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Abstract

A process for capturing CO2 from the atmosphere was recently proposed. This process uses

a closed cycle of sodium and calcium hydroxide, carbonate, and oxide transformations to capture

dilute CO2 from the atmosphere and to generate a concentrated stream of CO2 that is amenable

to sequestration or subsequent chemical transformations. In one of the process steps, a fossil-

fueled lime kiln is needed, which reduces the net CO2 capture of the process. It is proposed

to replace the fossil-fueled lime kiln with a modified kiln heated by a high-temperature nuclear

reactor. This will have the effect of eliminating the use of fossil fuels for the process and increasing

the net CO2 capture. Although the process is suitable to support sequestration, the use of a

nuclear power source for the process provides additional capabilities, and the captured CO2 may be

combined with nuclear-produced hydrogen to produce liquid fuels via Fischer-Tropsch synthesis or

other technologies. Conceivably, such plants would be carbon-neutral, and could be placed virtually

anywhere without being tied to fossil fuel sources or geological sequestration sites.
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Introduction

The capture of CO2 from the atmosphere is the subject of intense research, and is viewed as a

means to reduce the impact of dispersed CO2 point sources on atmospheric CO2 levels. Point sources

such as automobile emissions and household furnaces are not amenable to direct CO2 capture on a wide

scale. Indirectly, photosynthesis and the formation of mineral carbonates perform this function in nature,

but the rates of CO2 capture by natural processes are currently exceeded by the rates that biomass and

fossil fuels are being decomposed into CO2, and the net effect is increasing CO2 concentration in the

atmosphere. Large-scale industrial processes are needed to supplement natural processes for capturing

CO2 from the atmosphere if the global carbon cycle is to be brought back into balance in regard to

dispersed point sources.

Among the many indirect capture methods under study, Zeman [1] proposed one such process

that relies on a closed cycle of sodium and calcium hydroxide, oxide, and carbonate transformations

to capture CO2 and concentrate it into a purified stream that is suitable for storage. This process is

illustrated graphically in Figure 1. In the process, air containing dilute CO2 is contacted with aqueous

sodium hydroxide, NaOH, to form dissolved sodium carbonate, Na2CO3. The dissolved Na2CO3 so

created is contacted with an emulsion of calcium hydroxide, Ca(OH)2, to form calcium carbonate,

CaCO3, otherwise known as calcite. This reaction process is called causticization. CaCO3 has much

less solubility in water than Na2CO3 and precipitates out of solution, which allows for separation of the

carbonates. The CaCO3 is filtered and then dried in a steam dryer. After drying, the CaCO3 is introduced

into a lime kiln where it is decomposed to calcium oxide, CaO, and CO2 is released. The CaO is converted

back into Ca(OH)2 using exhaust steam from the CaCO3 steam dryer, and the Ca(OH)2 so generated

is used again to create CaCO3 by reacting it with Na2CO3. The CO2 released by the decomposition of

CaCO3 in the lime kiln is compressed and packaged for storage (or subsequent use).

The process described above is not just a theoretical construct, and key steps in the process

have been demonstrated. Zeman [2] performed tests on the ability to capture atmospheric CO2 from the

atmosphere using aqueous NaOH, and then demonstrated Na2CO3 causticization, followed by filtration.



Figure 1: Atmospheric CO2 capture process proposed by Zeman [1].

Results obtained from a series of CO2 absorption experiments showed an average CO2 flux into solution

of 19.4 µmol/m2/s, which translated into a CO2 capture rate of 960 g/m3/h for the packing media

used. Evaporative water losses from the air absorption step were also measured, and it was determined

that about 90 g H2O of water was lost for each gram of CO2 absorbed. The effectiveness of the

causticization reaction was measured by performing the reaction in discrete time-steps, where a quantity

of solid Ca(OH)2 was reacted with a Na2CO3 solution for a period of 10 minutes, the solids filtered and

sampled, and the remaining solids contacted again with the filtrate to further the causticization process.

Chemical anlyses of the samples taken from each of the steps revealed that full conversion of the solids

to CaCO3 occurred after three cycles with a 50% Na2CO3 solution, and after four cycles with a 25%

Na2CO3 solution. Therefore, some of the key steps are achievable.

