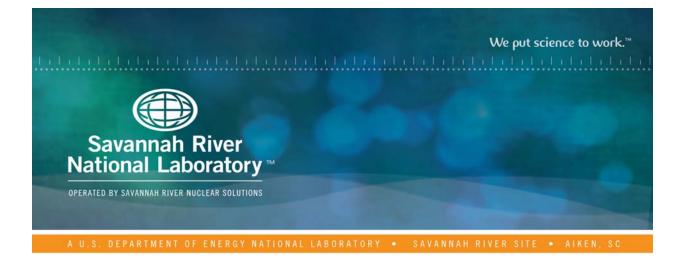
Contract No:


This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM).

Disclaimer:

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1) warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2) representation that such use or results of such use would not infringe privately owned rights; or
- 3) endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

1QCY17 Saltstone Waste Characterization Analysis

F.C. Johnson July 2017 SRNL-STI-2017-00376, Revision 0

SRNL.DOE.GOV

DISCLAIMER

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1. warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2. representation that such use or results of such use would not infringe privately owned rights; or
- 3. endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Printed in the United States of America

Prepared for U.S. Department of Energy

Keywords: Saltstone, regulatory, classification, TCLP

Retention: Permanent

1QCY17 Saltstone Waste Characterization Analysis

F.C. Johnson

July 2017

OPERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

Prepared for the U.S. Department of Energy under contract number DE-AC09-08SR22470.

EXECUTIVE SUMMARY

In the first quarter of calendar year 2017, a salt solution sample was collected from Tank 50 on January 16, 2017 in order to meet South Carolina (SC) Regulation 61-107.19 Part I C, "Solid Waste Management: Solid Waste Landfills and Structural Fill – General Requirements" and the Saltstone Disposal Facility Class 3 Landfill Permit. The Savannah River National Laboratory (SRNL) was requested to prepare and ship saltstone samples to a United States Environmental Protection Agency (EPA) certified laboratory to perform the Toxicity Characteristic Leaching Procedure (TCLP) and subsequent characterization.

By comparing the 2017 TCLP leachate results to the regulatory limits, the following conclusions can be made:

- The saltstone waste form was not characteristically hazardous for toxicity per SC Regulation.61-79.261.24(b)
- All of the inorganic and organic concentrations were below the nonwastewater standard levels per SC Regulation 61-79.268.48(a), except potentially phenol, which has an average concentration of <10 mg/L; however, phenol was measured at 1.1 mg/L in the corresponding quarterly saltstone sample from the first quarter of calendar year 2017 (1QCY17) that was prepared from the same Tank 50 salt solution and premix as the samples analyzed in this report. The 1QCY17 sample concentration represents the *total* phenol in the solid sample (as opposed to the TCLP leachate concentration presented in this report), which is still less than the nonwastewater standard level of 6.2 mg/L.
- Concentrations of most of the organic and inorganic species were not greater than 10 times the maximum contaminant level (MCL) per SC Regulation 61-107.19 Part I, A.1(d) except as follows:
 - o Nitrate, nitrite, sum of nitrate and nitrite, sulfate, and potentially fluoride
- The gross alpha particle activity and combined ²²⁶Ra and ²²⁸Ra exceed the MCL by more than a factor of 10

TABLE OF CONTENTS

LIST OF TABLESvi
LIST OF APPENDIX TABLES
LIST OF APPENDIX FIGURESvi
LIST OF ABBREVIATIONS
1.0 Introduction
2.0 Experimental Procedure
2.1 Saltstone Preparation
2.2 Saltstone Testing
2.3 Quality Assurance
3.0 Results
4.0 Conclusions
5.0 References
Appendix A . Chain of Custody Forms. A-1 Appendix B . SCDHEC Forms B-1

LIST OF TABLES

Table 2-1.	Summary of EPA Test Methods	2
Table 3-1.	Results for the Inorganic and Organic UHCs from the TCLP Leachates and Cyanide (mg/L).	4
Table 3-2.	Radionuclide Results for the TCLP Leachates (pCi/L)	6

LIST OF APPENDIX TABLES

Table B-1.	SCDHEC Form D-3657 ("RCRA & SW – TCLP Metals")	B-2
Table B-2.	SCDHEC Form D-3658 ("RCRA & SW – TCLP Volatiles")	B-5
Table B-3.	SCDHEC Form D-3659 ("RCRA & SW Semi-Volatiles")	B-6
Table B-4.	SCDHEC Form D-3732 ("Characterization Associated Quality Assurance Data")	B-7
Table B-5.	SCDHEC Form D-3733 ("Cross Reference Report for QA and Analytes")	B-8

