Contract No:

This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM).

Disclaimer:

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1) warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2) representation that such use or results of such use would not infringe privately owned rights; or
- 3) endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Analysis of Factors that Influence Infiltration Rates using the HELP Model

J. C. Shipmon J. A. Dyer September 2017 SRNL-STI-2017-00506, Revision 0

SRNL.DOE.GOV

DISCLAIMER

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1. warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2. representation that such use or results of such use would not infringe privately owned rights; or
- 3. endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Printed in the United States of America

Prepared for U.S. Department of Energy

SRNL-STI-2017-00506 Revision 0

Keywords: *HELP Model, Sensitivity Analysis, Infiltration, E-Area, Low-Level Waste, Precipitation, Geomembrane*

Retention: Permanent

Analysis of Factors that Influence Infiltration Rates using the HELP Model

J. C. Shipmon J. A. Dyer

September 2017

Prepared for the U.S. Department of Energy under contract number DE-AC09-08SR22470.

OPERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

Date

REVIEWS AND APPROVALS

AUTHORS:

J. C. Shipmon, Environmental Modeling, SRNL	Date
J. A. Dyer, Environmental Modeling, SRNL	Date
IECHNICAL REVIEW:	
K. L. Dixon, Geosciences, SRNL	Date
APPROVAL:	
D A Crowley Manager	Date
Environmental Modeling, SRNL	Duit
\mathcal{C}	

L. T. Reid, Acting Director Environmental Restoration Technology, SRNL

iv

EXECUTIVE SUMMARY

The Hydrologic Evaluation of Landfill Performance (HELP) model is used by Savannah River National Laboratory (SRNL) in conjunction with PORFLOW groundwater flow simulation software to make longterm predictions of the fate and transport of radionuclides in the environment at radiological waste sites. The work summarized in this report supports preparation of the planned 2018 Performance Assessment for the E-Area Low-Level Waste Facility (LLWF) at the Savannah River Site (SRS). More specifically, this project focused on conducting a sensitivity analysis of infiltration (i.e., the rate at which water travels vertically in soil) through the proposed E-Area LLWF closure cap. A sensitivity analysis was completed using HELP v3.95D to identify the cap design and material property parameters that most impact infiltration rates through the proposed closure cap for a 10,000-year simulation period. The results of the sensitivity analysis indicate that saturated hydraulic conductivity (K_{sot}) for select cap layers, precipitation rate, surface vegetation type, and geomembrane layer defect density are dominant factors limiting infiltration rate. Interestingly, calculated infiltration rates were substantially influenced by changes in the saturated hydraulic conductivity of the Upper Foundation and Lateral Drainage layers. For example, an order-of-magnitude decrease in K_{sat} for the Upper Foundation layer lowered the maximum infiltration rate from a base-case 11 inches per year to only two inches per year. Conversely, an order-of-magnitude increase in K_{sat} led to an increase in infiltration rate from 11 to 15 inches per year. This work and its results provide a framework for quantifying uncertainty in the radionuclide transport and dose models for the planned 2018 E-Area Performance Assessment. Future work will focus on the development of a nonlinear regression model for infiltration rate using Minitab 17[®] to facilitate execution of probabilistic simulations in the GoldSim[®] overall system model for the E-Area LLWF.

TABLE OF CONTENTS

LIST OF TABLES	
LIST OF FIGURES	
LIST OF ABBREVIATIONSix	
1.0 HELP Model Background1	
2.0 Model Representation	
3.0 Proposed Cover System Design	
4.0 Sensitivity Analysis using HELP (Summer Intern Project)	
5.0 Improvements or Changes in Methods7	
6.0 Results	
6.1 Percent Slope	
6.2 SCS Curve Number	
6.3 Geomembrane Liner Defect Number11	
6.4 Saturated Hydraulic Conductivity13	
6.4.1 Lateral Drainage Layer	
6.4.2 Upper Foundation Layer16	
6.5 Leaf Area Index17	
6.6 Slope Length	
6.7 Precipitation Rate	
6.8 Temperature	
7.0 Conclusions	
8.0 References	
Appendix A. HELP v3.95D GUI for Input Parameters	

LIST OF TABLES

Table 6-1.	Change in Infiltration Rate with Percent Slope at 400-Foot Slope Length
Table 6-2.	Change in Infiltration Rate with SCS Curve Number at 400-Foot Slope Length11
Table 6-3.	Change in Infiltration Rate with Geomembrane Defect Number at 400-Foot Slope Length 13
Table 6-4.	Change in Infiltration Rate with K _{sat} for LDL at 400-Foot Slope Length
Table 6-5.	Change in Infiltration Rate with K _{sat} for UFL at 400-Foot Slope Length
Table 6-6.	Change in Infiltration Rate with Leaf Area Index at 400-Foot Slope Length
Table 6-7.	Change in Infiltration Rate with Slope Length at 3% Slope
Table 6-8.	Change in Infiltration Rate with Precipitation Rate at 400-Foot Slope Length
Table 6-9.	Change in Infiltration Rate with Temperature at 400-Foot Slope Length

LIST OF FIGURES

Figure 2-1. Snapshot of Soil and Design Input Screen #1
Figure 2-2. Snapshot of Soil and Design Input Screen #2
Figure 2-3. Snapshot of Soil and Design Input Screen #3
Figure 2-4. Simulation Control Input Dialog Screen
Figure 3-1. Proposed E-Area Waste Cover System Schematic
Figure 6-1. Impact of Percent Slope on Annual Avg. Infiltration Rate (0-10,000 Years)
Figure 6-2. Impact of Percent Slope on Annual Avg. Infiltration Rate (0-400 Years)
Figure 6-3. Impact of SCS Curve Number on Annual Avg. Infiltration Rate (0-10,000 Years)10
Figure 6-4. Impact of Geomembrane Defect Number on Annual Avg. Infiltration Rate (0-10,000 Years)
Figure 6-5. Impact of Geomembrane Defect Number on Annual Avg. Infiltration Rate (0-400 Years)12
Figure 6-6. Impact of K _{sat} for LDL on Annual Avg. Infiltration Rate (0-10,000 Years)14
Figure 6-7. Impact of K _{sat} for LDL on Annual Avg. Infiltration Rate (0-400 Years)14
Figure 6-8. Impact of K _{sat} for UFL on Annual Avg. Infiltration Rate (0-10,000 Years)16
Figure 6-9. Impact of K _{sat} for UFL on Annual Avg. Infiltration Rate (0-400 Years)17
Figure 6-10. Impact of Leaf Area Index on Annual Avg. Infiltration Rate (0-10,000 Years)

Figure 6-11.	Impact of Leaf Area Index on Annual Avg. Infiltration Rate (0-400 Years)	19
Figure 6-12.	Impact of Slope Length on Annual Avg. Infiltration Rate (0-10,000 Years)	21
Figure 6-13.	Impact of Slope Length on Annual Avg. Infiltration Rate (0-400 Years)	21
Figure 6-14.	Impact of Precipitation Rate on Annual Avg. Infiltration Rate (0-10,000 Years)	23
Figure 6-15.	Impact of Precipitation Rate on Annual Avg. Infiltration Rate (0-400 Years)	23
Figure 6-16.	Impact of Temperature on Annual Avg. Infiltration Rate (0-10,000 Years)	26
Figure 6-17.	Impact of Temperature on Annual Avg. Infiltration Rate (0-400 Years)	26

LIST OF ABBREVIATIONS

CN	Curve number
DOE	Department of Energy
EPA	Environmental Protection Agency
GCL	Geosynthetic clay liner
GUI	Graphical User Interface
HDPE	High-density polyethylene
HELP	Hydrologic Evaluation of Landfill Performance
K _{sat}	Saturated Hydraulic Conductivity
LDL	Lateral Drainage Layer
LLWF	Low-Level Waste Facility
PA	Performance Assessment
SCS	Soil Conservation Service
SRNL	Savannah River National Laboratory
SRS	Savannah River Site
UFL	Upper Foundation Layer
U.S.	United States

Intentionally Blank

1.0 HELP Model Background

The HELP model was developed originally by the United States (U.S.) Army Corps of Engineers (Schroeder et al. 1987) under the sponsorship of the U.S. Environmental Protection Agency (U.S. EPA). More recently, Klaus Berger, Professor at the University of Hamburg Allende-Platz, collaborated with Paul Schroeder to develop an improved version of the HELP model (version 3.95D) that is Microsoft Windows 7/8/10 compatible and eliminates several errors and limitations in the most recent U.S. version—HELP v3.07 (Schroeder et al. 1994a and 1994b). The primary use for the HELP model is to compare different landfill cover system design alternatives as judged by a water balance for the climatic conditions experienced at a particular geographical location (Berger et al. 2000). HELP is a quasi-two-dimensional layer model with the capability to estimate the water balance for both open and closed landfills and other solid-waste disposal systems (Berger et al. 2015). A Fortran-based program, HELP allows the user to input weather, soil property and cap design parameters, execute the program, and output the expected hydrologic performance of the landfill cover design to text files for post processing in Microsoft Excel. Currently, three versions of the model are available (HELP v3.07, Visual HELP v2.2, and HELP v3.95D). HELP v3.95D was chosen for the sensitivity analysis for several reasons:

- The v3.07 simulation module was updated in v3.95D to include a new graphical user interface (GUI) that is fully Windows 7/8/10 compatible (Berger et al. 2012).
- The software can be executed separately as either v3.07 or v3.95D, if desired.
- The synthetic weather generator functions in both its original version (v3.07) and the modified version (v3.95D) which fixes a problem with leap years. Version 3.95D of the weather generator gives slightly different results than the original version (Berger et al. 2012).

2.0 Model Representation

File management is particularly important when executing the HELP model. Initially, substantial effort was involved in subdirectory set up to organize input and output files for multiple-case runs. When working with the software, it is often desirable to vary the soil property, cap design, and/or weather input parameters. HELP v3.95D simplifies the process of editing input files through a user-friendly GUI. It is also possible to generate multiple sets of weather data within the software.

The Data Input tab on the HELP v3.95D menu bar provides the user access to the input files of choice for editing. HELP model data input files include a daily precipitation file (.d4), daily temperature file (.d7), daily solar radiation file (.d13), evapotranspiration file (.d11), soil and design file (.D10), and a simulation

control file (.OPD). Figure 2-1, Figure 2-2, and Figure 2-3 display the three input screens for soil and design data. Once the necessary input files are created, the simulation control input dialog screen shown in Figure 2-4 allows the user to link the input files and execute the model.

When the simulation is complete, HELP generates a set of output text files containing the hydrologic data of interest for the specified cover system design. Four different output file formats can be generated by the HELP v3.95D software, including a:

- yearly subdivided data file (.YR),
- monthly subdivided file (.MON),
- daily subdivided file (.DAY), and
- summary file that consolidates all results in a single file (.OUT).