One step that was not demonstrated in the work was the use of an advanced lime kiln that

uses pure oxygen instead of air to feed the fossil fuel combustion process. In commercial lime kilns, the

combustion of fossil fuels such as coal or natural gas is used to heat the lime kiln to 900◦C or higher,



temperatures at which CaCO3 decomposes quickly into CaO and CO2. The use of pure oxygen to enable

the combustion process is suggested as an energy saving step because nitrogen would not be present in

the oxygen feed stream. Nitrogen does not participate in the combustion reaction, and adds a thermal

load to the lime kiln that is not productive. Also, having nitrogen in the CO2 exhaust of the lime kiln

would dilute the CO2 produced, and additional, possibly energy-intensive, CO2 purification steps would

be needed to generate a concentrated stream of CO2. Oxygen would be provided by an ancillary cryogenic

distillation unit, which would separate oxygen from air at a relatively small energy cost (less than 4% of

the total energy cost of the CO2 capture process). Overall, eliminating nitrogen from the oxygen feed

stream would improve the energy efficiency of the lime kiln, it is estimated, by up to 10%.

A drawback in the proposed process is the use of fossil fuels to heat the lime kiln. Combustion

of fossil fuels such as coal or natural gas generates CO2, and the CO2 produced by combustion must

also be captured and compressed. According to an analysis of the process [1], an additional 0.56 moles

of CO2 are produced for every mole of CO2 captured from the atmosphere due to combustion. The net

CO2 capture of the process is still positive, because all CO2 going through or generated by the process is

captured, but generating CO2 in a process designed for capturing CO2 from the atmosphere is somewhat

counter-productive. More CO2 is produced as a result of the process than was originally captured from

the atmosphere, and the additional CO2 adds an energy burden to downstream compression of the CO2

product stream. Also, if the CO2 is headed for sequestration, a sequestration site would fill more quickly

than would otherwise occur if no additional CO2 were generated.

Using pure oxygen to enable the combustion process would improve the energy efficiency of

the lime kiln, but it would not eliminate the need for downstream purification of CO2. The combustion

process does not occur efficiently if only stoichiometric amounts of oxygen are available, and excess

oxygen must be provided to ensure that any fossil fuel source is converted completely into CO2 rather

than partially converted into carbon monoxide, CO [3]. Typically in air-fired fossil-fueled power plants,

excess air in the amount of 10-15% is provided to achieve efficient burning of the fossil fuel. The excess

air is not reacted in the combustion process and passes on through the fired section into the exhaust.

For a lime kiln using a pure oxygen feed instead of air, less excess oxygen may be needed than excess



air, but some amount of unreacted oxygen may be present in the CO2 product stream that may need to

be separated or reacted in a later step.

As with any process that uses pumps and other electrical equipment, simply operating the

process may also lead to increases in atmospheric CO2 concentration, albeit marginally, if the electricity

used to power the process comes from the combustion of fossil fuels in coal-, oil-, or natural gas-fired

power plants, and direct CO2 capture is not practiced at those facilities.

In order to create a more carbon-neutral CO2 capture process, it is suggested that the additional

CO2 burden created by heating the lime kiln be eliminated by substituting the fossil fuel-fired lime kiln

with a lime kiln that is heated using high-temperature heat (and possibly supplemental electricity)

provided by a high-temperature gas-cooled nuclear reactor (HTGR). A nuclear-powered lime kiln would

have additional benefits: the oxygen separation plant could be eliminated, and any efforts needed in

purifying the CO2 product stream for uses other than sequestration and storage would be reduced. If the

nuclear plant also produces electricity, the electrical components of the process may be powered by the

nuclear plant, and the CO2 penalty resulting from the use of electricity from fossil fueled power plants

could be eliminated. A description of this nuclear option is provided, and further implications of choosing

a nuclear-powered CO2 capture process from air are discussed.

Selection of Nuclear Reactor Type

Unsuitability of Using Water-Cooled Nuclear Reactors

Currently, commercial nuclear reactors throughout the world operate by heating water to gen-

erate steam, which is then used to drive turbines to generate electricity. There are variations in the type

of water-cooled reactors (Pressurized Water Reactors or PWRs, Boiling Water Reactors or BWRs), but

the basic process is the same. Because nuclear power plants rely on nuclear fission reactions to generate

heat instead of combustion, such plants have a very low CO2 footprint. No CO2 is emitted as a result of

nuclear fission, and CO2 contributions only occur as a result of indirect processes (i.e., uranium mining

and purification, plant construction, support operations, decommissioning, etc.). Overall, the CO2 foot

print of commercial nuclear plants is comparable, on a kWh basis, to hydroelectric, geothermal, wind,



and photovoltaic power stations, and is less than 5% of the CO2 footprint of comparable fossil-fueled

power stations [4]. Operationally, commercial nuclear pwer plants are baseload power providers and

operate continuously without regard to routine weather variations or available sunlight.

