Contract No:

This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM).

Disclaimer:

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1) warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2) representation that such use or results of such use would not infringe privately owned rights; or
- 3) endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Designing a slag composition to optimize Tc-99 retention in oxidized grouts Walt Kubilius, Fabienne Johnson, Christine Langton, Madison Caldwell Project ID # LDRD-2017-00050

Overview & Relevance

- Technetium-99 eventually leaches out of cementitious waste forms.
- Waste forms rely on insoluble Tc(IV) which will convert to leachable TcO_4^- when oxidized in the future by the environment.
- Can grout waste forms be designed to bind/retain oxidized TcO_4^- ?

Some hydroxide compounds may retain TcO₄⁻ in their crystal structure

Layered Double Hydroxides (LDHs)

- LDHs have the brucite structure, M²⁺(OH)₂, M²⁺ is a metal, with Al³⁺ substituting for some M atoms.
- This imparts a positive charge to the octahedral sheets, balanced by incorporation of anions (e.g. NO_3^- , OH^- , or TcO_4^-) within the interlayers.
- LDHs with M = Mg, Ca appear in cured grouts, including saltstone. They bind anions weakly.
- But Krumhansl etal (2006) and Pless (2007) found that LDHs with Cu or Zn as the divalent cation (instead of Mg or Ca) can strongly bind ReO_4^- , TcO_4^- , I^- , and IO_3^- , at near-neutral pH.

If saltstone-type grouts can be formulated to crystallize Cu- or Zn-LDHs, retention of Tc-99 or I-129 may be improved.

This project will test ReO_{4} (surrogate for TcO_{4}) sorption in saltstonetype grouts, using simulated slags of varying composition.

Remaining Challenges and Barriers

The dramatic contrast between very strong sorption of ReO_4^- by Cu-LDH and calcined Mg-LDH in aqueous solution, and very poor sorption by grouts is not understood.

This work was supported by the SRNL LDRD Program

OPERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

PROPOSAL: Modify slag composition in order to optimize LDH properties for $TcO_4^$ stabilization LDHs are a constituent of grout

1: Synthesize LDHs of desired compositions

LDHs were easily synthesized at temperature by mixing room metal nitrates with NaOH, then washing & filtering the precipitate. Nominal compositions:

> $Mg_6Al_2(OH)_{16}(NO_3)_2$ $Zn_{6}Al_{2}(OH)_{16}(NO_{3})_{2}$ $Cu_6Al_2(OH)_{16}(NO_3)_2$

2: Test ReO₄ sorption by LDH in aqueous solutions

Perrhenate (ReO_4^{-}) was used as a surrogate for TcO_4^- . ReO_4^-/LDH sorption tests were done with 7 days of contact on a shaker table. All work was conducted in oxidizing conditions, and mostly at pH=12 (appropriate for oxidized grout environments).

LDH synthesis 2. HOWEVER, when Cu-LDH and calcined Mg-LDH were incorporated into grouts, sorption of ReO_4^- was low, with K_ds near 1 mL/g in all samples, even in the absence of nitrate or nitrite. This was true for grouts made with Cu-rich slags, as well as for LDH amendment into the saltstone mix. The reason is not known.

1. SORPTION EXPERIMENTS WITH PURE LDHs were encouraging. Copper-LDH and calcined Mg-LDH showed very strong sorption of ReO₄⁻ at pH 12,; K_ds exceeded 200 mL/g for both compositions. However, sorption was strongly reduced in the presence of 0.1M nitrate or 0.1M nitrite.