Metric	US Customary
eneral Informatio	n
Project Title	Slit Trench Closure Cap Intact Infiltration 3% Slope & 400 f
Landfill area	2686 acres
Percent area v	vhere runoff is possible (0 - 100) 100 %
I want to sp (If not the p Amount of s	pecify initial moisture storage of the layers and the snow cover by myself program will initialize moisture content to approximately steady state) snow or water on surface at the beginning of simulation 0 inch
	Last Next Save Data Cancel

Figure 2-1. Snapshot of Soil and Design Input Screen #1

Layer No.	Layer Type	Thickness	Soil Texture No.	Total Pore Volume	Field Capacity	Willing Point	Initial Moisture	Sat. Hydraulic Conductivity	Drain Length	Drain Slope
1	1: V/DL · Vertical Percentation Laws	inch 5.84		Vol/Vol 396	Vol/Vol	Vol/Vol	Vol/Vol	cm/s	ft	%
2	1: VPL: Vertical Percolation Laver	30		35	252	181	252	000041		
3	1: VPL: Vertical Percolation Layer	12		15	1	.07	1	00013		
4	1: VPL: Vertical Percolation Laver	12		.353	.24	.172	.24	.0000614		
5	2: LDL: Lateral Drainage Layer 👻	12		.413	.057	.027	.057	.0332	400	3.0
6	4: GML: Geomembrane 🔹	.26						.000000000087		
7	1: VPL: Vertical Percolation Layer -	12		.35	.252	.181	.252	.00001		
8	1: VPL: Vertical Percolation Layer •	72		.457	.131	.058	.131	.001		
9	•									
10	•									
11	•									
12	•									
13	•									
14	•									
15	•									
16	•									
17	•									
18	•									
19	•									
20	•									

Figure 2-2. Snapshot of Soil and Design Input Screen #2

Method for Computing F	Runoff Curve Number N (© Modify Specified C	:N	HELP Compu	uted CN		
User Specified CN	Modified Specified CN		HELP Computed	Curve Nur	mber	
	Slope	%	Slope	3.0	%	
	Slope Length	ft	Slope Length	400	ft	
			US Soil Texture	- Slightly 1: CoS - 2: S - Sa 3: FS - F 4: LS - L	compacted soils: - Coarse sand and Fine sand .oamy sand	* *
			Vegetation	Bare soil Poor gras Fair grass Good gra	55 S 385	•
Curve Number Progra	am will use run off curve nu	imber of	48.74 Mo	ve on this	field to calculate CN !	
	Previous	st	Save Dat		Jancel	

Figure 2-3. Snapshot of Soil and Design Input Screen #3

🚔 Input of Simulation (Control Data				23	
Weather Data Files					-	
Precipitation						
Temperature						
Solar Radiation						
					-	
Evapotranspiration and	Soil & Design Data Files					
Evapotranspiration						
Soil & Design					<u>j</u>	
Change Properties?						
Current number of	changes: none	i Design data within this s	innulauon? () res			
Current number of Output Options Output File	changes: none	i Design data Within this s	innuauony () res			
Current number of Output Options Output File Output Units	changes: none	Design data within this s				
Current number of Output Options Output File Output Units Metric	US Customary	Design data within this s				
Current number of Output Options Output File Output Units Metric Number of years to si	US Customary	Uesign data within this s	innuauur /) res			
Current number of Output Options Output File Output Units Metric Number of years to si Output Generation	US Customary	Uesign data within this s				
Current number of Output Options Output File Output Units Metric Number of years to si Output Generation IV Daily Output	US Customary US Customary US Customary US Customary	vesign data within tris s	Summary Output	(always generated)		
Current number of Output Options Output File Output Units Metric Number of years to si Output Generation I Daily Output	Vegeauch of Sofi and changes: none Vis Customary imulate (Max. 0) 1 V Monthly Output	Ussign cata within this s	Summary Output	(always generated)		
Current number of Output Options Output File Output Units Mumber of years to si Output Generation I Daily Output	wige regenator to Soli all changes: none we US Customary mulate (Max. 0) 1 Wonthly Output	Vesign cata within this s	Summary Output Check	(always generated)		
Current number of Output Options Output File Output Lints Metric Number of years to si Output Generation I Daily Output	Generation of Soli all changes: none (e) US Customary (mulate (Max. 0)) 1 [7] Monthly Output	Vesign cata within the s	Summary Output	(always generated)		
Current number of Output Options Output File Output Units Metric Number of years to si Output Generation Daily Output	Werken and the solution of solution of the solution of th	Useign cata within the s Image: Save Image: S	Summary Output Check	(always generated)		

Figure 2-4. Simulation Control Input Dialog Screen

3.0 Proposed Cover System Design

The HELP model is used at SRS to simulate the expected long-term hydraulic performance of proposed waste cover system designs before they are installed. This report focuses on the proposed design of the final cover system for the SRS E-Area LLWF. Currently, E-Area comprises a system of slit and engineered trenches and other specially designed vaults and casks containing solid waste materials with various levels of radioactivity. To support completion of the planned 2018 E-Area Performance Assessment, an updated hydrologic model of the proposed final cover system using the HELP software is required to aid in estimating peak releases of radionuclides to the environment.

The proposed E-Area cover or cap is an engineered system designed to minimize the quantity (mass) of rainwater percolating vertically downward through the cap layers to the subsurface waste disposal zone where the water interacts with the various waste forms, and eventually enters the vadose zone and water table aquifer. Notable cover system design features that help minimize passage of water into the waste zone include the lateral drainage and geomembrane (barrier) layers. The lateral drainage layer removes a large fraction of the rainfall that does not evaporate or transpire at/near the surface of the cover system (upper ~24 inches) and transports it horizontally to the edges of the cap for collection.

A high-density polyethylene (HDPE) geomembrane, in combination with a geosynthetic clay liner (GCL) immediately below, functions as the cover system's final barrier layer. The geomembrane possesses an extremely low saturated hydraulic conductivity (K_{sat}) on the order of 10⁻¹³ cm/sec, meaning that the geomembrane allows minimal water to pass through it when properly installed and free of defects.

The proposed E-Area cover system design contains a total of nine soil/material layers at the time of installation (time zero). The layers are as follows (see Figure 3-1):

- Layer 1 Topsoil
- Layer 2 Upper Backfill
- Layer 3 Erosion Barrier
- Layer 4 Middle Backfill
- Layer 5 Lateral Drainage Layer
- Layer 6 Combined Geomembrane
- Layer 7 Geotextile Clay Liner
- Layer 8 Upper Foundation Layer
- Layer 9 Lower Foundation Layer

Figure 3-1. Proposed E-Area Waste Cover System Schematic

4.0 Sensitivity Analysis using HELP (Summer Intern Project)

The work described in this technical report was performed by Jacoby Shipmon, an undergraduate intern from North Carolina A&T, during summer 2017. The objective of the summer intern project was to assess the performance of the proposed E-Area LLWF cover system design as required for the completion of the planned 2018 E-Area Performance Assessment (PA). The purpose of the PA is to ensure with reasonable certainty that Department of Energy (DOE) performance objectives will be met so as to minimize the release and transport of radionuclides in the environment. To accomplish this task, a sensitivity analysis was performed on the factors that influence the infiltration rate into and through the proposed cover system. A sensitivity analysis is a study of how the uncertainty in the output of a mathematical model or system can be attributed to the uncertainty in its inputs, and is performed to gain an understanding of the relationship between input and output variables in a model (Saltelli et al. 2002).

Infiltration or percolation is the rate at which water moves through the pores of soil or rock (Richards et al. 1952). Understanding and quantifying this rate is important because it directly affects how much water interacts with the waste forms disposed under the final cover and thus the aqueous concentration of radionuclides released to groundwater. An objective of the PA is to quantify the magnitude and timing of the peak concentration of each radionuclide entering the vadose zone. In this sensitivity analysis, parameters that were varied included percent slope and slope length of the cap, Soil Conservation Service (SCS) curve number, number of geomembrane defects, saturated hydraulic conductivity of various cap layers, leaf area index, precipitation rate, and temperature. The SCS curve number is a function of soil texture and vegetation type for the surface soil layer, and directly impacts surface runoff. Leaf area index influences the calculated evapotranspiration rate from the upper approximately 24 inches of soil (i.e., the evapotranspiration zone).

The methodology employed in this sensitivity analysis consisted of independently varying individual climate, soil property, and cover design parameters, while holding all others constant, to quantify the effect of these parameter changes on the infiltration rate through the geomembrane/GCL layers. To accomplish this task, the following general approach was taken based on past HELP simulation studies:

• First, a set of four weather input files (i.e., .d4, .d7, .d11, and .d13) was generated by the HELP v3.95D weather generator for a 100-year time period using default climate data for Augusta, GA modified with SRS-specific monthly average precipitation and temperature data.

- Second, all soil property and design input parameters for the cover system age of interest (0 to 10,000 years) were entered into the model using the appropriate data input screens (see Figure 2-1 through Figure 2-3 and Appendix A).
- Third, the model was executed for the desired cover age, generating 100 years of hydrologic performance data for the specified cover system.
- Fourth, the output data was exported to Microsoft Excel for post processing and analysis.

HELP model input parameter data for the ten base-case simulations (ST00.D10, ST02.D10, ST04.D10, ST06.D10, ST07.D10, ST08.D10, ST09.D10, ST10.D10, ST11.D10, and ST13.D10) are included in Appendix B. A large number of the model input parameters (e.g., porosity, field capacity, wilting point, initial moisture, saturated hydraulic conductivity for specific cap layers, etc.) were unchanged from their base-case values because prescreening simulations showed that the infiltration rates were relatively insensitive to these parameters.

5.0 Improvements or Changes in Methods

To improve efficiency in execution and accuracy of the results, several additional steps were taken for this sensitivity analysis. A significant change compared to past HELP simulation studies was the use of the recently purchased HELP v3.95D software. The updated GUI in HELP v3.95D greatly improves the ease with which input files can be created and edited. A second method improvement was the decision to update past PA weather data files with the most current SRS-specific monthly average precipitation and temperature data provided by the Atmospheric Technologies Center at SRS. In addition, useful tools, such as WinMerge and Notepad++, were used to facilitate post processing of input and output files.

To take advantage of HELP v3.95D's multiple-case simulation capability, however, the most significant change in methodology was the decision to transform the 100-year weather data files into files containing ten identical stacked ten-year data sets having the same monthly averages as the 100-year weather data input files (10 years weather data x 10 cases = 100 years total simulation time allowed by software). This change enabled an entire S-shaped cover-system degradation curve (infiltration rate vs. time) to be generated with a single execution of the HELP v3.95D model. For purposes of the sensitivity analysis, the loss in accuracy in using 10-year weather data sets instead of 100-year data sets was small compared to the gain in productivity (i.e., substantially decreased time to generate results for each sensitivity case).

By combining all of the aforementioned methods and improvements, a detailed sensitivity analysis of infiltration into the E-Area LLWF cover system was completed efficiently and effectively. Results are summarized below by sensitivity parameter.

6.0 Results

6.1 Percent Slope

Percent slope refers to the nominal percentage slope of the proposed cover. For example, 3% slope signifies 3 feet of vertical rise for every 100 feet of horizontal run (3 feet/100 feet x 100% = 3%). Percent slope will influence infiltration rate by impacting surface runoff and lateral drainage rate. Table 6-1, Figure 6-1, and Figure 6-2 present the results of the sensitivity analysis for percent slope at a fixed slope length of 400 feet. As shown in the figures below, a decrease in percent slope from the 3% base case to 2% results in an upward shift in the average annual infiltration rate vs. time curve. An increase in percent slope (5%), on the other hand, leads to a decrease in the annual average infiltration rate into the cap compared to the base case. Table 6-1 shows the percentage change in annual average infiltration rate relative to the base case as a function of time.

	Annual Av	erage Infiltr	ration Rate (inch	es per year)	
Time (years)	3% Slope (Base Case)	2% Slope	% Change (vs. base case)	5% Slope	% Change (vs. base case)
0	0.000154	0.000286	86	0.0000823	-47
180	0.00560	0.0106	89	0.00471	-16
300	0.0146	0.0368	153	0.0161^{*}	10*
380	0.205	0.520	153	0.0498	-76
560	1.10	1.79	63	0.501	-54
1000	3.85	5.21	35	2.46	-36
1800	8.91	9.86	11	7.48	-16
2623	11.1	11.5	3.9	10.3	-6.9
3200	11.2	11.6	3.6	10.5	-6.2
10000	11.6	11.9	3.2	11.0	-4.5

 Table 6-1. Change in Infiltration Rate with Percent Slope at 400-Foot Slope Length

In all cases but one, infiltration rate decreases with increasing % slope as expected. This single case at 300 years and 5% slope appears to be an anomaly and cannot be explained. At 300 years, the geomembrane and GCL layers are combined into a single layer to account for pine tree root penetration.

