://www.hss.energy.gov/CSA/CSP/SQA/central_registry.htm 
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the standard deviations of the vertical and horizontal wind direction fluctuations to determine 

turbulence intensity.
7
 He then expressed the dispersion coefficients, σy and σz, for the horizontal 

and vertical spread of a ground level or elevated plume, in terms of these fluctuations. The 

practical problem with this approach is that the wind direction fluctuations can only be measured 

with rather specialized instruments (e.g., bidirectional wind vanes). Gifford provided a 

turbulence typing scheme for relating the temperature gradient to the standard deviations of the 

wind direction fluctuations.
8
 Six categories designated with the letters A-F were used to relate 

the amount of spread of the dispersing plume as it moved downwind. These categories were 

based on the results of dispersion experiments that had been carried out during project Prairie 

Grass in the U.S. during the 1950s.
9
 

 

The stability categories A-F were meant to reflect the state of atmospheric stability. The unstable 

categories A, B, and C reflect daytime solar heating and the stable categories E and F reflect 

nighttime conditions. At the time Pasquill and Gifford devised the dispersion categories, the 

neutral category D was presumed to represent the transitional state between early morning 

sunrise and the onset of solar heating, or the period around sunset when solar heating disappears 

and the surface begins to cool by radiative processes. As time has progressed, the important role 

of wind speed in promoting neutral stability conditions became better understood. 

 

Dispersion Coefficient Sets 

 

The P-G set of dispersion coefficients based on the project Prairie Grass field experiments are 

shown in Figure 1 in their original form as plotted curves.
7, 10

 Tadmor and Gur later developed 

curve-fit equations that were later corrected for typographical errors by Dobbins.
11, 12

 This set of 

dispersion coefficients is available for MACCS2 use in both equation form and tabular form.  

 
Figure 1 Pasquill-Gifford Curves for Dispersion Coefficients (a) Horizontal and 

(b) Vertical. 
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It is easily seen from Figure 1 that less dispersion occurs under stable conditions (e.g., stability 

category F). 

 

A set of dispersion coefficient formulations was developed by Briggs that combines the Prairie 

Grass data with data from field experiments of elevated releases taken at Brookhaven National 

Laboratory (BNL) and the Tennessee Valley Authority (TVA).
10, 13, 14

 This set of dispersion 

coefficient formulations is shown in Table 1 as the Briggs open country set. Also shown in 

Table 1 are the dispersion coefficient formulations developed by Briggs for urban settings based 

on experiments taken in St. Louis.
10, 13, 14

 Greater dispersion is observed in urban settings due to 

the increased mechanical turbulence from building structures and from enhanced buoyancy 

effects from heating of concrete surfaces (urban heat island effect).
10

 Both the Briggs open 

country and Briggs rural sets of dispersion coefficients are available in HotSpot. MACCS2 

allows these sets of dispersion coefficients to be input in tabular form. 

Open Country 

Atmospheric Stability Class σσσσy [m] σσσσz [m] 

A 0.22x (1+0.0001x)
-1/2

 0.20x 

B 0.16x (1+0.0001x)
-1/2

 0.12x 

C 0.11x (1+0.0001x)
-1/2

 0.08x (1+0.0002x)
-1/2

 

D 0.08x (1+0.0001x)
-1/2

 0.06x (1+0.0015x)
-1/2

 

E 0.06x (1+0.0001x)
-1/2

 0.03x (1+0.0003x)
-1

 

F 0.04x (1+0.0001x)
-1/2

 0.016x (1+0.0003x)
-1

 

Urban 

Atmospheric Stability Class σσσσy [m] σσσσz [m] 

A-B 0.32x (1+0.0004x)
-1/2

 0.24x (1+0.001x)
+1/2

 

C 0.22x (1+0.0004x)
-1/2

 0.20x 

D 0.16x (1+0.0004x)
-1/2

 0.14x (1+0.0003x)
-1/2

 

