Contract No. and Disclaimer:

This manuscript has been authored by Savannah River Nuclear Solutions, LLC under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting this article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes.

1	Rapid Determination of Ra-226 in Environmental Samples
2	Sherrod L. Maxwell ¹ and Brian K. Culligan
3	Savannah River Nuclear Solutions, LLC, Building 735-B, Aiken, SC 29808, USA
4	
5	¹ Author for correspondence (email: sherrod.maxwell@srs.gov)
6	phone 803-952-7473
7	fax 803-952-7881
8	Keywords: rapid, Ra-226, concrete, soil, vegetation, air filters, brick, water, alpha
9	
10	Abstract
11	
12	A new rapid method for the determination of ²²⁶ Ra in environmental samples has
13	been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that
14	can be used for emergency response or routine sample analyses. The need for rapid
15	analyses in the event of a Radiological Dispersive Device (RDD) or Improvised Nuclear
16	Device (IND) event is well-known. In addition, the recent accident at Fukushima Nuclear
17	Power Plant in March, 2011 reinforces the need to have rapid analyses for radionuclides
18	in environmental samples in the event of a nuclear accident. 226 Ra ($T1/2 = 1620$ y) is one
19	of the most toxic of the long-lived alpha-emitters present in the environment due to its
20	long life and its tendency to concentrate in bones, which increases the internal radiation
21	dose of individuals. The new method to determine ²²⁶ Ra in environmental samples
22	utilizes a rapid sodium hydroxide fusion method for solid samples, calcium carbonate
23	precipitation to preconcentrate Ra, and rapid column separation steps to remove
24	interferences. The column separation process uses cation exchange resin to remove large
25	amounts of calcium, Sr Resin to remove barium and Ln Resin as a final purification step

to remove ²²⁵Ac and potential interferences. The purified ²²⁶Ra sample test sources are 26 prepared using barium sulfate microprecipitation in the presence of isopropanol for 27 counting by alpha spectrometry. The method showed good chemical recoveries and 28 effective removal of interferences. The determination of ²²⁶Ra in environmental samples 29 can be performed in less than 16 hours for vegetation, concrete, brick, soil and air filter 30 samples with excellent quality for emergency or routine analyses. The sample preparation 31 work takes less than 6 hours. 225 Ra (T1/2 = 14.9 day) tracer is used and the 225 Ra progeny 32 ²¹⁷At is used to determine chemical yield via alpha spectrometry. The rapid fusion 33 technique is a rugged sample digestion method that ensures that any refractory radium 34 particles are effectively digested. The preconcentration and column separation steps can 35 also be applied to aqueous samples with good results. 36

37

38 Introduction

There is an increasing need to develop faster analytical methods for emergency 39 response, including emergency environmental and food samples [1-3].²²⁶Ra can be 40 determined indirectly using gamma spectrometry or radon emanation techniques [4, 5], 41 however, both approaches require delays to allow for progeny ingrowth and require 42 careful handling of gaseous radon. These methods can show negative biases due to loss of 43 radon or possibly due to homogeneity issues regarding progeny location sealed containers 44 for gamma counting. ²²⁶Ra can also be measured by inductively-coupled plasma mass 45 spectrometry (ICP-MS), but isobaric polyatomic interferences such as ⁸⁸Sr¹³⁸Ba must be 46 47 removed. [6]

There are a number of analytical methods reported that use ion
 exchange/extraction chromatography plus alpha spectrometry to determine ²²⁶Ra in
 environmental samples. Chabaux used multiple, large cation exchange columns (25 ml,

51 10 ml resin) followed by a Sr Resin column to remove interferences prior to measurement 52 of ²²⁶Ra in volcanic rocks.[7] Lariviere tested several different methods, including the 53 large cation resin column method by Chabaux, as well as sulfate precipitation and 54 manganese dioxide approaches. The overall results were good, but the column rinse 55 volumes were very large, requiring long processing times. The chemical yields in some 56 cases were low. [8]

57 Crespo applied a similar ion exchange separation approach to geological samples 58 using ²²⁵Ra tracer, with large anion exchange and cation exchange columns followed by 59 electrodeposition. [9]

Manganese dioxide precipitation and the use of MnO₂ Resin has been applied 60 successfully to water samples. [10,11,12,13] One of the challenges, however, of applying 61 this separation approach to solid samples is that when the pH of a solid sample digest 62 containing iron is increased to the optimal pH 7 range for using MnO₂ resin, co-63 precipitation of Ra occurs. As Figure 1 shows, Ra, along with other alkaline earth metal 64 ions, will co-precipitate along with iron hydroxide, and be separated prior to loading to 65 MnO₂ resin. Manganese dioxide precipitation could be used, but calcium would also 66 precipitate along with the iron hydroxide. For solid samples containing iron, a different 67 approach seems advantageous. 68