LIST OF APPENDIX FIGURES

Figure A-1.	Chain of custody for sample W-17013-00001.	A-2
Figure A-2.	Chain of custody for sample W-17013-00002.	A-3
Figure A-3.	Chain of custody for sample W-17013-00003.	A-4

LIST OF ABBREVIATIONS

1QCY17	first quarter of calendar year 2017
ARP	Actinide Removal Process
CRDL	contract required detection limit
DSSHT	Decontaminated Salt Solution Hold Tank
EPA	Environmental Protection Agency
ESS-WP	Environmental Services Section – Waste Programs
ETP	Effluent Treatment Project
ISWLF	Industrial Solid Waste Landfill
IWTF	Industrial Wastewater Treatment Facility
LLW	low-level waste
LOD	limit of detection
LOQ	limit of quantitation
MCL	maximum contaminant level
MCU	Modular Caustic Side Solvent Extraction Unit
MDA	minimum detectable activity
MDL	method detection limit
MS	matrix spike
MSD	matrix spike duplicate
RCRA	Resource Conservation and Recovery Act
RSL	Regional Screening Level
SC	South Carolina
SCDHEC	South Carolina Department of Health and Environmental Control
SDF	Saltstone Disposal Facility
SPF	Saltstone Production Facility
SRNL	Savannah River National Laboratory
SWRI	Southwest Research Institute
TCLP	Toxicity Characteristic Leaching Procedure
TPU	total propagated uncertainty
TTQAP	Task Technical and Quality Assurance Plan
UHCs	underlying hazardous constituents
UTS	Universal Treatment Standards
WAC	Waste Acceptance Criteria

1.0 Introduction

The Saltstone Production Facility (SPF) is designed and permitted by the State of South Carolina Department of Health and Environmental Control (SCDHEC) to immobilize and dispose of low-level radioactive and hazardous liquid waste (salt solution) remaining from the processing of radioactive material at the Savannah River Site (SRS).¹ Low-level waste (LLW) aqueous streams from the Effluent Treatment Project (ETP), H-Canyon, and decontaminated solutions from the Modular Caustic Side Solvent Extraction Unit (MCU) are stored in Tank 50 until the LLW can be transferred to the Saltstone Facility for treatment and disposal. LLW that meets the Waste Acceptance Criteria (WAC) can be transferred, stored, and treated in the Saltstone Production Facility (SPF) for subsequent disposal as saltstone grout in the Saltstone Disposal Facility (SDF).¹ Sampling will be conducted as new waste streams are identified for treatment and disposal at the Saltstone Industrial Wastewater Treatment Facility (IWTF) and Z-Area Industrial Solid Waste Landfill (ISWLF) or every six years^{2,3} in accordance with South Carolina (SC) Regulation 61-107.19 Part I C,⁴ "Solid Waste Management: Solid Waste Landfills and Structural Fill – General Requirements."

In the first quarter of calendar year 2017 (1QCY17), a salt solution sample⁵ was collected from Tank 50 on January 16, 2017 in order to meet SC Regulation 61-107.19 Part I C⁴ and the Saltstone Disposal Facility Class 3 Landfill Permit.⁶ The Savannah River National Laboratory (SRNL) was requested⁷ to prepare and ship saltstone samples to a United States Environmental Protection Agency (EPA) certified laboratory to perform the Toxicity Characteristic Leaching Procedure (TCLP) and characterization of the leachates. This report completes deliverable $#2^A$ of the Technical Task Request (TTR)⁷ and documents the following:

- Preparation of the saltstone samples by SRNL and results of the subsequent testing and analyses by the certified laboratory (TTR task #1)
- Evaluation of the results per SC Regulation 61-79.261.24(b) and 61-79.268.48(a), and 61-107.19 Part I, A.1(d) (TTR task #2)
- Comparison of the 2017 and 2011 average results for the underlying hazardous constituents (UHCs) and radionuclides (TTR task #3).

2.0 Experimental Procedure

2.1 Saltstone Preparation

Saltstone samples for waste characterization were prepared at SRNL with the Tank 50 blended salt solution and a premix of cement, slag, and fly ash.^{8,B} The weight percent solids data used for waste characterization samples were taken from the quarterly WAC analyses performed on Tank 50.⁵ Three separate batches of the salt solution and premix materials were prepared. Dry blend material was added to the salt solution in a mixer at a low speed. Once all dry blend material was incorporated, the speed of the mixer was increased until a stable vortex was reached. The sample was left to mix for three minutes. After the saltstone slurry was mixed, each sample was cast into a polyethylene zip top bag. The bag was laid flat and the air was expelled prior to sealing. The samples were cured flat in a polyethylene bag to facilitate the size reduction step needed to conform to the particle size requirements of the TCLP method.