ReO₄⁻ SORPTION COEFFICIENTS (mL/g) for

various LDHs in aqueous solutions

Preparation of simulated Blast Furnace Slag

sorption test liquid	Mg-LDH	Zn-LDH	Cu-LDH	calcined Mg-LDH	calcined Zn-LDH
0.01M NaOH, 0.01M NaReO4	18	14	353	226	0
0.01M NaOH, 0.0001M NaReO4			265	217	0
0.1M NO2, 0.01 M NaReO4			44	22	
0.1M NO3, 0.01M NaReO4			45	23	

Proposed Future Work

In view of the importance in improving long-term Tc-99 retention in grout wasteforms, and the promise shown by certain Layered Double Hydroxide compounds in retaining ReO_4^- , studies should be continued to determine whether retention behavior could be improved in grouts.

<u>Approach</u>

3: Make grouts spiked with Cu, Zn

Saltsone has three ingredients: portland cement, fly ash, and blast furnace slag (BFS). Two approaches were used to make grout:

Zn-rich, and oxidizing).

2. Add Mg-, Cu-, or Zn-LDH directly to oxidized saltstone mix.

4: Test $ReO_4^$ sorption by grouts

Grouts were cured for 30 days, then ground to -100 mesh. They were put in contact with alkaline solutions simulating Saltstone pore-water. 1. Produce simulated BFS with ReO_4^- /grout sorption tests were desired compositions (Mg, Cu, or done with 7 days of contact on a shaker table.

Technical Progress (Accomplishments)

SEM image of Cu-Layer Double Hydroxide

ReO₄⁻ SORPTION COEFFICIENTS (mL/g) for LDH-containing grouts in aqueous settings.

grout mixture	corption liquid	Kd					
solid	liquid	sorption liquid	(mL/g)				
10 OPC, 45 FA, 45 Mg-BFS ¹	Tank 50 simulan) pore water at simulant	0				
10 OPC, 45 FA, 45 Zn-BFS ²	Tank 50 simulan) pore water it simulant	1				
10 OPC, 45 FA, 45 Cu-BFS ³	Tank 50 simulan) pore water it simulant	0				
9 OPC, 39 FA, 39 Mg-BFS, 13 MgLDH	Tank 50 simulan) pore water it simulant	0				
9 OPC, 39 FA, 39 Mg-BFS, 13 calcined MgLDH	Tank 50 simulan) pore water t simulant	0				
9 OPC, 39 FA, 39 Mg-BFS, 13 CuLDH	Tank 50 simulan) pore water it simulant	1				
Tank 50 simulant is approx comp. of Tank 50 supernate. Pore water simulant models comp. of Saltstone porewater.							
grout mixture		sorption liquid	Kd				
solid	Liquid		(mL/g)				
10 OPC, 45 FA, 45 Mg-BFS ¹	zero nitrate	aged pore wate simulant	^{er} 1				
10 OPC, 45 FA, 45 Zn-BFS ²	zero nitrate	aged pore wate simulant	^{er} 1				
10 OPC, 45 FA, 45 Cu-BFS ³	zero nitrate	aged pore wate simulant	^{er} 1				
9 OPC, 39 FA, 39 Mg-BFS, 13 MgLDH	zero nitrate	nitrate aged pore water simulant					
9 OPC, 39 FA, 39 Mg-BFS, 13 calcined MgLDH	zero nitrate	aged pore wate simulant	^{er} 1				
9 OPC, 39 FA, 39 Mg-BFS, 13 CuLDH	zero nitrate	aged pore wate simulant	er 1				
"Zero nitrate" = Tank 50 simulant without NO3, NO2, SO4. "Aged porewater" simulates saltstone porewater after nitrate leaches out. It is 0.01M NaOH, 0.005M Ca(OH)2.							

Project Summary

- Layered Double Hydroxides (LDHs) of various compositions were synthesized at room temperature.
- Aqueous sorption experiments showed that Cu-LDH and calcined Mg-LDH sorbed ReO_4^- very well in alkaline aqueous solutions.
- Sorption ability was lessened in 0.1M NO₃ or 0.1M NO₂ solutions.
- Grouts containing the same LDHs did not sorb ReO_4^- in alkaline solutions.

This presentation does not contain any proprietary, confidential, or otherwise restricted information

We put science to work.[™]