Figure 6-1. Impact of Percent Slope on Annual Avg. Infiltration Rate (0-10,000 Years)

Figure 6-2. Impact of Percent Slope on Annual Avg. Infiltration Rate (0-400 Years)

6.2 SCS Curve Number

The SCS curve number (CN) is calculated internally within the HELP model and accounts for the effect of surface soil texture and vegetation type on surface runoff. A higher CN is indicative of increased runoff and, hence, a decrease in the infiltration rate. As shown in Figure 6-3 below for a slope length of 400 feet, the SCS CN has a only minor impact on annual average infiltration rate because surface runoff represents only a small fraction (1 to 5% of average annual rainfall) of the total water balance for SRS cap designs. Table 6-2 shows the percentage change in annual average infiltration rate relative to the base case as a function of time.

Figure 6-3. Impact of SCS Curve Number on Annual Avg. Infiltration Rate (0-10,000 Years)

	Annual Ave	erage Infiltra	ation Rate (inche	es per year)	
Time (years)	CN = 50 (Base Case)	CN = 30	% Change (vs. base case)	CN = 70	% Change (vs. base case)
0	0.000150	0.000150	0.0	0.000120	-20
180	0.00560	0.00559	-0.18	0.00543	-2.9
300	0.0146	0.0145	-0.69	0.0144	-0.42
380	0.205	0.205	0.0049	0.199	-3.0
560	1.10	1.10	0.16	1.07	-2.7
1000	3.85	3.85	0.099	3.79	-1.5
1800	8.91	8.92	0.089	8.85	-0.74
2623	11.1	11.1	0.038	11.1	-0.44
3200	11.2	11.2	0.052	11.2	-0.49
10000	11.6	11.6	0.082	11.5	-0.71

Table 6-2. Change in Infiltration Rate with SCS Curve Number at 400-Foot Slope Length

6.3 Geomembrane Liner Defect Number

The geomembrane liner defect number equals the total assumed number of 1-cm² holes or defects in the geomembrane barrier layer. The geomembrane liner for the E-Area cover system is implemented in the HELP model as a separate 60-mil thick HDPE layer that allows minimal water to percolate through it in the absence of defects. In the sensitivity analysis, the effect of time on these layers is tested. As time progresses in the HELP model of the E-Area cover system, the geomembrane layer is assumed to "age" and develop holes or defects due to both physical and chemical degradation mechanisms. As shown in Figure 6-4 and Figure 6-5, doubling the geomembrane defect number relative to the base case results in a significant increase in the annual average infiltration rate, especially during the 300 to 1,000-year time period. Conversely, a 2X decrease in the defect number leads to a significant drop in the average annual infiltration rate over the same time period. Table 6-3 summarizes the percentage change in annual average infiltration of time.

Table C-1 in Appendix C provides a summary of the geomembrane defect numbers assumed in the base case and two sensitivity analysis simulations.

Figure 6-4. Impact of Geomembrane Defect Number on Annual Avg. Infiltration Rate (0-10,000 Years)

Figure 6-5. Impact of Geomembrane Defect Number on Annual Avg. Infiltration Rate (0-400 Years)

	Annual	Average Infiltra	ation Rate (inche	s per year)	
Time (years)	Base Case	+0.5X Defect Number	% Change (vs. base case)	+2X Defect Number	% Change (vs. base case)
0	0.000150	0.000150	0.0	0.000150	0.0
180	0.00560	0.00560	0.0	0.00560	0.0
300	300 0.0146		8.7	0.463	2800
380	380 0.205		-83	1.34	3300
560	1.10	0.105	-90	2.57	1400
1000	3.85	1.78	-54	6.02	120
1800	8.91	7.36	-17	9.90	13
2623	11.1	10.3	-6.9	11.4	2.3
3200	11.2	10.7	-5.0	11.4	1.9
10000	11.6	11.5	-0.82	11.6	0.37

Table 6-3. Change in Infiltration Rate with Geomembrane Defect Number at 400-Foot SlopeLength

6.4 Saturated Hydraulic Conductivity

6.4.1 Lateral Drainage Layer

Saturated hydraulic conductivity (K_{sat}) is a measure of a saturated soil column's ability to transmit water when subjected to a hydraulic gradient and has units of length per unit of time. As K_{sat} increases, so too does the mass flux of water through the soil or barrier material. In this step of the sensitivity analysis, K_{sat} values for the lateral drainage layer (LDL) were varied above and below the base-case values at each time step (0 to 10,000 years). As shown in Figure 6-6 and Figure 6-7, K_{sat} for the LDL has a strong negative correlation with annual average infiltration rate. The results for the LDL are particularly interesting when considering the onset time of steep increases in the infiltration rate. As seen in Figure 6-6 and Figure 6-7, the infiltration rate curves increase sharply from their baseline low values at much different times. For example, the annual average infiltration rate increases sharply almost immediately when K_{sat} equals 1/10 of the base-case value; however, it takes more than 1,000 years when K_{sat} equals 10X the base-case value. Table 6-4 summarizes the percentage change in annual average infiltration rate relative to the base case as a function of time.

Table C-3 in Appendix C reports K_{sat} values used in the base case and four sensitivity cases for the LDL.

Figure 6-6. Impact of K_{sat} for LDL on Annual Avg. Infiltration Rate (0-10,000 Years)

Figure 6-7. Impact of K_{sat} for LDL on Annual Avg. Infiltration Rate (0-400 Years)

			Annual Ave	erage Infiltrati	on Rate (inche	es per year)			
Time (years)	LDL K _{sat} (Base Case)	LDL K _{sat} (-2X)	% Change (vs. base case)	LDL K _{sat} (-10X)	% Change (vs. base case)	LDL K _{sat} (+2X)	% Change (vs. base case)	LDL K _{sat} (+10X)	% Change (vs. base case)
0	0.000150	0.000530	250	0.00290	1800	0.0000600	-60	0.000	-100
180	0.00560	0.0137	140	1.51	27000	0.00471	-16	0.000670	-100
300	0.0146	0.142	880	2.79	19000	0.0144	-1.2	0.00513	-100
380	0.205	0.934	350	6.33	3000	0.0332 -84		0.0167	-100
560	1.10	2.54	130	8.43	670	0.369	-66	0.0211	-100
1000	3.85	6.32	64	10.5	170	2.05	-47	0.234	-98
1800	8.91	10.5	17	11.9	33	6.91	-22	2.28	-81
2623	11.1	11.7	5.5	12.1	9.0	10.1	-9.6	6.05	-50
3200	11.2	11.9	5.5	12.2	8.6	10.3	-8.5	6.66	-45
10000	11.6	12.1	4.7	12.4	7.0	10.9	-6.1	8.13	-34

 Table 6-4. Change in Infiltration Rate with K_{sat} for LDL at 400-Foot Slope Length

6.4.2 Upper Foundation Layer

The saturated hydraulic conductivity of the upper foundation layer (UFL) was adjusted 2X and 10X above and below the base-case value at each time step (0 to 10,000 years). The UFL sits below the geomembrane/GCL layers and is identified in Figure 3-1 as the top lift-blended soil-bentonite layer. Figure 6-8 and Figure 6-9 indicate that K_{sat} has a strong positive correlation with annual average infiltration rate. Interestingly, if K_{sat} for the UFL drops 10X below the base-case value, the annual average infiltration rate never exceeds 1.3 inches per year; however, a +10X increase in K_{sat} increases the annual average infiltration rate substantially to a maximum of more than 15 inches per year. Table 6-5 summarizes the percentage change in annual average infiltration rate relative to the base case as a function of time.

Figure 6-8. Impact of K_{sat} for UFL on Annual Avg. Infiltration Rate (0-10,000 Years)

Figure 6-9. Impact of K_{sat} for UFL on Annual Avg. Infiltration Rate (0-400 Years)

6.5 Leaf Area Index

Leaf Area Index (LAI) is an input parameter tied to surface vegetation type and it influences the evapotranspiration rate. For bare ground, LAI is equal to zero; for ground covered with a good stand of grass, LAI is 3.5; for a coniferous forest, LAI has a value of 20. Figure 6-10 and Figure 6-11 show that infiltration rate is negatively correlated with LAI, although the effect on infiltration rate appears to be less significant when LAI > 3.5. A low value for LAI results in higher infiltration rates due to a decrease in the predicted evapotranspiration rates. Lower sensitivity of infiltration rate to LAI when LAI is greater than 3.5 is an artifact of the original HELP source code, which was developed for bare ground and grasses only (i.e., LAI values 0 to 5). The HELP v3.95D User's Manual states that the model underestimates evapotranspiration rates when LAI is greater than 5.0 (Berger 2012). Table 6-6 summarizes the percentage change in annual average infiltration rate relative to the base case as a function of time.

	Annual Average Infiltration Rate (inches per year)													
Time (years)	UFL K _{sat} (Base Case)	UFL K _{sat} (-2X)	% Change (vs. base case)	UFL K _{sat} (-10X)	% Change (vs. base case)	UFL K _{sat} (+2X)	% Change (vs. base case)	UFL K _{sat} (+10X)	% Change (vs. base case)					
0	0.000150	0.000150	0.0	0.000150	0.0	0.000150	0.0	0.000150	0.0					
180	0.00560	0.00233	-58	0.000150	-97	0.0107	91	0.0119	110					
300	0.0146	0.0164	12	0.000870	-94	0.0260	79	0.527	3500					
380	0.205	0.0544	-74	0.0148	-93	0.564	170	2.46	1100					
560	1.10	0.520	-53	0.0306	-97 1.96		78	5.47	400					
1000	3.85	2.32	-40	0.443	-89	5.82	51	10.7	180					
1800	8.91	5.62	-37	1.15	-87	11.7	31	14.4	62					
2623	11.1	6.21	-44	1.24	-89	14.1	27	15.3	38					
3200	11.2	6.21	-45	1.24	-89	14.1	26	15.3	36					
10000	11.6	6.21	-46	1.24	-89	14.6	27	15.5	34					

 Table 6-5. Change in Infiltration Rate with K_{sat} for UFL at 400-Foot Slope Length

Figure 6-10. Impact of Leaf Area Index on Annual Avg. Infiltration Rate (0-10,000 Years)

Figure 6-11. Impact of Leaf Area Index on Annual Avg. Infiltration Rate (0-400 Years)

	Annual Average Infiltration Rate (inches per year)											
Time (years)	LAI = 3.5 (Base Case)	LAI = 0	% Change (vs. base case)	LAI = 20	% Change (vs. base case)							
0	0.000150	0.000230	53	0.000140	-6.7							
180	0.00560 0.00842		50	0.00565	0.89							
300	300 0.0146 0.0213		46	0.0144	-1.2							
380	380 0.205		120	0.187	-8.8							
560	1.10	1.84	68	1.05	-4.2							
1000	3.85	6.37	65	3.63	-5.8							
1800	8.91	11.8	33	8.49	-4.8							
2623	11.1	12.4	12	10.5	-5.4							
3200	11.2	12.4	11	10.7	-4.9							
10000	11.6	12.4	7.4	11.1	-4.2							

Table 6-6. Change in Infiltration Rate with Leaf Area Index at 400-Foot Slope Length

6.6 Slope Length

Slope Length is an input parameter related to the design of the engineered cover system. The length of the sloped cover is known to affect surface runoff and lateral drainage rates. Figure 6-12 and Figure 6-13 show a positive relationship between slope length and the annual average infiltration rate. At a fixed slope percentage (e.g., 3% for the base case), a longer slope length provides more time for the infiltrating precipitation to percolate vertically downward before draining horizontally to the edges of the cover system via surface runoff and lateral drainage. Table 6-7 summarizes the percentage change in annual average infiltration rate relative to the base case as a function of time.