After curing the 1QCY17 samples for no less than 28 days^C, the saltstone samples were removed from the containers and a portion of the each saltstone sample was crushed and screened through a 3/8-inch sieve

^A Note that SRNL Quality Assurance (QA) is not required to approve this technical report as was originally specified in the Technical Task Request (TTR).

^B Per the customer specifications, the water to premix ratio was 0.60, and antifoam and Daratard were not added.

^C Samples are considered ready for analysis after 28 days. Samples are not crushed until a shipment has been scheduled.

as prescribed by Section 7.13 of the TCLP method.⁹ In accordance with the Technical Task Request (TTR) requirements, material passing through the 3/8-inch sieve was subsequently screened through a U.S. No. 4 sieve.⁷ On March 9, 2017, the crushed saltstone samples were packaged into containers provided by Environmental Services Section – Waste Programs (ESS-WP). After the saltstone has been crushed, sieved and packaged, the sample is deemed "collected."¹⁰ ESS-WP retrieved the samples from SRNL and transported them to the Southwest Research Institute (SWRI) for extraction and analysis.

2.2 Saltstone Testing

The saltstone samples were received by SWRI on March 10, 2017. Chain of custody forms are provided in Appendix A, Figure A-1 through Figure A-3. Table 2-1 summarizes the methods that were used to prepare and analyze for various UHCs, including the eight Resource Conservation and Recovery Act (RCRA) metals.

Analysis Type	Methods
Volatile Analysis (benzene, toluene, and n- butanol)	SW-846 Method 1311 (sample extraction) SW-846 Method 8260C (analysis)
Semivolatile Analysis (phenol)	SW-846 Method 1311 (sample extraction) SW-846 Methods 3520C and 3510C (leachate extraction) SW-846 Method 8270D (analysis)
Wetchem Analyses (cyanide ^D)	SW-846 Method 9010C (preparation) SW-846 Method 9012B (analysis)
TCLP Metals	SW-846 Method 1311 (sample extraction) SW-846 Method 7470A (analysis – Hg only) SW-846 Method 3010A (digestion) SW-846 Method 6020 (analysis – Be and Tl) SW-846 Method 6010D (analysis – Al, Sb, As, Ba, B, Cd, Cr, Co, Cu, Fe, Pb, Li, Mn, Mo, Ni, Se, Ag, Sr, U, and Zn)
TCLP Anions (chloride, fluoride, nitrate as nitrogen, nitrite as nitrogen, and sulfate)	SW-846 Method 1311 (sample extraction) Method 300 (analysis)
Radionuclides	SW-846 Method 1311 (sample extraction) Gamma Spectroscopy (⁶⁰ Co, ¹⁰⁶ Ru, ¹⁰⁶ Rh, ¹²⁵ Sb, ¹³⁷ Cs, ^{137m} Ba, and ¹⁵⁴ Eu) Gas Proportional Counting (gross alpha, gross beta, ^{89/90} Sr, and ²²⁸ Ra) Alpha spectroscopy (²⁴¹ Am, ²⁴² Cm, ^{243/244} Cm, ²³⁸ Pu, ^{239/240} Pu, and ²²⁶ Ra) Liquid Scintillation Spectroscopy (³ H, ⁹⁹ Tc, ¹⁴⁷ Pm, and ²⁴¹ Pu)

Table 2-1. Summary of EPA Test Methods

2.3 <u>Quality Assurance</u>

This work was directed by a Task Technical and Quality Assurance Plan (TTQAP).¹¹ Requirements for performing reviews of technical reports and the extent of review are established in Manual E7, Procedure 2.60.¹² SRNL documents the extent and type of review using the SRNL Technical Report Design Checklist contained in WSRC-IM-2002-00011, Rev. 2.¹³

^D Cyanide analysis was performed on the solid samples, not the TCLP leachates.