Based on a survey of the literature, there still seems to be a need for
improvements in a rapid ²²⁶Ra method, particularly for solid environmental samples. The
use of ²²⁵Ra tracer (measuring the alpha emitting ²¹⁷At progeny) is very promising
because it does not exist naturally in the environment (unlike ²²³Ra) and it eliminates
problems associated with using ¹³³Ba to determine Ra chemical yield. Ba and Ra may not
always behave in an identical fashion, thus a Ra isotopic tracer offers advantages over a
¹³³Ba. In addition, when ¹³³Ba is used, native barium, which can adversely affect alpha

spectrometry resolution, cannot be removed. This effectively limits the sample aliquot size when native barium is present. Native barium is typically present in solid samples such as soil or concrete, and therefore small sample aliquots, 0.25g or less of soil or concrete, must be used if ¹³³Ba tracer is employed. Since a larger sample aliquot is often useful, removal of native barium is important to allow that approach.

A new rapid method to determine ²²⁶Ra in environmental samples has been 81 82 developed in the Savannah River Site Environmental Lab (Aiken, SC, USA). This new approach has reduced the sample preparation time for soil, concrete and brick matrices to 83 <6 hours for a batch of 10 samples, including fusion, preconcentration and column 84 separation steps. This method can be used in emergency response situations and offers 85 advantages for routine sample analysis as well. For samples such as vegetation, a pre-86 treatment furnace step was used to destroy the organic content. This furnace ashing step 87 adds about 2 hours to the sample preparation. For concrete, brick, soil, and glass fiber air 88 89 filter samples, the rapid sodium hydroxide fusion was applied directly, followed by precipitation steps including a calcium carbonate matrix removal step, followed by a 90 cation exchange column to remove most of the calcium. Sr Resin was used to remove 91 stable barium, when native barium removal was required. Ln Resin was used as a final 92 polishing step to remove ²²⁵Ac and sample matrix interferences. Vacuum box technology 93 was used to allow rapid flow rates and a stacked resin cartridge approach was employed 94 95 to reduce separation times. Alpha spectrometry sources were prepared using a barium 96 sulfate microprecipitation technique in the presence of isopropanol which provides high 97 resolution alpha spectra, much improved over the barium sulfate seeding suspension method. [10] for counting by alpha spectrometry. This new method showed good 98 chemical recoveries and effective removal of interferences. It avoids the problem 99 associated with MnO₂ Resin separation applied to solid samples, which requires the 100

101	raising of the pH of a digested sample and the potential loss of Ra along with $Fe(OH)_3$
102	precipitation when the pH is decreased to pH 7. The fusion, unlike fusions that are
103	performed one at a time over a burner, can be performed simultaneously in a furnace or
104	multiple furnaces using relatively inexpensive zirconium crucibles. An adaptation of this
105	method without the fusion may be applied to aqueous samples as well. Another possible
106	advantage of this approach is that this method does not result in large amounts of
107	manganese ions that typically occur when using MnO ₂ precipitations or MnO ₂ Resin,
108	usually undesirable for ICP-MS measurement of ²²⁶ Ra.
109 110 111	Experimental
112	Reagents
113	The resins employed in this work are Cation Resin (50W-X8, Hydrogen form,
114	200-400 mesh), Ln-Resin [®] (bis (2-ethylhexyl) phosphoric acid) and Sr Resin (4, 4', (5')
115	di-t-butylcyclohexane-18-crown-6), available from Eichrom Technologies, Inc., (Lyle,
116	Illinois, USA). Nitric and hydrofluoric acids were prepared from reagent-grade acids
117	(Fisher Scientific, Inc.). All water was obtained from a Milli-Q2 [™] water purification
118	system. All other materials were ACS reagent grade. Radiochemical isotope tracer ²²⁹ Th
119	(²²⁵ Ra) and ²²⁶ Ra were obtained from Eckert Ziegler/Analytics, Inc. (Atlanta, GA, USA)
120	and diluted to approximately 3.66 Bq ml ⁻¹ and 0.37 Bq ml ⁻¹ , respectively.
121	
122	Procedures
123	Column preparation. Cation exchange resin (Eichrom 50WX8, 200-400 mesh)
124	was obtained as bulk resin and columns were prepared by weighing out the resin amounts
125	in large ion exchange column reservoirs. (Environmental Express, Mount Pleasant, SC,

USA). Sr Resin and Ln Resin cartridges containing 2 ml of each resin were obtained from

Eichrom Technologies, Inc. (Lisle, IL). Small particle size (50-100 micron) resin was employed, along with a vacuum extraction system (Eichrom Technologies) that will handle 24 samples at a time. Flow rates of 1-2 ml min⁻¹ were typically used.