Figure 6-12. Impact of Slope Length on Annual Avg. Infiltration Rate (0-10,000 Years)

Figure 6-13. Impact of Slope Length on Annual Avg. Infiltration Rate (0-400 Years)

	Annual	Average Infiltrat	ion Rate (inches	per year)	
Time (years)	400-Foot Slope (Base Case)	150-Foot Slope	% Change (vs. base case)	600-Foot Slope	% Change (vs. base case)
0	0.000150	0.0000415	-73	0.000300	93
180	0.00560	0.00345	-38	0.0108	92
300	0.0146	0.0134	-7.9	0.0409	180
380	0.205	0.0244	-88	0.558	170
560	1.10	0.227	-79	1.84	68
1000	3.85	1.49	-61	5.29	37
1800	8.91	5.84	-34	9.93	11
2623	11.1	9.37	-16	11.6	4.2
3200	11.2	9.72	-14	11.7	4.2
10000	11.6	10.5	-9.5	12.0	3.6

 Table 6-7. Change in Infiltration Rate with Slope Length at 3% Slope

6.7 Precipitation Rate

Figure 6-14 and Figure 6-15 display the impact of total precipitation rate on the annual average infiltration rate through the proposed E-Area cover system. The graphs highlight that more precipitation leads to a greater infiltration rate through the geomembrane/GCL barrier layers. Conversely, less precipitation results in a lower annual average infiltration rate. For example, a decrease in total precipitation rate equivalent to -0.5σ shifts the annual average infiltration rate curve downward by more than 40% (11.2 inches per year to 6.4 inches per year at 10,000 years). The effect of precipitation rate on infiltration rate is more significant during the first 1000 years when the infiltration rates are very low and then increase sharply at 300 years due to barrier layer degradation. Table 6-8 summarizes the percentage change in annual average infiltration rate relative to the base case as a function of time.

Appendix C explains how the daily precipitation data were generated for the sensitivity cases. Table C-4 and Table C-5 summarize the mean monthly total precipitation data used by the HELP v3.95D synthetic weather generator to produce a 10-year data set of daily precipitation data for the base case and four sensitivity cases (-0.5σ , -1σ , $+0.5\sigma$, and $+1\sigma$).

Figure 6-14. Impact of Precipitation Rate on Annual Avg. Infiltration Rate (0-10,000 Years)

Figure 6-15. Impact of Precipitation Rate on Annual Avg. Infiltration Rate (0-400 Years)

	Annual Average Infiltration Rate (inches per year)													
Time (years)	Base Case	Minus 0.5σ	% Change (vs. base case)	Minus 1.0σ	% Change (vs. base case)	Plus 0.5σ	% change (from basis)	Plus 1.0σ	% Change (vs. base case)					
0	0.000190	0.0000600	-68	0.0000100	0000100 -95 0.000490 160		160	0.00117	520					
180	0.0217	0.00523	-76	0.000650	.000650 -97 0.0826 280 0.		0.233	980						
300	0.130	0.0471	-64	0.0105	0.0105 -92 0.332 155		0.649	400						
380	0.436	0.155	-64	0.0302	0.0302 -93 1.11 155		2.08	380						
560	1.33	0.461	-65	0.0866	-93	2.86	116	4.65	250					
1000	4.35	1.72	-60	0.336	-92	7.31	68	9.53	120					
1800	9.34	4.60	-51	0.968	-87	11.5	24	12.1	30					
2623	10.9	6.07	-44	1.35	-88	12.1	11	12.3	13					
3200	11.0	6.14	-44	1.37	-87	12.1	10	12.3	12					
10000	11.2	6.40	-43	1.48	-87	12.2	8.9	12.3	9.8					

 Table 6-8. Change in Infiltration Rate with Precipitation Rate at 400-Foot Slope Length

6.8 <u>Temperature</u>

The sensitivity of annual average infiltration rate to temperature was also considered. Temperature will largely affect evapotranspiration rates. Figure 6-16 and Figure 6-17 show that decreasing/increasing the SRS mean monthly average temperatures obtained from the Atmospheric Technologies Center by minus/plus 1.0 sigma has only a small effect on the predicted annual average infiltration rate for the proposed E-Area cover system. Table 6-9 summarizes the percentage change in annual average infiltration rate relative to the base case as a function of time. The infiltration rate is much more sensitive to precipitation rate than temperature.

Appendix C explains how the daily temperature data were generated for the sensitivity cases. Table C-6 summarizes the mean monthly average temperature data used by the HELP v3.95D synthetic weather generator to produce a 10-year data set of daily temperature data for the base case and two sensitivity cases (-1σ and $+1\sigma$).

	Annual A	verage Infiltra	ation Rate (inche	s per year)	
Time (years)	Base Case	Minus 1.0 σ	% Change (vs. base case)	Plus 1.0σ	% Change (vs. base case)
0	0.000190	0.000200	0.000200 5.3		-11
180	0.0217	0.0240	0.0240 11		-12
300	0.130	0.145	11	0.119	-8.4
380	0.436	0.491	13	0.398	-8.7
560	1.33	1.47	11	1.21	-8.7
1000	4.35	4.70	8.0	4.08	-6.3
1800	9.34	9.72	4.1	9.00	-3.6
2623	10.9	11.2	2.4	10.6	-2.3
3200	11.0	11.2	2.3	10.7	-2.3
10000	11.2	11.4	2.0	11.0	-2.0

 Table 6-9. Change in Infiltration Rate with Temperature at 400-Foot Slope Length

Figure 6-16. Impact of Temperature on Annual Avg. Infiltration Rate (0-10,000 Years)

Figure 6-17. Impact of Temperature on Annual Avg. Infiltration Rate (0-400 Years)

7.0 Conclusions

Version 3.95D of the HELP model was used to complete a detailed sensitivity analysis of key design and degradation factors that will affect performance of the proposed E-Area LLWF cover system for a period of 10,000 years. The results of the sensitivity analysis highlight that precipitation rate, surface vegetation (as influenced in the model by leaf area index), saturated hydraulic conductivity of the lateral drainage and upper foundation layers, and geomembrane defect number will be dominant factors in influencing infiltration rate through the cover system into the waste zone. This work and its results provide a framework for quantifying uncertainty in the radionuclide transport and dose models for the 2018 E-Area Performance Assessment. Future work will focus on the development of a non-linear regression model for infiltration rate using Minitab 17[®] to facilitate execution of probabilistic simulations in the GoldSim[®] overall system model for E-Area.

8.0 References

Berger, K. (2000) Validation of the Hydrologic Evaluation of Landfill Performance (HELP) Model for Simulating the Water Balance of Cover Systems. *Environmental Geology* **39**(11), 1261-1274.

Berger, K. (2012) The Hydrologic Evaluation of Landfill Performance (HELP) Model Engineering Documentation for HELP 3.95 D – Enhancements Beyond HELP 3.07.

Berger, K. (2015) On the current state of Hydrologic Evaluation of Landfill Performance (HELP) Model. *Waste Management* **38**, 201-209.

Richards, L. A. (1952) Report on the Subcommittee on Permeability and Infiltration. Committee on Terminology. *Soil Science Society of America Proceedings* **16**, 85-88.

Saltelli, A. (2002) Sensitivity Analysis for Importance Assessment. Risk Analysis 22(3), 1-12.

Schroeder, P. R., Dozier, T.S., Zappi, P. A., McEnroe, B. M., Sjostrom, J. W., and Peyton, R. L. (1994) The Hydrologic Evaluation of Landfill Performance (HELP) Model: Engineering Documentation for Version 3. EPA/600/R-94/168b. U.S. Environmental Protection Agency Office of Research and Development, Washington, DC.

Schroeder, P. R., and Peyton, R. L. (1987) Verification of the Hydrologic Evaluation of Landfill Performance (HELP) Model Using Field Data. EPA/600/2-87/050. Environmental Protection Agency, Cincinnati, Ohio.

Intentionally Blank

Location			Unit	
City		Select	Metric	O US Customary
State			U	nit: inch
Generation Parameters				
Number of years to generate		1 - 100)		
	🔽 Use default i	normal mean monthly Pr	ecipitation values fo	r generation
Precipitation output file				Set
Monthly Precipitation Values f	or Data Generatio	'n		
Month	User	Default		
1 January				
2 February				
3 March				
4 April				
5 May				
6 June				
7 July				
8 August				
9 September				
10 October				
11 November				
12 December				
Yearly sum				

Appendix A. HELP v3.95D GUI for Input Parameters

Figure A-1. GUI for Synthetic Precipitation Data Input

City			Select	Unit	letric	IIS Customany
State				0.	Un	it: ly
Latitude						
Generation Parameters						
Precipitation data file						Select
Latitude (-90° - 90°)						
lumber of years to generate		(1 - ?)				
Solar radiation output file						Set
	-	-				

Figure A-2. GUI for Synthetic Solar Radiation Data Input

Location			Unit	
City		Select	Metric	US Customary
State			Ur	iit: °F
Generation Parameters				
Precipitation data file				Select
Number of years to generate	(1	1 - ?)		
	Use default n	ormal mean monthly Te	mperature values for	generation
Temperature output file				Set
Monthly Temperature Values	or Data Generatio	n		
Month	User	Default		
1 (20020)	[]]			
r vandary				
2 February				
2 February 3 March				
2 February 3 March 4 April				
2 February 3 March 4 April 5 May				
2 February 3 March 4 April 5 May 6 June				
2 February 3 March 4 April 5 May 6 June 7 July				
2 February 3 March 4 April 5 May 6 June 7 July 8 August				
2 February 3 March 4 April 5 May 6 June 7 July 8 August 9 September				
2 February 2 February 3 March 4 April 5 May 6 June 7 July 8 August 9 September 10 October				
2 February 2 February 3 March 4 April 5 May 6 June 7 July 8 August 9 September 10 October 11 November				
2 February 2 February 3 March 4 April 5 May 6 June 7 July 8 August 9 September 10 October 11 November 12 December				
2 February 2 February 3 March 4 April 5 May 6 June 7 July 8 August 9 September 10 October 11 November 12 December Yearly average				

Figure A-3. GUI for Synthetic Temperature Data Input

Units	_			
Metric	0	US Customary		
ATTENTION	N: No automat	ic unit conversio	on of input data if switche	ed!
Location				
City				
State			Selec	rt
Latitude	(neg	ative for souther	n hemisphere)	
Vegetation and Ev	aporative Zon	e	Growing Season (Julia	n Date)
Evaporative zon	e depth	inch	Start day	
Maximum leaf ar	ea index		End day	
Average Wind Spe	eed			
Yearly a	average	miles/h		
Average Relative	Humidity			
In first	t quarter	%		
In second	quarter	%		
In third	quarter	%		
	quarter	%		