3.0 Results

The 2017 results summarized in the following tables are presented as reported in the data package from SWRI.^{E,14} For comparison, the 2011 waste characterization results^{15,16} are also included along with the following regulatory limits:

- Maximum contaminant levels (MCLs) as defined by the State Primary Drinking Water Regulation 61-58¹⁷
- Nonwastewater treatment standard levels in the Universal Treatment Standards (UTS) as defined by SC Regulation 61-79.268.48(a)¹⁸
- Maximum concentration of contaminants for the Toxicity Characteristic per SC Regulation 61-79.261.24(b)¹⁹

Results for the inorganic and organic UHCs (including the eight RCRA metals) from the TCLP leachates are shown in Table 3-1 along with the total and amenable cyanides. Table 3-2 presents the radionuclides from the TCLP leachates.^F

Results are also reported on SCDHEC forms D-3657 ("RCRA & SW – TCLP Metals"), D-3658 ("RCRA & SW – TCLP Volatiles"), and D-3659 ("RCRA & SW Semi-Volatiles") as shown in Appendix B, Table B-1 through Table B-3. Quality assurance data are reported on SCDHEC forms D-3732 ("Characterization Associated Quality Assurance Data") and D-3733 ("Cross Reference Report for QA Analytes") as shown in Appendix B, Table B-4 and Table B-5.

The following quality control issues were noted for the 2017 analyses:

- Silver The results are "J" flagged due to the low matrix spike (MS)/matrix spike duplicate (MSD) recoveries.
- Selenium The results are "J" flagged due to the duplicate control limit criteria not being met.
- Fluoride The results are "J" flagged since the MS/MSD recoveries were <75% but $\ge 30\%$.
- Chloride The results are "J" flagged due to the duplicate criteria not being met.
- Phenol Due to potential matrix interferences, the vendor re-extracted the samples at a lower volume; however, the re-extraction took place outside of the technical holding time for extraction. The results are also "J" flagged due to the low surrogate recoveries.
- ²²⁸Ra (1) The results for the preparation blank was greater than the total propagated uncertainty (TPU) and the minimum detectable activity (MDA), and (2) the laboratory control sample had a low recovery.
- 226 Ra The 133 Ba tracer recoveries were low for sample W-17013-00003 and its duplicate.
- ¹⁴⁷Pm The laboratory control sample had a low recovery; however, the result was within 1 sigma error of the recovery control limits.
- 241 Pu Due to the slight chemical differences between the calibration standards and sample, the quench units were greater than 10% in difference.

^E Results from the vendor that were reported in μ g/kg were converted to mg/L.

^F Total propagated uncertainty for the radiochemistry analyses is provided in the vendor data report.

Table 3-1. Results for the Inorganic and Organic UHCs from the TCLP Leachates and Cyar	nide (mg/L)
--	-------------

		Sample ID		2017	2011	Regulatory Limits					
Analyte	W-17013-	W-17013-	W-17013-	2017 Average ^d	20172011Average ^d Results ^{16,e}		- ·				
	00001	00002	00003	8-		MCL^{17}	UTS ¹⁸	Toxicity ¹⁹			
Aluminum	< 0.0750	< 0.0750	< 0.0750	< 0.0750	1.86 ± 0.31^{E}	0.05-0.2					
Antimony	< 0.0200	< 0.0200	< 0.0200	< 0.0200	0.0030^{B2}	0.006	1.15				
Arsenic	< 0.0200	< 0.0200	< 0.0200	< 0.0200	0.0134	0.010	5.0	5.0			
Barium	0.417	0.386	0.387	0.397±0.018	0.234	2.0	21	100.0			
Beryllium	< 0.00500 ^D	$< 0.00500^{D}$	$< 0.00500^{D}$	< 0.00500 ^D	< 0.00016	0.004	1.22				
Boron	0.572	0.584	0.552	0.569±0.016	0.75±0.06	4.0^{f}					
Cadmium	< 0.00500	< 0.00500	< 0.00500	< 0.00500	0.0003^{B2}	0.005	0.11	1.0			
Chromium	< 0.00500	< 0.00500	< 0.00500	< 0.00500	0.0183	0.1	0.60	5.0			
Cobalt	< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.00012	0.006^{f}					
Copper	< 0.00500	< 0.00500	< 0.00500	< 0.00500	0.022 ± 0.001^{B2}	1					
Iron	0.254	0.162^{B1}	0.196 ^{B1}	$0.204{\pm}0.047^{a}$	0.23±0.05	0.3					
Lead	< 0.00500	< 0.00500	< 0.00500	< 0.00500	0.0027^{B2}	0.015 ^f	0.75	5.0			
Lithium	0.372	0.359	0.357	0.363±0.008	0.85±0.02	0.040^{f}					
Manganese	0.0176	< 0.00500	0.00607^{B1}	0.00956±0.00699 ^{a,b}	0.0022 ± 0.0007^{a}	0.05					
Mercury	0.00680	0.00703	0.00304	0.00562±0.00224	0.0186	0.002	0.025	0.2			
Molybdenum	0.244	0.243	0.241	0.243±0.002	0.50±0.02	$0.10^{\rm f}$					
Nickel	< 0.00500	< 0.00500	< 0.00500	< 0.00500	0.0035^{B2}	0.39 ^f	11				
Selenium	< 0.0250 ^{J1}	0.0258 ^{B1,J1}	< 0.0250 ^{J1}	0.0253±0.0005 ^{a,b,c}	0.159 ^E	0.05	5.7	1.0			
Silver	< 0.0100 ^{J2}	< 0.0100 ^{J2}	< 0.0100 ^{J2}	< 0.0100 ^{J2}	0.00014^{B2}	0.1	0.14	5.0			
Strontium	2.940	2.850	2.840	2.877±0.055	0.34±0.02	12 ^f					
Thallium	< 0.00500 ^D	< 0.00500 ^D	$< 0.00500^{D}$	< 0.00500 ^D	0.00026^{B2}	0.002	0.20				
Uranium	< 0.200	< 0.200	< 0.200	< 0.200	$0.003{\pm}0.004^*$	0.03					