Sample Preparation. Replicate sample aliquots of various environmental samples 130 were added to 250 ml zirconium crucibles. Concrete and brick samples were ground to a 131 fine powder with a mortar and pestle in this work but a ball mill apparatus with sieving or 132 drill sampling could have been used. Soil samples were dried, ground in a ball mill, 133 134 sieved and blended. For concrete, brick and soil samples, 1 gram of sample was added to each crucible. To test the method on vegetation samples, 5 grams of a blank vegetation 135 matrix (hay) was added for each crucible. A 47 mm glass fiber filter was added to each 136 crucible to test the method on air filter samples. To each replicate sample, 99.4 pCi of 137 ²²⁹Th tracer (in equilibrium with daughter ²²⁵Ra) was added to and samples were dried on 138 a hotplate. The amount of tracer added can be varied depending on the number of 217 At 139 counts desired in the tracer region and how long an ingrowth time is desired prior to 140 counting. A blank replicate was also analyzed with each batch so that the ²²⁶Ra results 141 could be corrected for the native content of ²²⁶Ra. To each spiked vegetation, soil, brick, 142 concrete and air filter sample, a known amount of ²²⁶Ra was added. To demonstrate this 143 approach may also be adapted to aqueous samples, tap water samples were also prepared 144 for analysis. 145

Figure 1 shows the rapid fusion and precipitation steps used to digest the solid environmental samples and preconcentrate the 226 Ra from the alkaline fusion matrix. For the 5 g vegetation aliquots, the crucibles were placed in a furnace at 300°C and ramped immediately to 700 °C and ashed for ~ 2 hours. After crucibles were removed and cooled, 5ml of concentrated nitric acid and 30 wt% hydrogen peroxide was added to each crucible and the ashed samples were dried on a hot plate. The crucibles were placed back in a furnace at 600 °C and ashed for ~10 minutes to ensure the samples were ashed completely. The crucibles containing ashed vegetation were removed from the furnace and were ready for the rapid fusion. From this point on, the vegetation, brick, concrete, soil and air filter samples fusion and preconcentration steps were the same, except for the amounts of calcium that were added for the calcium carbonate precipitation. To fuse the samples, 10 g NaOH were added to each crucible. The crucibles were covered with a zirconium lid and placed into a furnace already heated to 600°C for ~ 15 minutes.

After removing the crucibles from the furnace, the crucibles were cooled for about 10 minutes, water was added to each and the crucibles were heated on a hot plate to dissolve and transfer the solids to 225 ml centrifuge tubes. The residual solids were removed from the crucibles by adding water and heating the crucibles further on the hot plate as needed. The samples were diluted to 150 ml with water and cooled in an ice bath to room temperature.

Figure 2 shows the rapid precipitation steps that can be used for aqueous 165 environmental samples to preconcentrate the ²²⁶Ra from a water matrix. Water sample 166 aliquots of 150 ml were acidified to ~pH 2 in 225 ml centrifuge tubes using nitric acid... 167 To each replicate, 99.4 pCi of ²²⁹Th (²²⁵Ra) tracer and 73.8 mBq ²²⁶Ra were added was 168 added to each replicate A blank replicate was also analyzed with each batch so that the 169 ²²⁶Ra results could be corrected for the native content of ²²⁶Ra. Ten milliliters of 170 concentrated ammonium hydroxide was added to each tube and 150 mg Ca was added to 171 172 each sample. Larger aliquots could have been processed in large beakers, allowed to settle 173 and then transferred to centrifuge tubes, but for this test 150 ml water replicates were added directly to centrifuge tubes. 174

The amounts of calcium were varied for each sample matrix type, with the goal of total calcium being 100-150mg Ca. The following amounts of Ca were added: for air

filters, 2.5 ml 1.25M Ca(NO₃)₂ (125 mg Ca) was added; for concrete/brick samples, 0.5 177 178 ml 1.25M Ca(NO₃)₂ (25 mg Ca) was added; for soil and vegetation samples, 1ml 1.25M $Ca(NO_3)_2$ was added (50 mg Ca), and for water samples, 3 ml 1.25M $Ca(NO_3)_2$ (150) 179 mg Ca) was added. In addition, to lower the alkalinity each tube slightly, 10 ml 12M HCl 180 was added to each tube (fused sample matrix only) and each was capped and mixed well. 181 To form the calcium carbonate precipitate, 25 ml 2M sodium carbonate was added to 182 each tube and the tubes were mixed well. The samples were cooled in an ice bath for ~ 10 183 184 minutes. The tubes were centrifuged at 3500 rpm for 5 minutes and the supernatant was discarded. The remaining solids were dissolved in 10 ml of 1.5 M HCl, and transferred to 185 a 50 ml centrifuge tube. The 225ml tube was rinsed well with 10 ml of 1.5 M HCl and 186 this rinse solution was added to each dissolved sample. Additional HCl (1 ml 12M HCl) 187 was added to ensure the brick samples were dissolved in an acidic matrix. The sample 188 solutions were heated briefly in a hot water bath and then centrifuged at 3500 rpm for 5 189 minutes. If any residual solids remained, they were rinsed well by mixing with 5ml 1.5 M 190 HCl, and centrifuging to remove any residual solids. This rinse was added to the original 191 sample solution. 192