Figure A-4. GUI for Evapotranspiration Parameters

Appendix B. HELP v3.95D Model Input Parameters for Base Case Simulations

Input P	arameter	(HELP Model	Query)			Gen	eric Input	Par	ameter V	alue	
Landfil	l area =	·					0.26	586 acres				
Percent	of area v	where runoff is	possit	le =			100	%				
Do you	want to s	specify initial 1	noistu	e sto	rage?	(Y/N)	Y					
Amoun	t of wate	r or snow on su	irface	=			0 in	ches				
CN Inp	ut Param	eter (HELP M	odel Q	uery))		CN	Input Para	me	ter Value	e	
Slope =							3 %					
Slope le	ength =						400	ft				
Soil Te	xture =						4 (HELP model default soil texture)					
Vegetat	tion =						4 (i.e., a good stand of grass)					
HELP N	Model Co	mputed Curve	Numb	er =	50							
Layer			Layer	Nun	nber		Layer Type					
Topsoil	-	1						1 (vertic	al p	ercolatic	on lay	er)
Upper l	Backfill		2					1 (vertic	al p	ercolatio	n lay	er)
Erosion	Barrier		3					1 (vertic	al p	ercolatio	n lay	er)
Middle	Backfill		4					1 (vertic	al p	ercolatio	n lay	er)
Lateral	ateral Drainage Layer 5							2 (lateral	l dra	ainage la	yer)	
HDPE	IDPE Geomembrane 6							4 (geome	emt	orane line	er)	
GCL	iCL 7						3 (barrie	r so	il liner)			
Founda	Foundation Layer (1E-06) 8						1 (vertic	al p	ercolatio	on lay	er)	
Founda	oundation Layer (1E-03)9					1	1 (vertical percolation layer)					
Layer	Layer	Layer	Soil Total			l	Fiel	d	W	ilting		Initial
#	Туре	Thickness	Tex	ure	Poro	sity	Cap	acity	Po	oint		Moisture ²
		(in)	No. (Vol/Vol)				(Vo	l/Vol)	(V	'ol/Vol)	1	(Vol/Vol)
1	1	6			0.396	5	0.10)9	0.0	047	(0.109
2	1	30			0.35		0.25	52 0.).181		0.252
3	1	12			0.15		0.1	0.1		0.07		0.1
4	1	12			0.35	-	0.25	52	0.181			0.252
5	2	12			0.41	/	0.04	15	0.018		(0.045
6	4	0.06			0.75		0.7	17				0.7.47
/	3	0.2			0.75		0.74	+/	0.4	4		0.747
8	1	12			0.35	7	0.23	02 21	0.	181		0.252
9	l				0.45	/ Duin	0.13		0.0	058 D		0.131
Layer	Layer	Sat. Hyd.			ige	Slore		Leachate		Kecirc	. 10	Subsurface
#	rype	(cm/sec)	L (4	engti H	1	(%)		(%)		Layer (#)		(in/yr)
1	1	3 1E 02	(1	U)		(/0)		(/0)		(7)		(111/ y1)
2	1	7.1E-05										
2	1	1 3F 0/										
3	1	1.5E-04										
5	2	5 0E-02	Δ	00		3						
6	1	2.0E-13				5						
7	3	5 0E-09										
8	1	1.0E-06										
9	1	1.0E-03								1		
Laver	Laver	Geomembrar	ie –	G	eomen	brane In	stal	Geomem	bra	ne	Geo	otextile
#	Type	Pinhole Dens	itv	D	efects			Placemer	nt O	uality	Tra	nsmissivity
	- , P -	(#/acre)	- 5	(#	/acre)				- ~		(cm	² /sec)
6	4	1		4				2			(2.11	
-	1	1					2					

Table B-1. HELP Model Input Data for Year 0 (ST00.D10)

Input P	arameter	(HELP Model	Qu	ery)			Gen	eric Input	Par	ameter V	/alue	
Landfil	l area =						0.26	586 acres				
Percent	of area v	where runoff is	pos	sible =			100	%				
Do you	want to	specify initial 1	nois	sture sto	orage?	(Y/N)	Y					
Amoun	t of wate	r or snow on su	ırfa	ce =			0 in	ches				
CN Inp	ut Param	eter (HELP M	odel	l Query))		CN	Input Para	me	ter Value)	
Slope =							3 %					
Slope le	ength =						400	ft				
Soil Te	xture =						4 (H	IELP mod	el d	efault so	il text	ure)
Vegetat	tion =						4 (i.	e., a good	star	nd of gra	ss)	
HELP I	Model Co	omputed Curve	Nu	mber =	50							
Layer			La	yer Nur	nber			Layer Ty	ype			
Topsoil	l		1					1 (vertic	al p	ercolatio	n laye	er)
Upper 1	Backfill		2					1 (vertic	al p	ercolatio	n laye	er)
Erosion	Barrier		3					1 (vertic	al p	ercolatio	n laye	er)
Middle	Backfill		4					1 (vertic	al p	ercolatio	n laye	er)
Lateral	Drainage	e Layer	5					2 (lateral	l dra	ainage la	yer)	
HDPE	Geomem	brane	6					4 (geom	emt	orane line	er)	
GCL			7					3 (barrie	r so	il liner)		
Founda	tion Laye	er (1E-06)	8					1 (vertic	al p	ercolatio	n laye	er)
Founda	tion Laye	er (1E-03)	9					1 (vertic	al p	ercolatio	n laye	er)
Layer	Layer	Layer	S	oil	Total	l	Fiel	d	W	ʻilting	I	nitial
#	Type	Thickness	Т	exture	Poro	sity	Cap	acity	Po	oint	N	Aoisture ²
		(in)	N	lo.	(Vol	/Vol)	(Vo	l/Vol)	(V	/ol/Vol)	(Vol/Vol)
1	1	5.91			0.396	5	0.10)9	0.	047	0	0.109
2	1	30			0.35		0.25	52	0.	181	0	0.252
3	1	12			0.15		0.1		0.	07	0).1
4	1	12			0.352	2	0.24	15	0.	175	0	0.245
5	2	12			0.414	1	0.05	52	0.	024	0	0.052
6	4	0.06										
7	3	0.2			0.75		0.74	17	0.	4	0	0.75
8	1	12			0.35	_	0.25	52	0.	181	0	0.252
9	1	72			0.45	7	0.13	31	0.	058	0	0.131
Layer	Layer	Sat. Hyd.		Draina	ige	Drain		Leachate		Recirc	. to	Subsurface
#	Туре	Conductivity		Length	1	Slope		Recirc.		Layer		Inflow
		(cm/sec)		(ft)		(%)		(%)		(#)		(1n/yr)
1	1	3.1E-03										
2	1	4.1E-05										
3	1	1.3E-04										
4	1	5.22E-05		400		2						
5	2	3.91E-02		400		3						
0	4	2.0E-13										
/	3	5.0E-08										
8	1	1.0E-00										
9 1	I I av str	1.0E-03				-1	-4-1	Casar	1	<u> </u>	C	
Layer	Layer	Geomembrai	ie	G	eomen	norane In	stal.	Geomem	bra	ne	Geot	textile
#	1 ype	(#/acra)	sity		elects			Placemer	πQ	uanty	1 ran	sinissivity
6	4	(#/acre)		(#	vacre)			2			(cm ²	/ Sec)
6	4	1		9(J			2				

 Table B-2. HELP Model Input Data for Year 180 (ST02.D10)

Input P	arameter	(HELP Model	Qu	ery)				Gen	neric	Input	Par	ameter V	/alue	
Landfil	1 area =							0.26	586 :	acres				
Percent	t of area v	where runoff is	pos	sible	= =			100	%					
Do you	want to	specify initial m	nois	sture	sto	rage?	(Y/N)	Y						
Amoun	t of wate	r or snow on su	rfac	ce =				0 in	ches	5				
CN Inp	ut Param	eter (HELP Mo	del	Que	ery)			CN	Inpu	ıt Para	met	er Value	e	
Slope =	=							3 %						
Slope 1	ength =							400	ft					
Soil Te	xture =							4 (H	IEL	P mod	el de	efault so	il tex	ture)
Vegeta	tion =							4 (i.	.e., a	good	star	nd of gra	ss)	
HELP	Model Co	omputed Curve	Nu	mber	r = .	50								
Layer				Lay	er N	Numbe	r		La	yer Ty	ype			
Topsoi	1			1					1 (vertic	al p	ercolatio	n lay	er)
Upper]	Backfill			2					1 (vertic	al p	ercolatio	n lay	er)
Erosior	n Barrier			3					1 (vertic	al p	ercolatio	n lay	er)
Middle	Backfill			4					1 (vertic	al p	ercolatio	n lay	er)
Lateral	Drainage	e Layer		5					2 (latera	l dra	ainage la	ver)	,
HDPE	Geomem	brane & GCL		6					4 (geom	emb	rane line	er)	
Founda	tion Laye	er (1E-06)		7					1 (vertic	al p	ercolatio	n lay	er)
Founda	tion Laye	er (1E-03)		8					1 (vertic	al p	ercolatio	n lay	er)
Layer	Layer	Layer	S	oil		Total		Fiel	d		Ŵ	ilting		Initial
#	Туре	Thickness	Т	extu	re	Poros	sity	Cap	acit	y	Po	oint		Moisture ²
	*1	(in)	Ν	0.		(Vol/	Vol)	(Vo	l/Vc	ol)	(V	ol/Vol)		(Vol/Vol)
1	1	5.84				0.396	5	0.10)9		0.0)47	(0.109
2	1	30				0.35		0.25	52		0.	181	(0.252
3	1	12				0.15		0.1			0.0)7	(0.1
4	1	12				0.353	3	0.24	1		0.	172	(0.24
5	2	12				0.413	3	0.05	57		0.0)27	(0.057
6	4	0.26												
7	1	12				0.35		0.25	52		0.	181	(0.252
8	1	72				0.457	7	0.13	31		0.0	058	(0.131
Layer	Layer	Sat. Hyd.		Dra	ina	ge	Drain		Le	achate		Recirc	. to	Subsurface
#	Туре	Conductivity		Len	ngth	1	Slope		Re	circ.		Layer		Inflow
		(cm/sec)		(ft)			(%)		(%)		(#)		(in/yr)
1	1	3.1E-03												
2	1	4.1E-05												
3	1	1.3E-04												
4	1	6.14E-05												
5	2	3.32E-02		400)		3							
6	4	8.7E-13												
7	1	1.0E-06												
8	1	1.0E-03												
Layer	Layer	Geomembran	e		Ge	eomen	brane In	stal.	Ge	omem	brai	ne	Geo	otextile
#	Туре	Pinhole Densi	ty		De	efects			Pla	acemer	ıt Q	uality	Tra	nsmissivity
		(#/acre)			(#	/acre)					_		(cm	² /sec)
6	4	1			17	0			2					

 Table B-3. HELP Model Input Data for Year 300 (ST04.D10)