E-F 0.11x (1+0.0004x)
-1/2

 0.08x (1+0.0015x)
-1/2

 

Table 1  Briggs’ Dispersion Coefficients.
1,13

 

 

Gaussian Plume Model 

The basic form for the Gaussian plume model for radiological releases is given as follows
15

: 
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where: 

χ = time-integrated atmospheric concentration [Ci-s/m
3
] 

Q = source term release [Ci] 

x = downwind distance (relative to source location) [m] 

y = crosswind distance (relative to plume centerline) [m] 

z = vertical axis distance (relative to ground) [m] 

H = effective release height (relative to ground) [m] 
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σy = horizontal dispersion coefficient (function of x), representing the standard deviation 

of the concentration distribution in the crosswind axis direction [m] 

σz = vertical dispersion coefficient (function of x), representing the standard deviation of 

the concentration distribution in the vertical axis direction [m] 

u = average wind speed [m/s] 

 

The last term accounts for reflection of the plume at the ground surface through adding an image 

source at distance H beneath the ground surface. Equation 1 does not account for depletion of 

material from the plume due to deposition effects. 

Hourly data from the meteorological data file provides the values for u. The meteorological data 

file also provides the atmospheric stability class which is the basis for the σy and σz values. 

 

For a ground-level release (i.e., H = 0) with the receptor of interest at ground level (i.e., z = 0), 

the concentration on the plume centerline (i.e., y = 0) is given by following simplified for m of 

the Gaussian plume equation. 

u

Q
)0,0,x(

zy σσπ
=χ  Eq. (2) 

 

 

Benchmark and Sensitivity Cases 
 

Using the same meteorological data file, scenarios involving a one curie release of 
239

Pu were 

modeled in both HotSpot and MACCS2 to benchmark the HotSpot results against those of 

MACCS2. The Briggs open country set of dispersion coefficients were used in the following 

three benchmark cases. 

• Ground-level release with no deposition 

• Ground-level release with deposition (deposition velocityd input of 1 cm/s) 

• 60-m stack release with deposition (deposition velocity input of 0.1 cm/s) 

 

In addition to the benchmark cases, a few sensitivity cases were performed to highlight unique 

capabilities of each code. The sensitivity cases for MACCS2 involved using the Tadmor-Gur 

dispersion coefficients in place of the Briggs open country dispersion coefficients that were used 

in the benchmark cases. Recall that the project Prairie Grass experiments provide the basis for 

the Tadmor-Gur dispersion coefficients. The short grassy surfaces associated with these 

experiments have been characterized with a surface roughness length of 3 cm.e The surface 

roughness length is a measure of the amount of atmospheric mechanical turbulence that is 

induced by the presence of surface roughness elements such as vegetation and man-made 

                                                 

d The deposition velocity represents the ratio of the deposition flux and the ground-level air 

concentration. 

 
e As a general rule, the surface roughness length is considered to be approximately 0.1 times the 

average height of roughness elements located in the transport region of interest. 
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structures. For the MACCS2 sensitivity cases, surface roughness lengths of 3 cm and 100 cm 

were used. For the 100 cm case, an adjustment to the σz parameter is made corresponding to the 

ratio of 100 cm to 3 cm raised to the 0.2 power
10

 ([100/3]^0.2 = 2.0). 

 

In the benchmark cases, the capability of HotSpot to model the increase in wind speed with 

elevation was effectively disabled so that the wind speed in the meteorological data file was used 

directly without adjustment. The wind speed profile is typically considered to follow a power-

law relationship (Figure 2) with the power-law exponent a function of atmospheric stability 

class. Different sets of power-law exponents have been developed for rural and urban terrain. 