To minimize the impact of any Fe^{3+} present on the cation resin step, 3 ml 1.5M ascorbic acid was added to each tube to reduce Fe^{3+} to Fe^{2+} . Gravity flow was typically sufficient to achieve a flow rate of ~1 drop/second, however vacuum was applied if needed.

197 *Column separation.* Figure 2 shows the column separation sequence used. The Ra
198 was retained on cation resin (5g), calcium was removed by rinsing with 3M HCl, and Ra
199 was stripped from the cation resin with 8M HNO₃ and evaporated to dryness on
200 medium/low heat. The sample was redissolved in 3M HNO₃ and passed through Sr Resin.
201 For samples where barium removal may not required (example, water, air filter and

vegetation samples), the Sr Resin separation would likely not be necessary for alpha
spectrometry assay. The 3M HNO₃ solution with Ba/Sr removed was evaporated to
dryness on medium/low heat, then ashed once more to dryness with 2ml 1M HCl and 2ml
30wt% H₂O₂. Gentle heating of these solutions just as the samples were going to dryness
at each of this evaporation steps was found to be very important. The heating steps were
such that the solutions were allowed to go to dryness after the beakers were taken off the
hotplate, to minimize oxide formation and maximize chemical yields.

209 The samples were redissolved in 2 ml 0.1M HCl, warmed on a hot plate, diluted with 8ml water, and reheated briefly. After cooling, the samples were passed through Ln 210 Resin to remove ²²⁵Ac and any other possible interferences, rinsing Ln resin with 10 ml 211 0.02M HCL. The 0.02M acidity was set to ensure Ra was eluted and any residual Ca was 212 retained. Two separation times are important. The first time is related to adding the tracer 213 ²²⁹Th/²²⁵Ra in equilibrium. It was found that ²²⁹Th was removed from ²²⁵Ra at the cation 214 elution step. At this point the ²²⁵Ra is unsupported and starts to decay, however, if the 215 time between the cation resin elution and the Ln Resin separation that removes ²²⁵Ac the 216 correction is minimal ($\sim 1\%$ for a 4 hour time difference). 217

For soil samples it was found that improved yields were obtained if 6g cation resin (35 ml 3M HCl cation resin / 30 ml 8M HNO3 cation resin elution), presumably due to additional cation capacity required for the soil matrix.

Microprecipitation. To each final purified solution containing 20 ml 0.02M HCl, 3 ml 12HCl was added to increase the acidity to ~1.5M HCL. Three grams of ammonium sulfate were added to each tube and mixed well to dissolve completely. Fifty micrograms of barium and the solution was mixed well. Five milliliters isopropanol were added to each tube and mixed again. The tubes were iced for 15 minutes, periodically vortexed during that time (beginning, middle and on removal from ice). The solutions were filtered

227	onto 0.1 micron 25 mm polypropylene filters (Resolve- Filter-Eichrom Technologies),
228	rinsing the filters with 20% isopropanol. The filters were dried under a heat lamp and
229	counted by alpha spectrometry. Alpha spectrometry was used for this testing, but the
230	purified 0.02M HCl solution could have been measured using ICP-MS, perhaps using
231	²²⁸ Ra as a tracer to monitor yield.
232	
233	Apparatus
234	²²⁶ Ra measurements were performed by alpha-particle pulse-height
235	measurements using Passivated Implanted Planar Silicon (PIPS) detectors. The PIPS
236	detectors have an active surface of 450 mm ² . The nominal counting efficiency for these
237	detectors is 0.30. The distance between the sample and detector surface is \sim 3mm.
238	Polycarbonate vacuum boxes with 24 positions and a rack to hold 50 ml plastic
239	tubes were used.
240	
241	Results and Discussion
242	Table 1 shows the individual results for the determination of 226 Ra in five 5 g
243	vegetation samples using this rapid separation method and alpha spectrometry. The
244	results were corrected for ²²⁵ Ra (via the ²¹⁷ At progeny) tracer yield. The average ²²⁶ Ra
245	result for the 5 g vegetation samples was 72.8 mBq smp ⁻¹ , with a -1.2% bias and 1SD
246	(standard deviation) of 5.1 mBq smp ⁻¹ . The measured values were corrected for 9.17 mBq
247	226 Ra found in the unspiked vegetation sample. The high 225 Ra (217 At) tracer recoveries
248	and excellent results for the analytes versus known values indicate the sample preparation
249	and measurement steps for the vegetation samples were effective. The average tracer
250	recovery for 225 Ra was 87.1% ± 5.7% at 1SD. The samples were counted for 8 hours and
251	the ²¹⁷ At ingrowth time to midpoint of the count was 9.03 hours. The amount of time for