A CO2 capture plant powered by a water-cooled nuclear reactor could operate without using

any fossil fuels, and no additional CO2 would be generated during the CO2 capture process. However,

the cost of doing so would likely greatly exceed the cost of operating a fossil-fueled CO2 capture plant

because the lime kiln would require electrical heating to reach the temperatures needed (>900◦C) to

decompose CaCO3 into CaO and CO2. PWRs and BWRs operate with reactor outlet temperatures of

about 325◦C and 285◦C, respectively, and direct steam heating of the lime kiln would not be adequate.

An electrically heated lime kiln would be needed, but this would require conversion of nuclear-generated

thermal energy into electricity and back into thermal energy, and this can only be performed at an

efficiency of approximately 33%. In comparison, a fossil-fueled lime kiln can utilize theoretically up to

100% of the thermal energy provided by combustion with thermal recuperation of the CO2 product

stream, and no intermediate electrical generation step is needed to reach the high temperatures needed

to decompose CaCO3. The cost of nuclear-generated electricity is currently comparable to electricity

produced from coal, and there is no direct cost savings to be exploited in using nuclear-generated

electricity versus direct fossil heating. If the cost penalty for producing additional CO2 is great (e.g.,

carbon taxes) or fossil-fuel resources are scarce or very expensive, then it may make sense to employ a

water-cooled nuclear reactor to power a CO2 capture plant, but otherwise the fossil-fueled plant would

be more economical to operate in spite of the extra CO2 generated during operation.

Suitability of High-Temperature Gas-Cooled Nuclear Reactors

The limitations in the use of water-cooled nuclear reactors to power high-temperature processes

may be overcome by using an alternative nuclear reactor type, the high-temperature gas-cooled nuclear

reactor (HTGR). In an HTGR, high-pressure helium is used instead of water as the reactor coolant. With

helium, there is no danger of evaporating the cooling fluid and exposing the nuclear core because the

coolant is already a gas, and the reactor core is designed to use a gas coolant. Also, ceramic nuclear

fuel particles embedded in a graphite matrix are used instead of metal-clad fuel, which allows the reactor



to operate at much higher temperatures without fuel failure than the fuel cladding materials used in

water-cooled reactors. This replacement, along with changes in the nuclear core configuration and the

nuclear vessel design, allow this reactor type to achieve outlet nuclear reactor temperatures in excess of

900◦C during normal operation.

It must be noted that the HTGR concept is a higher-temperature evolution from the the Magnox

and the Advanced Gas Reactor (AGR) designs still in use in the United Kingdom that use gaseous carbon

dioxide as a coolant. The Magnox reactor design, which was the first generation of gas-cooled reactors

to be commercialized, uses metal-clad fuel and provides an outlet temperature of no higher than 400◦C

[5]. The AGR is the next generation of Magnox reactor, and also uses metal-clad fuel and carbon dioxide

as a coolant, but is capable of providing a reactor outlet temperature of up to 650◦C. Today, only two

Magnox plants and two AGR plants operate commercially in the United Kingdom.

No commercial helium-cooled HTGR facility is yet in operation, but several plants have been

constructed and operated in the past. In the United States, Peach Bottom Atomic Power Station

1 [6], UHTREX [7] and Fort Saint Vrain [8] operated from 1967-1974, 1966-1970, and 1977-1989,

respectively. In the United Kingdom, the DRAGON facility operated from 1964-1975 [9]. In Germany,

two reactors were demonstrated – the AVR and the THTR-300 – from 1967-1988 and 1983-1989,

respectively [10].

Two HTGR demonstration facilities are currently in operation: the HTTR in Japan, and the

HTR-10 in China. These facilies began operation in 1999 and 2003, are sized at 30 MWt and 10 MWt,

and are capable of providing nuclear reactor outlet temperatures as high as 950◦C [11].

Future HTGR plants are also planned. Pebble Bed Modular Reactor (Pty) Ltd., based in South

Africa, is seeking to commercialize the Pebble Bed Modular Reactor (PBMR), a design based on the

German AVR, and will begin construction of the first plant in Koeberg, South Africa, in 2009. The

PBMR design will be capable of providing an outlet temperature of up to 950◦C, though it is unknown

at this time when the PBMR design will be pushed to operate at this limit. In the United States, the U.S.