HotSpot requires the reference height for the wind speed to be input. For a ground level release, 

no adjustment in wind speed is made if the reference height is specified to be 2 m (Figure 2). For 

an elevated release, no adjustment in wind speed is made if the reference height for wind speed is 

set equal to the release height. For the benchmark cases, the HotSpot reference height for wind 

speed was set to 2 m for the ground-level release cases and to 60 m for the stack release case. An 

additional sensitivity case was run for the 60 m stack release in which HotSpot reference height 

for wind speed was set to 10 m. A reference height of 10 m corresponds to the basis for the wind 

speed data in the meteorological data file that was originally developed for MACCS2, following 

the recommendation given the MACCS2 user’s manual.
2
 MACCS2 does not adjust the wind 

speed for the height of release.f 

 

 

Figure 2 Wind Speed Profile. 

 

 

Results 
 

Results are presented in terms of the 95
th

 percentile TEDE result output by each code for 

distances from 100 m to 5000 m. The TEDE includes the 50-year committed effective dose 

equivalent (CEDE) from inhalation of radionuclides from the plume and inhalation of 

resuspended material (that initially deposited on the ground from the plume), the effective dose 

equivalent (EDE) from direct external exposure to radioactive material in the plume 

(cloudshine), and the EDE from exposure to radioactive material deposited on the ground 

                                                 

f  The algorithm in MACCS2 for determining the plume rise of buoyant release does make use of 

wind speed correction with height.
16

 

u 

z 
HotSpot (2 m) 
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(groundshine).
1, 17

 The CEDE is directly proportional to the χ/Q value.
1, 17

 Typically the CEDE is 

the dominant pathway for dose, particularly for alpha-emitters like plutonium.
17

 

 

Graphical Presentation of Results 

 

The results for the two ground level release cases are shown in Figure 3 (no deposition) and 

Figure 4 (deposition). Similar behavior is exhibited in both set of results. Excellent agreement is 

shown between results that are based on the Briggs open country dispersion coefficients. The 

MACCS2 results using the Tadmor-Gur dispersion coefficients and 3 cm surface roughness 

length are slightly lower. The MACCS2 results using the Tadmor-Gur dispersion coefficients 

and 100 cm surface roughness length are even lower. For the no-deposition case, the results for 

the 100 cm surface roughness run are nominally a factor of two lower than the 3 cm surface 

roughness run, consistent with Equation 2 and the calculation presented earlier for the adjustment 

to the σz parameter for surface roughness length of 100 cm. With deposition modeled, the 

difference is a nominally a factor of two close to the source; but the difference decreases 

gradually as distance increases. In the MACCS2 model, the amount of deposition is proportional 

to the ground-level air concentration; such that more deposition occurs in the 3 cm surface 

roughness length run than with the corresponding 100 cm surface roughness length run.
17

 

 
Figure 3 TEDE Results for Ground Level Release with No Deposition. 
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Figure 4 TEDE Results for Ground Level Release with Deposition. 

 

The results for the two stack release cases are shown in Figure 5 (no adjustment of wind speed in 

HotSpot) and Figure 6 (wind speed adjusted in HotSpot). The wind speed adjustment in HotSpot 

has a significant effect in reducing the TEDE results by about a factor of two. These lower TEDE 

results are consistent with Equation 1, which shows that the χ/Q value (and thus the TEDE) are 

inversely proportional to the wind speed. Excellent agreement is shown between HotSpot and 

MACCS2 results that are based on the Briggs open country dispersion coefficients (Figure 5). A 

few other observations are apparent with respect to the sensitivity cases as shown in Figure 5 that 

highlight different behaviors than those observed with the ground-level releases. 

• Different cases produce the maximum results depending upon the location. In contrast, for 

the ground level release cases, relative results between the cases over the range distances 

tested follow more orderly trends. A likely contributing factor is related to the atmospheric 

stability represented by the plotted points. For the ground-level cases, the 95
th

 results plotted 

are expected to all correspond to stable atmospheric conditions (e.g. E or F stability 

category). In contrast for an elevated release, more unstable atmospheric stability conditions 

lead to higher ground-level concentrations close to the source. Unstable atmospheric 

conditions provide greater amount of dispersion (plume spread) to support higher ground-

level concentrations near the source. Further from the source, the more stable atmospheric 

conditions lead to higher ground-level concentrations similar to the ground level release 

cases. 