Input P	arameter	(HELP Model	Que	ery)				Gen	neric Inpu	t Par	ameter V	/alue	
Landfil	1 area =							0.26	586 acres				
Percent	t of area v	where runoff is	pos	sible	=			100	%				
Do you	want to	specify initial m	nois	ture	stor	age? ((Y/N)	Y					
Amoun	t of wate	r or snow on su	rfac	e =				0 in	ches				
CN Inp	ut Param	eter (HELP Mo	del	Que	ry)			CN	Input Pa	rame	ter Value	e	
Slope =	=							3 %					
Slope 1	ength =							400	ft				
Soil Te	xture =							4 (H	IELP mo	del d	efault so	il text	ure)
Vegeta	tion =							4 (i.	.e., a goo	d star	nd of gra	ss)	
HELP	Model Co	omputed Curve	Nuı	mber	: = 5	50							
Layer				Laye	er N	lumbe	r		Layer 7	Гуре			
Topsoi	1			1					1 (verti	cal p	ercolatio	on laye	er)
Upper]	Backfill			2					1 (verti	cal p	ercolatio	on lay	er)
Erosior	n Barrier			3					1 (verti	cal p	ercolatio	on lay	er)
Middle	Backfill			4					1 (verti	cal p	ercolatio	on lay	er)
Lateral	Drainage	e Layer		5					2 (later	al dra	ainage la	ver)	
HDPE	Geomem	brane & GCL		6					4 (geor	nemt	orane line	er)	
Founda	tion Laye	er (1E-06)		7					1 (verti	cal p	ercolatio	n lay	er)
Founda	tion Lave	er (1E-03)		8					1 (verti	cal p	ercolatio	n lay	er)
Layer	Layer	Layer	So	oil		Total		Fiel	d	Ŵ	liting	[]	Initial
#	Type	Thickness	Τe	extur	e	Poros	sity	Cap	acity	Po	oint	1	Moisture ²
		(in)	N	0.		(Vol/	Vol)	(Vo	ol/Vol)	(V	/ol/Vol)	((Vol/Vol)
1	1	5.80				0.396	5	0.10)9	0.	047	().109
2	1	30				0.35		0.25	52	0.	181	().252
3	1	12				0.15		0.1		0.	07	().1
4	1	12				0.354	1	0.23	37	0.	169	(0.237
5	2	12				0.412	2	0.06	5	0.	03	().06
6	4	0.26											
7	1	12				0.35		0.25	52	0.	181	().252
8	1	72				0.457	7	0.13	31	0.	058	(0.131
Layer	Layer	Sat. Hyd.		Dra	inag	ge	Drain		Leachat	e	Recirc	. to	Subsurface
#	Type	Conductivity		Len	gth	-	Slope		Recirc.		Layer		Inflow
		(cm/sec)		(ft)			(%)		(%)		(#)		(in/yr)
1	1	3.1E-03											
2	1	4.1E-05											
3	1	1.3E-04											
4	1	6.84E-05											
5	2	2.98E-02		400			3						
6	4	8.7E-13											
7	1	1.0E-06											
8	1	1.0E-03											
Layer	Layer	Geomembran	e		Ge	omen	brane In	stal.	Geome	nbra	ne	Geo	textile
#	Туре	Pinhole Densi	ty		De	fects			Placem	ent Q	uality	Trar	nsmissivity
		(#/acre)	-		(#/	acre)					•	(cm	² /sec)
6	4	1			479	9			2				

 Table B-4. HELP Model Input Data for Year 380 (ST06.D10)

Input P	arameter	(HELP Model	Query	y)			Gen	eric Input	Par	ameter V	/alue	
Landfil	1 area =						0.26	586 acres				
Percent	t of area v	where runoff is	possil	ole =			100	%				
Do you	want to	specify initial m	noistu	re sto	rage?	(Y/N)	Y					
Amoun	t of wate	r or snow on su	rface	=			0 in	ches				
CN Inp	ut Param	eter (HELP Mo	del Q	uery))		CN	Input Para	amet	ter Value	e	
Slope =	=						3 %					
Slope 1	ength =						400	ft				
Soil Te	xture =						4 (H	IELP mod	el d	efault so	il text	ure)
Vegeta	tion =						4 (i.	.e., a good	star	nd of gra	ss)	
HELP	Model Co	omputed Curve	Num	ber =	50							
Layer			L	ayer l	Numbe	r		Layer T	ype			
Topsoi	1		1					1 (vertic	al p	ercolatio	on laye	er)
Upper	Backfill		2					1 (vertic	al p	ercolatio	n laye	er)
Erosion	n Barrier		3					1 (vertic	al p	ercolatio	n laye	er)
Middle	Backfill		4					1 (vertic	al p	ercolatio	n laye	er)
Lateral	Drainage	e Layer	5					2 (latera	l dra	ainage la	yer)	
HDPE	Geomem	brane & GCL	6					4 (geom	emb	orane line	er)	
Founda	tion Laye	er (1E-06)	7					1 (vertic	al p	ercolatio	n laye	er)
Founda	tion Laye	er (1E-03)	8					1 (vertic	al p	ercolatio	n laye	er)
Layer	Layer	Layer	Soil		Total	l	Fiel	d	W	ilting	Ι	nitial
#	Туре	Thickness	Tex	ture	Poros	sity	Cap	acity	Po	oint	Ν	Aoisture ²
		(in)	No.		(Vol/	/Vol)	(Vo	l/Vol)	(V	ol/Vol)	(Vol/Vol)
1	1	5.78			0.396	5	0.10)9	0.0	047	C	.109
2	1	30			0.35		0.25	52	0.	181	C	.252
3	1	12			0.15		0.1		0.0	07	C).1
4	1	12			0.356	5	0.23	3	0.	164	C	.23
5	2	12			0.409	Ð	0.06	57	0.0	036	C	0.067
6	4	0.26										
7	1	12			0.35		0.25	52	0.	181	C	.252
8	1	72			0.457	7	0.13	31	0.0	058	C	.131
Layer	Layer	Sat. Hyd.	Ι	Draina	ıge	Drain		Leachate	;	Recirc	. to	Subsurface
#	Туре	Conductivity	L	engtl	ı	Slope		Recirc.		Layer		Inflow
		(cm/sec)	(ft)		(%)		(%)		(#)		(in/yr)
1	1	3.1E-03										
2	1	4.1E-05										
3	1	1.3E-04										
4	1	8.71E-05										
5	2	2.33E-02	4	00		3						
6	4	8.7E-13										
7	1	1.0E-06										
8	1	1.0E-03										
Layer	Layer	Geomembran	e	G	eomen	nbrane In	stal.	Geomem	brai	ne	Geot	textile
#	Туре	Pinhole Densi	ty	D	efects			Placemen	nt Q	uality	Tran	smissivity
		(#/acre)		(#	/acre)				_		(cm ²	/sec)
6	4	1		11	115	-		2				

 Table B-5. HELP Model Input Data for Year 560 (ST07.D10)

Input P	arameter	(HELP Model	Que	ery)				Gen	eric Inpu	t Par	ameter V	/alue	
Landfil	1 area =							0.26	586 acres				
Percent	t of area v	where runoff is	pos	sible	=			100	%				
Do you	want to	specify initial m	nois	sture	sto	rage?	(Y/N)	Y					
Amoun	t of wate	r or snow on su	rfac	ce =				0 in	ches				
CN Inp	ut Param	eter (HELP Mo	del	Que	ery)			CN	Input Par	ame	ter Value	e	
Slope =	=							3 %					
Slope 1	ength =							400	ft				
Soil Te	xture =							4 (H	IELP mo	del d	efault so	il text	ure)
Vegeta	tion =							4 (i.	.e., a good	l star	nd of gra	ss)	
HELP	Model Co	omputed Curve	Nu	mber	r = .	50							
Layer				Lay	er N	Jumbe	r		Layer 7	уре			
Topsoi	1			1					1 (verti	cal p	ercolatio	on laye	er)
Upper]	Backfill			2					1 (verti	cal p	ercolatio	on lay	er)
Erosior	n Barrier			3					1 (verti	cal p	ercolatio	on lay	er)
Middle	Backfill			4					1 (verti	cal p	ercolatio	on lay	er)
Lateral	Drainage	e Layer		5					2 (later	al dra	ainage la	ver)	
HDPE	Geomem	brane & GCL		6					4 (geon	nemt	orane line	er)	
Founda	tion Laye	er (1E-06)		7					1 (verti	cal p	ercolatio	n lay	er)
Founda	tion Lave	er (1E-03)		8					1 (verti	cal p	ercolatio	n lay	er)
Layer	Layer	Layer	S	oil		Total	[Fiel	d	Ŵ	filting	[]	Initial
#	Type	Thickness	Т	extu	re	Poros	sity	Cap	acity	Po	oint	1	Moisture ²
		(in)	Ν	о.		(Vol/	/Vol)	(Vo	l/Vol)	(V	/ol/Vol)	((Vol/Vol)
1	1	5.72				0.396	5	0.10)9	0.	047	().109
2	1	30				0.35		0.25	52	0.	181	(0.252
3	1	12				0.15		0.1		0.	07	().1
4	1	12				0.361	l	0.21	12	0.	15	(0.212
5	2	12				0.403	3	0.08	34	0.	049	(0.084
6	4	0.26											
7	1	12				0.35		0.25	52	0.	181	().252
8	1	72				0.457	7	0.13	31	0.	058	(0.131
Layer	Layer	Sat. Hyd.		Dra	ina	ge	Drain		Leachat	e	Recirc	. to	Subsurface
#	Type	Conductivity		Len	ngth	i i	Slope		Recirc.		Layer		Inflow
		(cm/sec)		(ft)			(%)		(%)		(#)		(in/yr)
1	1	3.1E-03											
2	1	4.1E-05											
3	1	1.3E-04											
4	1	1.58E-04											
5	2	1.28E-02		400)		3						
6	4	8.7E-13											
7	1	1.0E-06											
8	1	1.0E-03											
Layer	Layer	Geomembran	e		Ge	eomen	ibrane In	stal.	Geomer	nbra	ne	Geo	textile
#	Type	Pinhole Densi	ty		De	efects			Placeme	ent Q	uality	Tra	nsmissivity
		(#/acre)	•		(#	/acre)						(cm	² /sec)
6	4	1		Ī	26	i69			2				,

Table B-6.	HELP Model Inp	ut Data for Year	1,000 (ST08.D10)
------------	----------------	------------------	------------------

Input P	arameter	(HELP Model	Qu	ery)				Gen	eric Input	t Par	ameter V	/alue	
Landfil	1 area =							0.26	586 acres				
Percent	t of area v	where runoff is	pos	sible	=			100	%				
Do you	want to	specify initial m	nois	sture	sto	rage? ((Y/N)	Y					
Amoun	t of wate	r or snow on su	rfac	ce =				0 in	ches				
CN Inp	ut Param	eter (HELP Mo	del	Que	ery)			CN	Input Par	ame	ter Value	e	
Slope =	=							3 %					
Slope 1	ength =							400	ft				
Soil Te	xture =							4 (H	IELP mod	lel d	efault so	il text	ture)
Vegeta	tion =							4 (i.	.e., a good	l star	nd of gra	ss)	
HELP	Model Co	omputed Curve	Nu	mbei	r = .	50							
Layer				Lay	er N	Jumbe	r		Layer T	ype			
Topsoi	1			1					1 (vertio	cal p	ercolatio	on laye	er)
Upper]	Backfill			2					1 (vertio	cal p	ercolatio	n lay	er)
Erosior	n Barrier			3					1 (vertio	cal p	ercolatio	on lay	er)
Middle	Backfill			4					1 (vertie	cal p	ercolatio	n lay	er)
Lateral	Drainage	e Layer		5					2 (latera	ıl dra	ainage la	yer)	·
HDPE	Geomem	brane & GCL		6					4 (geon	nemt	orane line	er)	
Founda	tion Laye	er (1E-06)		7					1 (vertie	cal p	ercolatio	on laye	er)
Founda	tion Laye	er (1E-03)		8					1 (vertie	cal p	ercolatio	on lay	er)
Layer	Layer	Layer	S	oil		Total		Fiel	d	Ŵ	<i>'ilting</i>]	Initial
#	Туре	Thickness	Т	extu	re	Poros	sity	Cap	acity	Po	oint	I	Moisture ²
	• •	(in)	N	о.		(Vol/	Vol)	(Vo	l/Vol)	(V	/ol/Vol)	((Vol/Vol)
1	1	5.62				0.396	5	0.10)9	0.0	047	(0.109
2	1	30				0.35		0.25	52	0.	181	(0.252
3	1	12				0.15		0.1		0.0	07	(0.1
4	1	12				0.371	l	0.18	31	0.	125	(0.181
5	2	12				0.392	2	0.11	16	0.0	074	(0.116
6	4	0.26											
7	1	12				0.35		0.25	52	0.	181	(0.252
8	1	72				0.457	7	0.13	31	0.0	058	(0.131
Layer	Layer	Sat. Hyd.		Dra	ina	ge	Drain		Leachate	e	Recirc	. to	Subsurface
#	Туре	Conductivity		Len	igth	1	Slope		Recirc.		Layer		Inflow
		(cm/sec)		(ft)			(%)		(%)		(#)		(in/yr)
1	1	3.1E-03											
2	1	4.1E-05											
3	1	1.3E-04											
4	1	4.62E-04											
5	2	4.3E-03		400)		3						
6	4	8.7E-13											
7	1	1.0E-06											
8	1	1.0E-03											
Layer	Layer	Geomembran	e		Ge	eomen	brane In	stal.	Geomen	nbra	ne	Geo	textile
#	Туре	Pinhole Densi	ty		De	efects			Placeme	nt Q	uality	Trar	nsmissivity
		(#/acre)			(#	/acre)				_	-	(cm	² /sec)
6	4	1			54	.96		-	2				