Department of Energy is planning start-up of the Next Generation Nuclear Plant (NGNP) [13] by 2021,

which will be capable of providing high-temperature heat at temperatures up to 950◦C for generating



electricity or for providing heat to chemical process applications. A summary of past, current and future

HTGR plants is shown in Table 1.

Table 1: Past, Present and Future HTGR Plants

Nuclear Reactor Country Years of Thermal Output Outlet Temp
Operation MWt ◦C

Peach Bottom Atomic
Power Station 1

USA 1967-1974 115 714

UHTREX USA 1966-1970 3 1320
Fort Saint Vrain USA 1977-1989 842 766
DRAGON UK 1964-1975 20 750
AVR W. Germany 1967-1988 40 950
THTR-300 W. Germany 1983-1989 750 750
HTTR Japan Since 1999 30 950
HTR-10 China Since 2003 10 950
PBMR South Africa 2013+ 400 950
NGNP USA 2021+ 600 950

A distinguishing characteristic of the NGNP from other HTGRs (aside from the HTTR in Japan),

and most relevant to the proposed CO2 capture process, is the presence of a high-temperature heat

transfer interface in the proposed NGNP plant design. A high temperature heat transfer interface will

enable the transmission of high temperature heat beyond the nuclear plant so that it can be used to power

downstream non-nuclear applications. The transmission interface will consist of high-temperature heat

exchangers, pressurized fluid conduits containing helium or molten salt, valves, and fluid motivators (i.e.

pumps or compressors), and may span hundreds of meters in length. A simple schematic of the NGNP

is shown in Figure 2, and an artist’s conception of the NGNP connected to downstream chemical plants

is shown in Figure 3. Japan’s HTTR has been designed with a high-temperature thermal transmission

interface also, and the thermal interface will be used (eventually) to power a high-temperature hydrogen

production process that will split water into hydrogen and oxygen [14].

CO2 Capture Process Modification

The CO2 capture process offered by Zeman [1] may be modified to work with an HTGR by

replacing the fossil-fueled lime kiln used in the process with a lime kiln that is heated indirectly by the

nuclear reactor. A heat exchanger at the terminal end of the HTGR long distance heat transfer loop



Figure 2: Schematic of NGNP with heat transfer interface.

may be used to heat a circulating stream of CO2, and the heated CO2 is used to heat the lime kiln.

With no fossil fuel to burn, the oxygen separation plant can be eliminated. This modified process is

shown schematically in Figure 4. Ideally, air is the only feed stream into the process, and CO2 is the only

product stream; all other materials are conserved in the cyclic process. In practice, make-up water will

be needed to compensate for water evaporated from the air scrubbers, and some amount of NaOH or

CaCO3 may need to be added to make up for losses of ionic Na or Ca materials. The modified process

can be further integrated with the nuclear plant if the nuclear plant provides electricity to power the

electrical devices used in the CO2 capture plant, and low-level heat from the electrical generators may

be used to make steam for the steam dryer.

Some preparatory development work would be needed to adapt existing lime kiln designs for

use with indirect CO2 heating, but extensive research and development would not be needed because

prototype and commercial designs already exist that could be used for this purpose. U.S. Patent 4,745,869

[15] describes a rotary lime kiln that is heated indirectly by the combustion of coal. In this invention, coal



Figure 3: Artist’s conception of NGNP connected to downstream chemical plants.

is combusted in a preliminary two-section chamber which is used to collect the slag and ash from burning

coal, and the slag- and ash-free combustion gases, consisting principally of hot CO2, are introduced into

the rotating kiln to heat the CaCO3 decomposition process. Large-scale indirectly heated rotary kilns

such as the one described can be purchased on the commercial market. More recent innovations in lime

kiln design have been made that would be compatible with nuclear heating, and one such invention is

described in U.S. Patent 5,846,072 [16]. In this second patent, CaCO3 or limestone particles are moved

through a stationary ceramic tube using a screw conveyer, while the outside of the ceramic tube is

heated with combustion gases. The limestone moving through the inside of the ceramic tubes is heated

by contact with the tube walls, and the tube walls are heated by hot gases (or solids) that pass over the

tubes. If such a lime kiln were used in the modified process, the ceramic tubes would be heated by hot

CO2 instead of combustion gases.