• The 100 cm surface roughness length case (MACCS2 with Tadmor-Gur dispersion 

coefficients) produced the maximum results in the approximate range of 600 m to 1600 m. In 

contrast, this case produced the minimum results for all distances for the ground-level 

releases. 
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• At distances greater than 2000 m, the Briggs dispersion cases (MACCS2 and HotSpot) 

produce the maximum results showing the same trend as observed with the ground-level 

cases. At the 5000 m location, the absolute values of the stack results are close to those of the 

ground-level results. 

 

60 Meter Stack Release with Deposition
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Figure 5 TEDE Results for Stack Release. 

60 Meter Stack Release with Deposition and HotSpot Wind Correction
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Figure 6 TEDE Results for Stack Release with HotSpot Wind Speed Correction. 
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Discussion of Result Differences 

 

While there is generally excellent agreement between HotSpot and MACCS2 results with the 

Briggs open country dispersion coefficients, there are some differences. Figure 7 provides a 

graphical representation of the differences between the MACCS2 and HotSpot results. Equation 

3 defines the percent difference that is plotted in Figure 7. 

Percent difference = 100% × (TEDEMACCS2 – TEDEHotSpot)/TEDEMACCS2 Eq. (3) 

 

Thus, negative values in Figure 7 represent lower results with MACCS2 in comparison with the 

HotSpot results. 
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Figure 7 Difference Analysis. 

 

Three sources have been identified as possible contributors to differences observed in Figure 7. 

• Plume Transport and Dispersion Algorithm 

− HotSpot uses constant meteorological conditions throughout the entire period of plume 

travel. 

− With MACCS2 after each hour of plume transport time, meteorological conditions of the 

next hour are used in the transport and dispersion calculations until the plume reaches the 

final location of interest. 

 

• Calculation Algorithm 

− Direct calculation for locations of interest. 

− MACCS2 provides output that is “representative of the entire length of the spatial 

element.”
2
 Inner and outer boundaries of the grid elements are defined in an input file 

such that the locations of interest are at the midpoint of these elements. In addition, the 

WSRC-MS-2009-00013



 

2009 EFCOG Safety Analysis Working Group Page 11 of 12 

output results are determined from interpolation of complementary probability 

distribution functions. The MACCS2 user’s guide (p. 2-20) states that interpolation errors 

of 10% or more are possible.
2
 

 

• Plume Deposition/Depletion Model 

− HotSpot uses model described in Meteorology and Atomic Energy.
1, 18

 

− MACCS2 uses model developed by Chamberlin.
2, 19

 

 

 

Concluding Remarks 
 

The favorable benchmarking of HotSpot (Version 2.07) results against those from MACCS2 

(Version 1.13.1) provides confidence in using HotSpot results for accident analyses supporting 

DSAs. A beneficial unique feature of HotSpot is that it allows up to five years of meteorological 

data to be involved in the statistical analysis. 

 

 

References 

1. S.G. Homann (2009). HotSpot – Health Physics Codes Version 2.07 User’s Guide, LLNL-

TM-411345, National Atmospheric Release Advisory Center, Livermore, CA, March 2009. 

2. D.I. Chanin (1998), M. I. Young, and J. Randall. Code Manual for MACCS2: Volume 1, 

User’s Guide; NUREG/CR-6613 (SAND97-0594), Sandia National Laboratories, published 

by the U.S. Nuclear Regulatory Commission, Washington, DC, 1998. 

3. DOE (2006). Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility 

Safety Analysis Reports, DOE-STD-3009-94, Change Notice 3, U.S. Department of Energy, 

Washington, DC, March 2006. 