ingrowth can be varied and is dependent on the amount of ²²⁵Ra added and the number of
counts desired in the ²¹⁷At tracer region. For this work a relatively large amount of ²²⁵Ra
was added so that a minimal ingrowth time was required. It should be noted that when
short ingrowth times are used that very careful time measurements must be applied to
minimize error in ²¹⁷At ingrowth calculations.

Table 2 shows the individual results for the determination of ²²⁶Ra in five 1 g concrete 257 samples samples using this new method with alpha spectrometry. The results were 258 corrected for ²²⁵Ra (²¹⁷At) tracer yield. The average ²²⁶Ra result for the 1 g concrete 259 samples was 180.6 mBq smp⁻¹, with a -2.1% bias and 1SD of 8.0 mBq smp⁻¹. The 260 measured values were corrected for 26.8 mBq ²²⁶Ra found in the unspiked concrete 261 sample. The average tracer recovery for 225 Ra (217 At) was 84.6% ± 6.8% at 1SD. The 262 samples were counted for only 4 hours and the ²¹⁷At ingrowth time to midpoint of the 263 count was 11.86 hours. The method offers some flexibility in terms of count times and 264 ingrowth time periods and much less tracer may be added, but longer ingrowth times are 265 required under those conditions. 266

Table 3 shows the individual results for the determination of ²²⁶Ra in six 1 g brick samples using this new method. The average ²²⁶Ra result for the 1 g brick samples was 77.8 mBq smp⁻¹, with a 5.5% bias and 1SD of 4.6 mBq smp⁻¹. The measured values were corrected for 29.5 mBq ²²⁶Ra found in the unspiked brick sample. The average tracer recovery for ²²⁵Ra (²¹⁷At) was 86.5% \pm 6.6% at 1SD. The samples were counted for 4 hours and the ²¹⁷At ingrowth time to midpoint of the count was 12.15 hours.

Table 4 shows the individual results for the determination of 226 Ra in five 47 mm glass fiber filter samples using this new method. The average 226 Ra result for the air filter samples was 77.1 mBq smp⁻¹, with a 4.5% bias and 1SD of 4.0 mBq smp⁻¹. The measured values were corrected for 3.7 mBq 226 Ra found in the unspiked air filter sample. The average tracer recovery for 225 Ra (217 At) was 76.7% ± 4.2% at 1SD. The samples were counted for 4 hours and the 217 At ingrowth time to midpoint of the count was 12.47 hours. It should be noted that these air filters were glass fiber and were fused directly. Cellulose filters can be analyzed using this method, but would require a short furnace ashing step prior to fusion.

Table 5 shows the individual results for the determination of ²²⁶Ra in four 1g soil samples. The average ²²⁶Ra result for the water samples was 184.9 mBq smp⁻¹, with a 0.2% bias and 1SD of 6.2 mBq smp⁻¹. The measured values were corrected for 49.8 mBq ²²⁶Ra found in the unspiked soil sample. The average tracer recovery for ²²⁵Ra (²¹⁷At) was 75.3% \pm 1.9% at 1SD. The samples were counted for 8 hours and the ²¹⁷At ingrowth time to midpoint of the count was 11.61 hours.

Table 6 shows the individual results for the determination of ²²⁶Ra in four 150 ml 288 water samples using an adaptation of this new method. The results were corrected for 289 ²²⁵Ra (²¹⁷At) tracer yield. The average ²²⁶Ra result for the water samples was 70.9 mBq 290 smp⁻¹, with a -3.9% bias and 1SD of 3.7 mBq smp⁻¹. The measured values were corrected 291 for 9.6 mBq ²²⁶Ra found in the unspiked water sample. The average tracer recovery for 292 225 Ra (217 At) was 91.8% ± 6.7% at 1SD. The samples were counted for 6 hours and the 293 ²¹⁷At ingrowth time to midpoint of the count was 33.9 hours. The samples could have 294 been counted much sooner, but a longer ingrowth period was used simply to demonstrate 295 296 flexibility in that area.