A disadvantage of using a nuclear heat source instead of a combustion heat source is that

temperatures in excess of 900◦C cannot be easily achieved without supplemental electrical heating. The

lime kiln will operate at the temperature at which hot gas is delivered to it, and that temperature will be



Figure 4: Schematic of nuclear-powered CO2 capture process.

less than the outlet temperature of the nuclear reactor due to the temperature drop across intervening

heat exchangers and external heat losses from the long distance heat transfer loop. This may not be

a serious issue, however, because the CaCO3 decomposition reaction occurs at temperatures less than

900◦C, and it is more a matter of optimizing the residence time and particle size of the CaCO3 in the

lime kiln in order to achieve the maximum conversion to CaO and CO2 [17] at the temperature provided

by the nuclear reactor.

The kinetics of the decomposition reaction may be increased by employing supplemental electri-

cal heating to reach a higher temperature, grinding the CaCO3 to decrease particle diameter and increase

surface area, or by minimizing the temperature drop between the nuclear plant and the lime kiln. Electri-

cal heating could be done by employing a booster heater to further heat the CO2 after it emerges from

the terminal heat exchanger of the long-distance heat transfer loop, and is easily done, but this would

carry a marginal energy cost penalty. Grinding the CaCO3 particles to make them smaller is an option,



but this may require drying the CaCO3 to full dryness, and then grinding and sieving the particles to

achieve the desired particle size if the particle size of the precipitated CaCO3 is larger than 100 µm in

diameter [17], and that would be an additional process step. The CO2 heat exchanger may be eliminated

at the lime kiln by using an advanced lime kiln design like that described in U.S. Patent 5,846,072, and

hot helium or molten salt from the long distance heat transfer loop could be used instead of recirculating

CO2 to heat the lime kiln. These are all options, and the best path for achieving an efficient process

will require comparisons of process flow sheets, and capital and operating costs to determine the best

option.

In areas where water is scarce, air coolers and refrigeration units may be required to recover

water evaporated from the air scrubbers, and this will require additional energy input.

CO2 Capture Process Extensions

Since nearly their inception, HTGRs have been envisioned as machines that could be used to

drive, by virtue of their high outlet temperature, chemical processes that would be capable of splitting

water to generate hydrogen (and oxygen). This can be done using conventional room temperature

electrolysis, but water becomes easier to split into its consituents at higher temperatures, and more

thermodynamically efficient and hopefully more economical processes can be developed that can effec-

tively use the high-temperature heat provided by HTGRs. Three such processes that are currently under

development by the U.S. Department of Energy Office of Nuclear Energy are the Sulfur-Iodine Process

[18], the Hybrid Sulfur Process [19], and High-Temperature Electrolysis [20]. Each of these processes

uses thermal energy at about 800◦C or higher to split water into hydrogen and oxygen.

With co-generation of H2, a combined H2 production/CO2 capture plant would provide the

raw materials suitable to convert CO2 into liquid fuels and other chemicals. CO2 produced by the CO2

capture plant could be combined with H2 from the hydrogen plant to produce methanol, CH3OH, by

hydrogenation. Carbon monoxide, CO, could be formed from CO2 by employing the reverse water-gas

shift reaction between CO2 and H2. With CO and H2, any number of hydrocarbons can be produced

by Fischer-Tropsch synthesis, including aromatic and long-chain hydrocarbons. The chemical feedstocks



produced by such a plant could be considered “carbon neutral,” in that there would be no net production

of CO2 in their production or use.

In the larger sense, combining a CO2 capture plant with a nuclear hydrogen plant would make

for a more economical plant because co-generation of useful feedstocks provides a higher value revenue

stream for the plant than is likely to be achieved by collecting compensation for atmospheric CO2 removal

(e.g., carbon credits). As an added benefit, a combined plant is not geographically restricted to being

near CO2 sequestration sites, and could be located closer to markets. One can envision an integrated

nuclear-powered facility that is capable of producing chemicals and fuels using only water and air as

material inputs to the plant. Of course, a source of water would be needed to make hydrogen, and this

could be a limitation in some arid areas. On the coastline of continents or at sea, however, a nuclear-

powered hydrogen production/CO2 capture plant could be combined with a water desalinization facility

to produce fresh water to feed the hydrogen plant, and this opens up the possibility of floating fuel

production plants that use only the raw materials around them to generate fuel and chemical feedstocks

without burning or consuming fossil fuels.
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