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3.8 Proposed Approach to Uncertainty Quantification and Sensitivity Analysis in the next PA 

Recommendation #62, 93, 153, 154, 155, 156 

Performance Assessment Error Analysis and Resource Management 

Scope Abstract: This memorandum builds upon Section 3.8 of SRNL (2016) and Flach (2017) by 
defining key error analysis, uncertainty quantification, and sensitivity analysis concepts and terms, in 
preparation for the next E-Area Performance Assessment (WSRC 2008) revision. 

Results / Conclusions: This memorandum 1) reviews how mean squared error between a model 
prediction and reality can be separated into systemic bias / epistemic uncertainty and stochastic 
uncertainty / aleatory uncertainty components, 2) reviews how stochastic uncertainty can be 
approximately decomposed into contributions from each input parameter, 3) defines two sensitivity 
analysis concepts, 4) distinguishes between error analysis and stochastic uncertainty analysis, and 5) 
discusses efficient use of resources based on sensitivity analysis.  

Discussion 

Model error (composed of bias and uncertainty) 

For a given physical model, let the true input values be denoted by 𝑥𝑥𝑗𝑗, the true output value by 𝑦𝑦, and the 
true relationship (function) between 𝑥𝑥𝑗𝑗 and 𝑦𝑦 by 

 𝑦𝑦 = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2,⋯ ) = 𝑓𝑓�𝑥𝑥𝑗𝑗� (1) 
 
Similarly, let the estimates of these entities be denoted by a circumflex accent: 
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 𝑦𝑦� = 𝑓𝑓�𝑥𝑥�𝑗𝑗� (2) 
 
Modeling error is 

 𝑒𝑒 = 𝑦𝑦� − 𝑦𝑦 (3) 
 
The expected (average, mean) value of the squared error is 

 

𝐸𝐸[(𝑦𝑦� − 𝑦𝑦)2] = 𝐸𝐸�{(𝑦𝑦� − 𝐸𝐸[𝑦𝑦�]) − (𝑦𝑦 − 𝐸𝐸[𝑦𝑦�])}2� 

= 𝐸𝐸[(𝑦𝑦� − 𝐸𝐸[𝑦𝑦�])2]− 𝐸𝐸[2(𝑦𝑦� − 𝐸𝐸[𝑦𝑦�])(𝑦𝑦 − 𝐸𝐸[𝑦𝑦�])] + 𝐸𝐸[(𝑦𝑦 − 𝐸𝐸[𝑦𝑦�])2] 

= 𝐸𝐸[(𝑦𝑦� − 𝐸𝐸[𝑦𝑦�])2]− 0 + (𝑦𝑦 − 𝐸𝐸[𝑦𝑦�])2 

= (𝑦𝑦 − 𝐸𝐸[𝑦𝑦�])2 + 𝐸𝐸[(𝑦𝑦� − 𝐸𝐸[𝑦𝑦�])2] 

(4) 

 
(https://en.wikipedia.org/wiki/Mean_squared_error) where 𝐸𝐸[∙] denotes the mathematical expected 
value operator. The expected value of a random variable 𝑋𝑋 is defined by 

 𝐸𝐸[𝑋𝑋] =

⎩
⎪
⎨

⎪
⎧ �𝑥𝑥𝑓𝑓(𝑥𝑥)

𝑥𝑥

if 𝑋𝑋 is discrete

� 𝑥𝑥𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
+∞

−∞
if 𝑋𝑋 is continuous

 (5) 

 
where 𝑓𝑓(𝑥𝑥) is the distribution of 𝑋𝑋. The first term of the mean squared error is the squared difference 
between the true output value and the expected (or average) estimated output value, and a measure of 
model bias, 𝛽𝛽2: 

 𝛽𝛽2 ≡ (𝑦𝑦 − 𝐸𝐸[𝑦𝑦�])2 (6) 
 
The second term is recognized as the definition of variance of the estimated output value, 𝜎𝜎𝑦𝑦�2: 