The MDA (Minimum Detectable Activity) for the actinide isotopes by alpha spectrometry were calculated according to equations prescribed by Currie: [14]

299

300 MDA = $[3+4.65\sqrt{B}]/(CT*R*W*Eff*0.060)$

301 Where B = Total Background counts, = BKG (rate) * BKG Count time

	13
302	CT = sample count time (min)
303	R = Chemical Recovery
304	W= Sample aliquot (g or l)
305	Eff = Detector Efficiency
306	0.060 = conversion from dpm to mBq
307	In low-level counting, where a zero background count is common, the constant 3 is
308	used to prevent an excessively high false positive rate.
309	The MDA (minimum detectable activity) for the alpha spectrometry results can be
310	adjusted as needed, depending on the sample aliquot and count time. This method
311	provides a typical MDA of ~1.5 mBq g^{-1} for an 8 hour count time for 1 gram sample, 0.15
312	mBq g ⁻¹ for a 10 g sample. Longer count times can be used to lower MDA levels as
313	needed. For water samples, MDA levels are also dependent on the aliquot taken and
314	count time. For a 150 ml sample aliquot and 16 hour count time, for example, the MDA
315	is ~5 mBq l^{-1} .
316	Figure 3 shows an example of the spectra of a concrete sample. The key thing to
317	notice is that the peak resolution is very good (typically 30-50 KeV), much better than the
318	peak resolution reported when using the barium seeding suspension approach. Because
319	the isopropanol reduces solubility, only 50 micrograms of barium was added, resulting in
320	very good peak resolution.
321	New resin cartridges were used for each analysis to minimize any chance of cross-
322	contamination of samples or unexpected degradation of performance, which can occur
323	over time and may be different than the anticipated reuse rate depending on real world
324	sample matrix variation. Some laboratories, however, have had success reusing resins. It
325	is anticipated that Sr Resin, used when barium removal is needed, can be reused after
326	rinsing the resin cartridges with water.

The initial sample ashing step for 5 g vegetation aliquots takes about 2 hours for a batch of 10 samples. The rapid fusion method plus precipitation steps takes about 1.5 hours, followed by column separation steps that take about 4-5 hours to complete (depending on flow rates used). Samples may be counted by alpha spectrometry for 4 hours to 16 hours in an emergency. It is also possible to apply ICP-MS measurement technology if desired, since isobaric interferences isobaric polyatomic interferences such as ⁸⁸Sr¹³⁸Ba have been removed using Sr Resin.

The method uses much less cation resin and rinse volumes than other published methods, and the combination of column separations using small particle size resin and vacuum flow is rapid and effective. The use of ²²⁵Ra (²¹⁷At) to determine chemical yield worked very well and the removal of native barium eliminated the need to minimize sample aliquots and/or characterize the samples for native barium. It also eliminated the need for an additional count using a different analysis, such as ¹³³Ba by gamma spectrometry.

The sodium hydroxide fusion was found to be rapid and rugged, and the calcium 341 carbonate precipitation steps were effective in the preconcentration of ²²⁶Ra from the 342 alkaline fusion matrix. The amounts of Ca were adjusted to obtain a 100-150 mg total for 343 optimal yields, taking into account the ~ 100 mg per gram native Ca content in concrete 344 and brick samples, for example. It should be noted that when reagent blanks (empty 345 346 crucibles) are analyzed along with solid samples where a blank sample matrix is not 347 available that calcium should be added simulate the approximate the Ca in the sample 348 matrix, such as 100-150 mg Ca for concrete, brick or soil.

349 **Conclusions**

A new rapid method to determine ²²⁶Ra in environmental samples has been

developed and tested for vegetation, soil, concrete, brick, air filter and water samples