Input P	arameter	(HELP Model	Query)			Gen	eric Input	Para	ameter V	/alue	
Landfil	l area =					0.26	586 acres				
Percent	of area v	where runoff is j	possible	e =		100	%				
Do you	want to	specify initial m	oisture	storage?	(Y/N)	Y					
Amoun	t of wate	r or snow on su	rface =			0 in	ches				
CN Inp	ut Param	eter (HELP Mo	del Qu	ery)		CN	Input Para	amet	er Value	e	
Slope =	=					3 %					
Slope le	ength =					400	ft				
Soil Te	xture =					4 (H	IELP mod	el de	efault so	il text	ure)
Vegetat	tion =					4 (i.	e., a good	stan	d of gra	ss)	
HELP I	Model Co	omputed Curve	Numbe	r = 50							
Layer			Lay	er Numb	er		Layer T	ype			
Topsoil	l		1				1 (vertic	al pe	ercolatio	on laye	er)
Upper l	Backfill		2				1 (vertic	al pe	ercolatio	on laye	er)
Erosion	n Barrier		3				1 (vertic	al pe	ercolatio	on laye	er)
Lateral	Drainage	e Layer	4				2 (latera	l dra	inage la	yer)	
(includi	ing Midd	le Backfill)									
HDPE	Geomem	brane & GCL	5				4 (geom	emb	rane line	er)	
Founda	tion Laye	er (1E-06)	6				1 (vertic	al pe	ercolatio	on laye	er)
Founda	tion Laye	er (1E-03)	7			1	1 (vertic	al pe	ercolatio	n laye	er)
Layer	Layer	Layer	Soil	Tota	al	Fiel	d	Wi	ilting	I	nitial
#	Туре	Thickness	Textu	re Por	osity	Cap	acity	Po	int	N	Aoisture ²
		(in)	No.	(Vo	l/Vol)	(Vo	l/Vol)	(V	ol/Vol)	(Vol/Vol)
1	1	5.51		0.39	96	0.10)9	0.0)47	0	.109
2	1	30		0.35	5	0.25	52	0.1	81	0	.252
3	1	12		0.15	5	0.1		0.0)7	0	0.1
4	2	24		0.38	8	0.14	8	0.1		0	0.148
5	4	0.26									
6	1	12		0.35	5	0.25	52	0.1	81	0	.252
7	1	72		0.45	57	0.13	81	0.0)58	0	.131
Layer	Layer	Sat. Hyd.	Dra	ainage	Drain		Leachate	•	Recirc	. to	Subsurface
#	Туре	Conductivity	Lei	ngth	Slope		Recirc.		Layer		Inflow
		(cm/sec)	(ft)		(%)		(%)		(#)		(ın/yr)
1	1	3.1E-03									
2	1	4.1E-05									
3	1	1.3E-04	10		-						
4	2	1.4E-03	400)	3						
5	4	8.7E-13									
6	1	1.0E-06									
7	1	1.0E-03		2			~			a	
Layer	Layer	Geomembrane	e	Geome	mbrane In	stal.	Geomem	ibrar	ne	Geot	textile
#	Туре	Pinhole Densi	ty	Detects			Placemen	nt Q	uality	Tran	smissivity
		(#/acre)		(#/acre))					(cm ²	/sec)
6	4	1		8403			2				

	Table B-8.	HELP Model In	put Data for	Year 2.623	(ST10.D10)
--	------------	----------------------	--------------	------------	------------

Input P	arameter	(HELP Model	Query)				Gen	eric Input	Para	ameter V	/alue	
Landfil	l area =						0.26	586 acres				
Percent	of area v	where runoff is j	possibl	e =			100	%				
Do you	want to	specify initial m	oisture	e stor	age?	(Y/N)	Y					
Amoun	t of wate	r or snow on su	rface =				0 in	ches				
CN Inp	ut Param	eter (HELP Mo	del Qu	ery)			CN	Input Para	imet	er Value)	
Slope =	=						3 %					
Slope le	ength =						400	ft				
Soil Te	xture =						4 (H	IELP mod	el de	efault so	il text	ure)
Vegetat	tion =						4 (i.	e., a good	stan	d of gra	ss)	
HELP I	Model Co	omputed Curve	Numbe	r = 5	50							
Layer			Lay	ver N	lumbe	r		Layer T	ype			
Topsoil	l		1					1 (vertic	al p	ercolatio	on laye	er)
Upper l	Backfill		2					1 (vertic	al p	ercolatio	on laye	er)
Erosion	n Barrier		3					1 (vertic	al p	ercolatio	on laye	er)
Lateral	Drainage	e Layer	4					2 (latera	l dra	ainage la	yer)	
(includi	ing Midd	le Backfill)										
HDPE	Geomem	brane & GCL	5					4 (geom	emb	rane line	er)	
Founda	tion Lay	er (1E-06)	6					1 (vertic	al p	ercolatio	on laye	er)
Founda	tion Lay	er (1E-03)	7					1 (vertic	al p	ercolatio	n laye	er)
Layer	Layer	Layer	Soil		Total	l	Fiel	d	W	ilting	I	nitial
#	Туре	Thickness	Textu	ire	Poros	sity	Cap	acity	Po	int	N	Aoisture ²
		(in)	No.		(Vol/	/Vol)	(Vo	l/Vol)	(V	ol/Vol)	(Vol/Vol)
1	1	5.44			0.396	5	0.10)9	0.0)47	0	.109
2	1	30			0.35		0.25	52	0.1	181	0	.252
3	1	12			0.15		0.1		0.0)7	0	0.1
4	2	24			0.38		0.14	8	0.1	1	0	0.148
5	4	0.26										
6	1	12			0.35	_	0.25	52	0.1	181	0	0.252
7	1	72			0.457	7	0.13	81	0.0)58	0	.131
Layer	Layer	Sat. Hyd.	Dr	ainag	ge	Drain		Leachate	;	Recirc	. to	Subsurface
#	Туре	Conductivity	Le	ngth		Slope		Recirc.		Layer		Inflow
		(cm/sec)	(ft))		(%)		(%)		(#)		(ın/yr)
1	1	3.1E-03										
2	1	4.1E-05										
3	1	1.3E-04	10	0		2						
4	2	1.4E-03	40	0		3						
5	4	8.7E-13										
6	1	1.0E-06										
7	l	1.0E-03				1 1	. 1	9	1		a .	
Layer	Layer	Geomembran	e	Ge	omen	ibrane In	stal.	Geomem	ibrai	ne	Geot	textile
Ħ	Iype	Pinhole Densi	ty		rects			Placeme	nt Q	uality	I ran	smissivity
	4	(#/acre)		(#/	acre)			2			(cm ²	/sec)
6	4	1		104	442			2				

|--|

Input Parameter (HELP Model Query)				Generic Input Parameter Value								
Landfill area =				0.2686 acres								
Percent of area where runoff is possible =				100%								
Do you want to specify initial moisture storage? (Y/N)				Y								
Amoun	Amount of water or snow on surface =				0 in	ches						
CN Inp	ut Param	eter (HELP Mo	del	l Query	·)		CN	Input Para	imet	ter Value	e	
Slope =	=						3 %					
Slope l	ength =						400	ft				
Soil Te	Soil Texture =				4 (H	IELP mod	el d	efault so	il text	ure)		
Vegeta	tion =						4 (i.	e., a good	star	nd of gra	ss)	
HELP	Model Co	omputed Curve	Nu	mber =	50							
Layer				Layer	Numbe	er		Layer T	ype			
Topsoi	1			1				1 (vertic	al p	ercolatio	on laye	er)
Upper	Backfill			2				1 (vertic	al p	ercolatio	on laye	er)
Erosior	n Barrier			3				1 (vertic	al p	ercolatic	on laye	er)
Lateral	Drainage	e Layer		4				2 (latera	l dra	ainage la	yer)	
(includ	ing Midd	le Backfill)										
HDPE	Geomem	brane & GCL		5				4 (geom	emb	orane line	er)	
Founda	tion Laye	er (1E-06)		6				1 (vertical percolation layer)			er)	
Founda	tion Laye	er (1E-03)		7			1 (vertical percolation layer)		er)			
Layer	Layer	Layer	S	oil	Total	1	Fiel	d	W	ilting	Ι	nitial
#	Туре	Thickness	Т	exture	Poro	sity	Cap	acity	Po	oint	Ν	Aoisture ²
		(in)	N	lo.	(Vol/	/Vol)	(Vo	l/Vol)	(V	ol/Vol)	(Vol/Vol)
1	1	4.55			0.396	5	0.10)9	0.0	047	0	.109
2	1	30			0.35		0.25	52	0.	181	0	.252
3	1	12			0.15		0.1		0.0	07	0	0.1
4	2	24			0.38		0.14	8	0.	1	0	0.148
5	4	0.26										
6	1	12			0.35		0.25	52	0.	181	0	.252
7	1	72		[0.457	7	0.13	81	0.0	058	0	.131
Layer	Layer	Sat. Hyd.		Drain	age	Drain		Leachate		Recirc	. to	Subsurface
#	Туре	Conductivity		Lengt	h	Slope		Recirc.		Layer		Inflow
		(cm/sec)		(ft)		(%)		(%)		(#)		(in/yr)
1	1	3.1E-03										
2	1	4.1E-05										
3	1	1.3E-04				_						
4	2	1.4E-03		400		3						
5	4	8.7E-13										
6	1	1.0E-06										
7	1	1.0E-03						~			~	
Layer	Layer	Geomembran	e	0	eomen	nbrane In	stal.	Geomem	brai	ne	Geot	textile
#	Туре	Pinhole Densi	ty		Defects			Placemen	nt Q	uality	Tran	smissivity
		(#/acre)		(#/acre)						(cm ²	/sec)
6	4	1		3	4466			2				

Table B-10. HELP Model Input Data for Year 10,000 (ST13.D10)	I)
--	----

Appendix C. Ranges of Uncertainty Considered for Input Parameters

The following tables display the values of HELP model input parameters used in the sensitivity analysis simulations.

Geomembrane Defects: Values for the geomembrane defect number used in the simulations of the base case (3% slope, 400-ft slope length) were held constant at 0 and 180 years. For time >/= 300 years, the defect numbers for the base case were regressed as a function of time to arrive at a linear equation for defect number versus time. The slope of the regression equation was halved and doubled to generate the defect numbers for the 0.5X and 2X sensitivity cases, respectively, as shown in Table C-1 below.

Geomembrane Defect Number						
	Base Case	.5X	2X			
Regression Eqn. for Defects	# = 3.5337t-868.86	# = 1.7669t-868.86	# = 7.0674t-868.86			
Time (years)	# Defects	# Defects	# Defects			
0	4	4	4			
180	90	90	90			
300	170	100	1251			
380	479	110	1817			
560	1115	121	3089			
1000	2669	898	6199			
1800	5496	2312	11852			
2623	8403	3766	17669			
3200	10442	4785	21747			
10000	34466	16800	69805			

Table C-1. Geomembrane Defects vs. Time

Saturated Hydraulic Conductivity: Saturated hydraulic conductivity values for the Upper Foundation Layer (UFL) and Lateral Drainage Layer (LDL) were based on input values used for the 3% slope, 400-ft base case. Base-case values for K_{sat} were increased/decreased by +2X/-2X and +10X/-10X to arrive the four sensitivity cases summarized in Table C-2 for the UFL and Table C-3 for the LDL. For the UFL, K_{sat} does not vary with time.