4. NRC (1983). Atmospheric Dispersion Models for Potential Accident Consequence 

Assessments at Nuclear Power Plants, Regulatory Guide 1.145, U.S. Nuclear Regulatory 

Commission, Washington, DC, February 1983. 

5. DOE (2004). Software Quality Assurance Plan: GENII Gap Analysis, DOE-EH-4.2.1.3-

GENII-Gap Analysis, Final Report, U.S. Department of Energy, Washington, DC. 

6. EPA (2000). Meteorological Monitoring Guidance for Regulatory Modeling Applications, 

EPA 454/R-99-005, U.S. Environmental Protection Agency, Research Triangle Park, NC, 

February 2000. 

7. F. Pasquill (1961). The estimation of the dispersion of windborne material, Meteor. Mag. 90, 

p. 33-49, 1961. 

8. F.A. Gifford (1961). Use of routine meteorological observations for estimating atmospheric 

dispersion, Nuclear Safety, 4(2), p. 91-92, 1961. 

WSRC-MS-2009-00013



 

2009 EFCOG Safety Analysis Working Group Page 12 of 12 

9. D.A. Haugen, Ed. (1959). Project Prairie Grass: A Field Program in Diffusion, Geophysical 

Research Papers, No. 59 Vol. III, Report AFCRC-TR-58-235, Air Force Cambridge 

Research Center. 

10. S.R. Hanna (1982), G. A. Briggs, and R. P., Hosker, Jr. Handbook on Atmospheric 

Dispersion, DOE/TIC-11223, Technical Information Center, U.S. Department of Energy 

(DOE), Oak Ridge, TN, 1982. 

11. J. Tadmor (1969) and Y. Gur. Analytical Expressions for the Vertical and Lateral Dispersion 

Coefficients in Atmospheric Diffusion, Atmospheric Environment 3, pp 688, Pergamon Press, 

Great Britain, 1969. 

12. R.A. Dobbins (1979). Atmospheric Motion and Air Pollution, John Wiley & Sons, NY, 1979. 

13 G.A. Briggs (1973). Diffusion Estimates for Small Emissions, Atmospheric Turbulence and 

Diffusion Laboratory, ATDL Contribution File No. 79, 1973. 

14. S.R. Hanna (1977), G. A. Briggs, J. Deardorff, B.A. Fagan, F.A. Gifford and F. Pasquill. 

AMS Workshop on Stability Classification Schemes and Sigma Curves – Summary of 

Recommendations, Bulletin American Meteorological Society, 58, pp. 1305-1309, 1977. 

15. D.B. Turner (1969). Workbook of Atmospheric Dispersion Estimates, U.S. Department of 

Health, Education, and Welfare, Public Health Service, National Air Pollution Control 

Administration, Cincinnati, OH, 1969. 

16. H-N Jow (1990), J .L. Sprung, J. A. Rollstin, L. T. Ritchie, and D. I. Chanin. MELCOR 

Accident Consequence Code System (MACCS). Volume 2: Model Description; NUREG/CR-

4691 (SAND86-1562), Sandia National Laboratories, published by the U.S. Nuclear 

Regulatory Commission, Washington, DC, 1990. 

17. DOE (2004). MACCS2 Computer Code Application Guidance for Documented Safety 

Analysis, DOE-EH-4.2.1.4-Final MACCS2 Code Guidance, Final Report, U.S. Department 

of Energy, Washington, DC, June 2004. 

18. I. Van der Hoven (1968). “Deposition of Particles and Gases,” in Meteorology and Atomic 

Energy, D.H. Slade, Ed. (U.S. Atomic Energy Commission, Report TID-24190, National 

Technical Information Service), pp. 202-207, 1968. 

19. A.C. Chamberlin (1953). Aspects of Travel and Deposition of Aerosol and Vapour Clouds, 

British Report AERE-HP/R 1261, Atomic Energy Research Establishment, Harwell, United 

Kingdom, 1953. 

WSRC-MS-2009-00013