352	that allows the separation of ²²⁶ Ra with high chemical yields and effective removal of						
353	interferences. ²²⁵ Ra (via alpha counting of ²¹⁷ At progeny) provides an excellent						
354	measurement of chemical yield that offers some advantages over ¹³³ Ba. The barium						
355	microprecipitation method in the presence of isopropanol was found to provide						
356	excel	ent alpha peak resolution. Since Sr/Ba are removed in this method, ICP-MS may					
357	also b	e used if desired.					
358							
359	Ackn	owledgment					
360	This work was performed under the auspices of the Department of Energy, DOE						
361	Contract No. DE-AC09-96SR18500. The authors wish to acknowledge Staci Britt, Jack						
362	Herrington and Becky Chavous for their assistance with this work.						
363							
364							
365	Refer	rences					
366	[1]	D. Larivière, T. Cumming, S.Kiser, C. Li, and R. Cornett, Automated flow					
367		injection system using extraction chromatography for the determination of					
368		plutonium in urine by inductively coupled plasma mass spectrometry, J. Anal. At.					
369		Spectrom., 23 (2008): 352					
370	[2]	D.L. Stricklin, A. Tjarnhage, and U. Nygren, Application of low energy gamma-					
371		spectrometry in rapid actinide analysis for emergency preparedness, J. Radioanal.					
372		Nucl.Chem. 251 (2002) (1): 69					
373	[3]	S. Maxwell, B. Culligan, and G. Noyes, Rapid separation method for actinides					
374		and radiostrontium in vegetation samples, J. Radioanal. Nucl.Chem. Vol.286					
375		(2010), No. 1 : 273-282					
376	[4]	T. Wardaszko, D. Grzybowska, and J. Nidecka, ²²² Rn and ²²⁶ Ra in Fresh Waters:					

377		Measurement Method and Results, Nuclear Instruments and Methods in Physics				
378		Research Section B, Volume 17, (1986) Issue 5-6 : 530-534.				
379	[5]	V. G. Escobar, F.Tome, J. Lozano, and A. Sanchez, Determination of 222Ra and				
380		226Ra in Aqueous Samples using a Low level Liquid Scintillation Counter,				
381		Applied Radiat. Isot., Vol. 47, (1996), No.9/10: 861-867				
382	[6]	K. Benkhedda, D. Larivière, S. Scott and D. Evans, Hyphenation of flow injection				
383		on-line preconcentration and ICP-MS for the rapid determination of ²²⁶ Ra in				
384		natural waters, J. Anal. At. Spectrom., 20 (2005): 523-528				
385	[7]	F. Chabaux, B. Othman, and J.L. Birck A New Ra Ba Chromatographic				
386		Separation and its Application to Ra Mass-Spectrometric Measurement in				
387		Volcanic Rocks, Chemical Geology (1994), 114 (3-4) : 191-197				
388	[8]	D. Larivière, D. K. Brownell, V. N. Epov, R. J. Cornett, and R. D. Evans,				
389		Determination of ²²⁶ Ra in sediments by ICP-MS: A comparative study of three				
390		sample preparation approaches, Journal of Radioanalytical and Nuclear				
391		Chemistry, Vol. 273, No.2 (2007): 337–344				
392	[9]	M.T. Crespo, On the determination of ²²⁶ Ra in environmental and geological				
393		samples by alpha-spectrometry using ²²⁵ Ra as yield tracer. Appl Radiat Isot., Vol.				
394		53 (1-2) (2000):109-14.				
395	[10]	S.L. Maxwell, Rapid method for ²²⁶ Ra and ²²⁸ Ra analysis in water samples, J.				
396		Radioanal. Nucl.Chem. Vol 270, No. 3, (2006): 651-655.				
397	[11]	W.C. Burnett, Radium-228 determination of natural waters via concentration on				
398		manganese dioxide and separation using Diphonix ion exchange resin, Appl.				
399		Radiation and Isotopes, Dec 61, (2004): 1173				
400	[12]	W.C. Burnett, D.S. Moon, S. Nour, P. Horwitz A. Bond, Preconcentration of				
401		radium isotopes from natural waters using MnO2 resin. Applied Radiation and				

451	
452	
453	
454	
455	
456	
457	
458	
459	
460	
461	
462	
463	
464	
465	Figure 2 Rapid Ra-226 Sample Preparation for Solid Environmental Samples
466	

475 Figure 3 Rapid Ra-226 Sample Preparation for Aqueous Samples

506		
507		
508		
509		
510		
511		
512	Figure 4	5 Alpha Spectra for Ra-226 Sample
513	i iguite :	
514		
515		
516		
517		
518		
519		
520		
521		
522		
523		
524		
525		
526		
527		
528		
529		
530		
531		
532		
533		
534		
535		
536		
537		
538		
539		30
540		
541		At-217
542		25
543		Fr-221
544		
544 545	S	20 Ra-226
546	Counts	Ac-225
547	no	
548	\circ	15
549		
550		
550		10
551	Γ	
		5
		, (M) , i i king an i a shiri i
		O METERIANAN, FERRETERIANAN, ANALATIN'NA MATANANAN FER
		4400 4900 5400 5900 6400 6900 7400
		Energy (keV)
		Energy (Kev)

552	Table 1	²²⁶ Ra results for vegetation samples
553	Table 2	²²⁶ Ra results for concrete samples
554	Table 3	²²⁶ Ra results for brick samples
555	Table 4	²²⁶ Ra results for air filter samples
556	Table 5	²²⁶ Ra results for soil samples
557	Table 6	²²⁶ Ra results for water samples
558		
559		
560		
561		
562		
563		
564		
565		
566		
567		
568		
569		
570		
571		
572		
573		