Upper Foundation Layer									
Time (years)	File name	Base K _{sat} (cm/sec)	+10X K _{sat} (cm/sec)	+2X K _{sat} (cm/sec)	-10X K _{sat} (cm/sec)	-2X K _{sat} (cm/sec)			
0	ST00	1.0E-06	1.0E-05	2.0E-06	1.0E-07	5.0E-07			
180	ST02	1.0E-06	1.0E-05	2.0E-06	1.0E-07	5.0E-07			
300	ST04	1.0E-06	1.0E-05	2.0E-06	1.0E-07	5.0E-07			
380	ST06	1.0E-06	1.0E-05	2.0E-06	1.0E-07	5.0E-07			
560	ST07	1.0E-06	1.0E-05	2.0E-06	1.0E-07	5.0E-07			
1000	ST08	1.0E-06	1.0E-05	2.0E-06	1.0E-07	5.0E-07			
1800	ST09	1.0E-06	1.0E-05	2.0E-06	1.0E-07	5.0E-07			
2623	ST10	1.0E-06	1.0E-05	2.0E-06	1.0E-07	5.0E-07			
3200	ST11	1.0E-06	1.0E-05	2.0E-06	1.0E-07	5.0E-07			
10000	ST13	1.0E-06	1.0E-05	2.0E-06	1.0E-07	5.0E-07			

Table C-2. Upper Foundation Layer Saturated Hydraulic Conductivity vs. Time

Table C-3.	Lateral Drainage	Layer Saturated	Hydraulic	Conductivity vs.	Time
------------	------------------	-----------------	-----------	------------------	------

Lateral Drainage Layer									
Time (years)	File name	Base K _{sat} (cm/sec)	+10X K _{sat} (cm/sec)	+2X K _{sat} (cm/sec)	-10X K _{sat} (cm/sec)	-2X K _{sat} (cm/sec)			
0	ST00	0.05	0.5	0.1	0.005	0.025			
180	ST02	0.0391	0.391	0.0782	0.00391	0.01955			
300	ST04	0.0332	0.332	0.0664	0.00332	0.0166			
380	ST06	0.0298	0.298	0.0596	0.00298	0.0149			
560	ST07	0.0233	0.233	0.0466	0.00233	0.01165			
1000	ST08	0.0128	0.128	0.0256	0.00128	0.0064			
1800	ST09	0.0043	0.043	0.0086	0.00043	0.00215			
2623	ST10	0.0014	0.014	0.0028	0.00014	0.0007			
3200	ST11	0.0014	0.014	0.0028	0.00014	0.0007			
10000	ST13	0.0014	0.014	0.0028	0.00014	0.0007			

Precipitation: SRS monthly total precipitation data for a 53-year period (January 1964 through December 2016) provided by the SRS Atmospheric Technology Group served as the basis for the daily synthetic weather data generated by the HELP v3.95D model and subsequently used in the base case and sensitivity analysis simulations. The SRS monthly total precipitation data for the 53-year period were analyzed to generate mean monthly precipitation rates and associated standard deviations. Sensitivity cases were developed based on plus and minus 0.5 and 1.0 standard deviations away from the monthly means, and are shown in Table C-4 in rows labeled -0.5σ , -1σ , $+0.5\sigma$, and $+1\sigma$. The 12 mean monthly precipitation values (January through December) for each sensitivity case were used in the HELP model weather generator to generate daily rainfall data for the 10-year simulation time period of interest. Table C-5 provides the corresponding annual average precipitation values for each sensitivity case.

January		February		March	
Mean	4.103	Mean	4.015	Mean	4.629
Median	3.54	Median	3.875	Median	3.835
Max	9.54	Max	8.63	Max	11.32
Min	0.82	Min	0.79	Min	1.16
STD	2.177	STD	2.135	STD	2.559
-0.5σ	3.014	-0.5σ	2.947	-0.5σ	3.349
-1σ	1.926	-1σ	1.880	-1σ	2.070
+0.5σ	5.192	+0.5σ	5.083	+0.5σ	5.908
+1σ	6.280	+1σ	6.151	+1σ	7.188
April		May		June	
Mean	2.961	Mean	3.447	Mean	5.022
Median	2.445	Median	3.05	Median	4.495
Max	9.93	Max	10.91	Max	15.71
Min	0.59	Min	0.19	Min	0.26
STD					
	2.004	STD	2.374	STD	3.062
-0.5σ	2.004 1.959	STD -0.5σ	2.374 2.261	STD -0.5σ	3.062
-0.5σ -1σ	2.004 1.959 0.957	STD -0.5σ -1σ	2.374 2.261 1.074	STD -0.5σ -1σ	3.062 3.491 1.961
-0.5σ -1σ +0.5σ	2.004 1.959 0.957 3.963	STD -0.5σ -1σ +0.5σ	2.374 2.261 1.074 4.634	STD -0.5σ -1σ +0.5σ	3.062 3.491 1.961 6.553

Table C-4. Mean Monthly Precipitation Statistics for Jan. 1964 through Dec. 2016

July		August		September	
Mean	5.228	Mean	4.626	Mean	4.005
Median	4.665	Median	4.055	Median	4.155
Max	11.18	Max	13.38	Max	9.47
Min	0.77	Min	1.78	Min	0
STD	2.684	STD	2.670	STD	2.268
-0.5σ	3.887	-0.5σ	3.291	-0.5σ	2.871
-1σ	2.545	-1σ	1.956	-1σ	1.736
+0.5σ	6.570	+0.5σ	5.961	+0.5σ	5.139
+1σ	7.912	+1σ	7.296	+1σ	6.273
October		November		December	
Mean	2.749	Mean	2.713	Mean	3.605
Median	2.53	Median	2.39	Median	3.668
Max	17.56	Max	7.73	Max	8.36
Min	0	Min	0.29	Min	1.15
STD	3.352	STD	1.783	STD	1.852
-0.5σ	1.073	-0.5σ	1.822	-0.5σ	2.679
-1σ	-0.603	-1σ	0.931	-1σ	1.753
+0.5σ	4.425	+0.5σ	3.605	+0.5σ	4.531
+1σ	6.102	+1σ	4.496	+1σ	5.458

Table C-4. Mean Monthly Precipitation Statistics for Jan. 1964 through Dec. 2016

Table C-5. Annual Average Precipitation Values

Precipitation Case	Yearly Average Precipitation Value
+1σ	76.26 inches
+0.5σ	61.68 inches
Base Case	47.11 inches
-0.5σ	32.56 inches
-1σ	18.65 inches

Temperature: SRS monthly average temperature data for a 53-year period (January 1964 through December 2016) provided by the SRS Atmospheric Technology Group served as the basis for the daily synthetic weather data generated by the HELP v3.95D model and subsequently used in the base case and sensitivity analysis simulations. A monthly average temperature was calculated as follows: for each month for each of the 53 years, daily minimum and daily maximum temperatures were added and divided by two to obtain the daily average temperature; the daily average temperatures for each month of each year were then arithmetically averaged to obtain the 53 sets of monthly average temperature values provided by the SRS Atmospheric Technology Group. The monthly average temperature data for the 53-year period were further analyzed to generate mean monthly average temperatures and associated standard deviations. Sensitivity cases were developed based on plus and minus 1.0 standard deviations away from the monthly means, and are shown in Table C-6 in rows labeled -1σ and $+1\sigma$. The mean monthly average temperature data for each sensitivity case were processed through the HELP model weather generator to produce temperature data for the 10-year simulation time period of interest.

January		February		March	
Mean	46.4	Mean	49.4	Mean	57.2
Median	46.2	Median	49.3	Median	57.3
Max	59.6	Max	57.5	Max	66.1
Min	35.3	Min	41.3	Min	48.8
STD	5.0	STD	3.8	STD	4.0
-1σ	41.4	-1σ	45.6	-1σ	53.2
+1σ	51.4	+1σ	53.2	+1σ	61.2
April		May		June	
Mean					
	65.1	Mean	72.7	Mean	79.2
Median	65.1 65.0	Mean Median	72.7 72.6	Mean Median	79.2 79.3
Median Max	65.1 65.0 70.9	Mean Median Max	72.7 72.6 77.9	Mean Median Max	79.2 79.3 84
Median Max Min	65.1 65.0 70.9 58.9	Mean Median Max Min	72.7 72.6 77.9 66.8	Mean Median Max Min	79.2 79.3 84 72.9
Median Max Min STD	65.1 65.0 70.9 58.9 2.7	Mean Median Max Min STD	72.7 72.6 77.9 66.8 2.6	Mean Median Max Min STD	79.2 79.3 84 72.9 2.7
Median Max Min STD -1σ	65.1 65.0 70.9 58.9 2.7 62.5	Mean Median Max Min STD -1σ	72.7 72.6 77.9 66.8 2.6 70.1	Mean Median Max Min STD -1σ	79.2 79.3 84 72.9 2.7 76.5

Table C-6. Mean Monthly Average Temperature Statistics for Jan. 1964 through Dec. 2016

July		August		September	
Mean	81.9	Mean	80.8	Mean	75.8
Median	81.7	Median	80.8	Median	75.7
Max	86.9	Max	85.8	Max	79.6
Min	78.1	Min	74.5	Min	70.5
STD	2.1	STD	2.3	STD	2.1
-1σ	79.9	-1σ	78.5	-1σ	73.6
+1σ	84.0	+1σ	83.1	+1σ	77.9
October		November		December	
Mean	65.7	Mean	56.4	Mean	49.5
Median	65.7	Median	56.5	Median	49.2
Max	73.4	Max	65.5	Max	61.2
Min	60.1	Min	48.7	Min	40.1
STD	3.1	STD	3.7	STD	4.7
-1σ	62.6	-1σ	52.7	-1σ	44.8
+1σ	68.7	+1σ	60.1	+1σ	54.2

Table C-6. Mean Monthly Average Temperature Statistics for Jan. 1964 through Dec. 2016

Intentionally Blank

Distribution List:

timothy.brown@srnl.doe.gov michael.cercy@srnl.doe.gov alex.cozzi@srnl.doe.gov david.crowley@srnl.doe.gov David.Doolev@srnl.doe.gov a.fellinger@srnl.doe.gov samuel.fink@srnl.doe.gov ieff.griffin@srnl.doe.gov nancy.halverson@srnl.doe.gov erich.hansen@srnl.doe.gov connie.herman@srnl.doe.gov david.herman@srnl.doe.gov Elizabeth.Hoffman@srnl.doe.gov Kevin.Fox@srnl.doe.gov iohn.maver@srnl.doe.gov daniel.mccabe@srnl.doe.gov frank.pennebaker@srnl.doe.gov William.Ramsey@SRNL.DOE.gov luke.reid@srnl.doe.gov geoffrey.smoland@srnl.doe.gov michael.stone@srnl.doe.gov Boyd.Wiedenman@srnl.doe.gov bill.wilmarth@srnl.doe.gov EM File, 773-42A - Rm. 243 (1 file copy and 1 electronic copy) Records Administration (EDWS)

sebastian.aleman@srnl.doe.gov tom.butcher@srnl.doe.gov Thomas.Danielson@srnl.doe.gov kenneth.dixon@srnl.doe.gov James.Dyer@srnl.doe.gov gregory.flach@srnl.doe.gov luther.hamm@srnl.doe.gov thong.hang@srnl.doe.gov ralph.nichols@srnl.doe.gov Roger.Seitz@srnl.doe.gov Jennifer.Wohlwend@srnl.doe.gov