 𝜎𝜎𝑦𝑦�2 ≡ 𝐸𝐸[(𝑦𝑦� − 𝐸𝐸[𝑦𝑦�])2] = 𝐸𝐸[𝑦𝑦�2] − 𝐸𝐸[𝑦𝑦�]2 (7) 
 
If the expected squared error is abbreviated as 

 𝑒𝑒𝑦𝑦�2 ≡ 𝐸𝐸[(𝑦𝑦� − 𝑦𝑦)2] (8) 
 
Equation (4) becomes 

 𝑒𝑒𝑦𝑦�2 = 𝛽𝛽2 + 𝜎𝜎𝑦𝑦�2 (9) 

https://en.wikipedia.org/wiki/Mean_squared_error


SRNL-STI-2017-00518  3 

 

 
That is, the average squared error is the sum of model systemic bias (due to limited data and knowledge) 
and stochastic uncertainty (due to the probabilistic variability) components. Epistemic uncertainty and 
aleatory uncertainty are alternative terms, respectively. 

Model variance 

Model output uncertainty 𝜎𝜎𝑦𝑦2 can be decomposed into contributions associated with each parameter by 
approximating Equation (2) with the first two terms of a Taylor series about the expected (average) 
values of input parameters 

 𝑦𝑦� ≅ 𝑓𝑓�𝐸𝐸�𝑥𝑥�𝑗𝑗�� +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥�𝑗𝑗

�𝑥𝑥�𝑗𝑗 − 𝐸𝐸�𝑥𝑥�𝑗𝑗�� (10) 

 
Summation over the index 𝑗𝑗 is implied in this expression. Equation (9) is exact for linear functions of the 
model input parameters. Using this linear approximation (in general), the expected value of the model 
input becomes 

 𝐸𝐸(𝑦𝑦�) = 𝑓𝑓�𝐸𝐸�𝑥𝑥�𝑗𝑗�� +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥�𝑗𝑗

∙ 0 = 𝑓𝑓�𝐸𝐸�𝑥𝑥�𝑗𝑗�� (11) 

 
Returning to Equation (6) and using Equations (9) and (10) yields: 

 

𝜎𝜎𝑦𝑦�2 = 𝐸𝐸[(𝑦𝑦� − 𝐸𝐸[𝑦𝑦�])2] 

≅ 𝐸𝐸 ��
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥�𝑗𝑗

�
2

�𝑥𝑥�𝑗𝑗 − 𝐸𝐸�𝑥𝑥�𝑗𝑗��
2
� 

= �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥�𝑗𝑗

�
2

𝐸𝐸 ��𝑥𝑥�𝑗𝑗 − 𝐸𝐸�𝑥𝑥�𝑗𝑗��
2
� 

= �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥�𝑗𝑗

�
2

𝜎𝜎𝑥𝑥�𝑗𝑗
2  

(12) 

 
or in explicit form 

 𝜎𝜎𝑦𝑦�2 ≅ �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥�1

�
2

𝜎𝜎𝑥𝑥�1
2 + �

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥�2

�
2

𝜎𝜎𝑥𝑥�2
2 + ⋯ (13) 

 
That is, the model output uncertainty (expressed as a variance) is approximately (exact for linear 
systems) the sum of contributions from each input parameter, with each contribution being the square of 
the gradient times the variance of the input parameter. Equation (12) can be abbreviated as 
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 𝜎𝜎𝑦𝑦�2 ≡ 𝜎𝜎𝑦𝑦�12 + 𝜎𝜎𝑦𝑦�22 + ⋯ (14) 
 
and Equation (8) becomes (approximately) 

 𝑒𝑒𝑦𝑦�2 ≅ 𝛽𝛽2 + 𝜎𝜎𝑦𝑦�12 + 𝜎𝜎𝑦𝑦�22 + ⋯ (15) 
 

Sensitivity analysis (SA) 

Equation (12) can be used to rank input parameters according to the sensitivity of the model output to its 
inputs, an exercise termed sensitivity analysis (Saltelli 2002). One approach is to rank parameters in the 
order 𝑘𝑘, ℓ, ⋯ according to the criterion 

 �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥�𝑘𝑘

�
2

> �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥�ℓ

�
2

> ⋯ (16) 

 
Note that criterion (15) does not consider input parameter uncertainty. A second, and generally 
preferred, method is to rank inputs according the criterion 

 �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥�𝑘𝑘

�
2

𝜎𝜎𝑥𝑥�𝑘𝑘
2 > �

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥�ℓ

�
2

𝜎𝜎𝑥𝑥�ℓ
2 > ⋯ (17) 

 
which can be written more compactly using Equation (13) as 

 𝜎𝜎𝑦𝑦�𝑘𝑘2 > 𝜎𝜎𝑦𝑦�ℓ2 > ⋯ (18) 
 

Uncertainty quantification (UQ) 

The systemic difference between physical reality and average model prediction, or model bias, is 
generally unknowable, but can potentially be estimated. As examples, an abstracted model might be 
compared to a higher-fidelity model that is believed to be relatively unbiased, model validation data 
might indicate the level of model basis, or expert elicitation might be used. Considering the challenges 
of estimating bias, quantitative error analysis is often limited to (stochastic) uncertainty quantification 
(UQ). UQ may use linear approximations (Equation (12)) or other techniques (e.g. Monte Carlo) to 
quantify uncertainty.  

Management of model biases and uncertainties 

Equation (14) can be rewritten as 
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 𝑒𝑒𝑦𝑦�2 ≅ 𝜎𝜎𝑦𝑦�2 �
𝛽𝛽2

𝜎𝜎𝑦𝑦�2
+
𝜎𝜎𝑦𝑦�𝑘𝑘2

𝜎𝜎𝑦𝑦�2
+
𝜎𝜎𝑦𝑦�ℓ2

𝜎𝜎𝑦𝑦�2
+ ⋯+

𝜎𝜎𝑦𝑦�𝑚𝑚2

𝜎𝜎𝑦𝑦�2
+ ⋯� (19) 

 
where the uncertainty contributions are ordered according to Criterion (17). Input parameters associated 
with the term 𝜎𝜎𝑦𝑦𝑚𝑚2 𝜎𝜎𝑦𝑦2�  and beyond might be neglected in UQ and SA, if uncertainty contributions are 
rapidly descending and 

 
𝜎𝜎𝑦𝑦�𝑚𝑚2

𝜎𝜎𝑦𝑦�2
< 𝜀𝜀 ∙ 𝑚𝑚𝑚𝑚𝑥𝑥 �

𝛽𝛽2

𝜎𝜎𝑦𝑦�2
, 1� (20) 

 
where 𝜀𝜀 is some selected cutoff value. If uncertainty contributions decline more gradually, then 

 

 
𝜎𝜎𝑦𝑦�𝑚𝑚2

𝜎𝜎𝑦𝑦�2
+ ⋯ < 𝜀𝜀 ∙ 𝑚𝑚𝑚𝑚𝑥𝑥 �

𝛽𝛽2

𝜎𝜎𝑦𝑦�2
, 1� (21) 

 
may be more appropriate. As noted above, the bias term may be poorly known.  

The concepts embodied in Equations (19) and  (20) provide a rationale for managing model biases and 
uncertainties by focusing resources (funding, schedule, effort) only on those input parameters that 
contribute significantly to squared error 𝑒𝑒𝑦𝑦�2. 

Summary of key concepts 

● Model error is the concern, not just stochastic uncertainty. 

● Squared model error is composed of deterministic bias (epistemic uncertainty) and stochastic 
uncertainty (aleatory uncertainty). 

● Output variance can be decomposed (at least approximately) into contributions associated with each 
random input parameter. 

● Sensitivity analysis takes two main forms: gradient-only versus gradient times variance. 

● Analysts need to be clear about which form is being used. 

● The “gradient times variance” form is generally preferred. 

● Quantitative error analysis is typically restricted to defining the stochastic component, even though 
error contains a deterministic bias too. 
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● Resources should be focused on those attributes of the overall PA analysis that contribute most 
significantly to error. 

● Model bias can be large compared to stochastic uncertainty. 
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