Sample ID	²¹⁷ At Yield (%)	²²⁶ Ra Reference Value (mBq smp⁻¹)	²²⁶ Ra Measured Value* (mBq smp ⁻¹)	Difference (%)
1 2	91.5 88.3	73.8 73.8	70.8 73.8	-4.0 0.0
3 4 5	93.1 82.2 80.2	73.8 73.8 73.8	69.8 68.5 81.4	-5.4 -7.2 10.3
Avg SD % RSD	87.1 5.7 6.5		72.8 5.1 7.1	-1.2
	-	mid-point-9.03 hrs. mBq Ra-226 native content		

	Sample ID	²¹⁷ At Yield (%)	²²⁶ Ra Reference Value (mBq smp ⁻¹)	²²⁶ Ra Measured Value * (mBq smp ⁻¹)	Difference (%)
	1 2 3 4 5 6	88.2 90.8 81.2 84.2 72.9 90.4	184.5 184.5 184.5 184.5 184.5 184.5	173.5 188.3 172.8 192.4 177.6 178.8	-6.0 2.1 -6.3 4.3 -3.7 -3.1
	Avg SD % RSD	84.6 6.8 8.1	107.0	180.6 8.0 4.4	-2.1
2			o mid-point-11.86 hrs. o mBq Ra-226 native content		
7					
)					

606		
607 608 609 610	Table 3	²²⁶ Ra results for brick samples
611 612		

Sample	²¹⁷ At Yield	²²⁶ Ra Reference Value	²²⁶ Ra Measured Value*	Difference
ID	(%)	(mBq smp⁻¹)	(mBq smp ⁻¹)	(%)
1	77.9	73.8	79.5	7.8
2	88.4	73.8	84.5	14.5
3	86.3	73.8	80.3	8.9
4	79.7	73.8	74.7	1.3
5	91.5	73.8	75.9	3.0
6	94.9	73.8	71.7	-2.8
Avg	86.5		77.8	5.5
SD	6.6		4.6	
% RSD	6.7		5.0	

4hr count time
At -217 ingrowth to mid-point-12.15 hrs.
*corrected for 29.5 mBq Ra-226 native content

630	
631	

Sample ID	²¹⁷ At Yield (%)	²²⁶ Ra Reference Value (mBq smp ⁻¹)	²²⁶ Ra Measured Value * (mBq smp ⁻¹)	Difference (%)
1 2 3 4 5	80.7 79.9 78.6 73.0 71.5	73.8 73.8 73.8 73.8 73.8 73.8	70.5 80.8 77.0 79.5 77.7	-4.4 9.6 4.4 7.8 5.3
Avg SD % RSD	76.7 4.2 1.4		77.1 4.0 6.8	4.5
) mid-point-12.47 hrs. nBq Ra-226 in blank air filter		

	Sample ID	²¹⁷ At Yield (%)	²²⁶ Ra Reference Value (mBq smp ⁻¹)	²²⁶ Ra Measured Value* (mBq smp ⁻¹)	Difference (%)
	1 2 3 4	75.2 77.9 74.8 73.3	184.5 184.5 184.5 184.5	185.9 192.0 176.9 184.7	0.7 4.1 -4.1 0.1
	Avg SD % RSD	75.3 1.9 2.2		184.9 6.2 4.1	0.2
3			o mid-point-11.61 hrs. 8 mBq Ra-226 in blank soil sa	Imple	
)					
)					
[
2					
3					
ł					
5					
5					
7					
3					
)					
)					
l					
,					

665

²¹⁷ At Yield (%)	²²⁶ Ra Reference Value (mBq smp ⁻¹)	²²⁶ Ra Measured Value* (mBq smp ⁻¹)	Difference (%)
84.8	73.8	69.6	-5.6
87.3	73.8	75.7	2.6
96.2	73.8	71.3	-3.3
98.7	73.8	66.9	-9.3
91.8		70.9	-3.9
6.7		3.7	
6.5		4.4	
	(%) 84.8 87.3 96.2 98.7 91.8 6.7	(%) (mBq smp ⁻¹) 84.8 73.8 87.3 73.8 96.2 73.8 98.7 73.8 91.8 6.7	(%) (mBq smp ⁻¹) (mBq smp ⁻¹) 84.8 73.8 69.6 87.3 73.8 75.7 96.2 73.8 71.3 98.7 73.8 66.9 91.8 70.9 3.7

6hr count time At -217 ingrowth to mid-point-33.9 hrs. *corrected for 9.6 mBq Ra-226 in blank water sample

666