(continued on next page)

	Sample ID			2017	2011	Regulatory Limits			
Analyte	W-17013-	W-17013-	W-17013-	2017 Average ^d	2011 Results ^{16,e}	Regulatory Lillins			
	00001	00002	00003	Average	Results	MCL ¹⁷	UTS ¹⁸	Toxicity ¹⁹	
Zinc	< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.046	5	4.3		
Chloride	216 ^{D,J1}	222 ^{D,J1}	226 ^{D,J1}	221±5 ^{D,J1}	28.5±1.8	250			
Fluoride	<200 ^{D,J3}	<200 ^{D,J3}	<200 ^{D,J3}	<200 ^{D,J3}	<2.5	4.0			
Nitrate as Nitrogen	4980 ^D	5040 ^D	5000 ^D	5007±31 ^D	5884 ± 2378^{i}	10			
Nitrite as Nitrogen	1710 ^D	1760 ^D	1720 ^D	1730±26 ^D	189±7	1			
Total Nitrate and Nitrite	6690	6800	6720	6737±57	6074 ± 2371^{i}	10			
(sum of analyzed results)					$00/4\pm 23/1$	10			
Sulfate	4460^{D}	4340 ^D	4460 ^D	4420 ± 69^{D}	169±8.5	250			
Benzene	< 0.02	< 0.02	< 0.02	< 0.02	< 0.003	0.005	10	0.5	
Toluene	< 0.02	< 0.02	< 0.02	< 0.02	< 0.0025	1	10		
n-Butanol	< 0.2	< 0.2	< 0.2	< 0.2	< 0.15	2.0^{f}	2.6		
Phenol ^g	$< 10^{J2}$	$< 10^{J2}$	<10 ^{J2}	<10 ^{J2}	0.007 ± 0.003^{h}	5.8 ^f	6.2		
Cyanide (total)	9.02	10.2	7.54	8.92±1.33	not measured		590		
Cyanide (amenable)	< 0.475	< 0.488	< 0.372	< 0.488	not measured	0.2	30		

Table 3–1 continued. Results for the Inorganic and Organic UHCs from the TCLP Leachates and Cyanide (mg/L)

^{B1} Result is greater than or equal to the limit of detection (LOD) and less than the limit of quantitation (LOQ) ^{B2} Concentration is between the method detection limit (MDL) and the contract required detection limit (CRDL)

^D Result is reported from a dilution.

^E Associated serial dilution is outside percent difference quality control criteria.

¹¹ Duplicate criteria were not met. ¹² MS and/or MSD and/or surrogate criteria were not met.

¹³ The MS/MSD recoveries were <75% but $\ge 30\%$.

*Associated duplicate is outside relative percent difference quality control criteria.

^a At least one of the values is "B1" flagged (see explanation above).

^b At least one of the values is a less than (<) value.

^c At least one of the values is "J1" flagged (see explanation above).

^dResults are the average of triplicate samples and include the standard deviation when applicable. If all values are a less than (<) value, then the highest value is reported as the average.

^e Results for Al, B, Co, Cu, Fe, Li, Mn, Hg, Mo, Sr, U, and Zn are the average of triplicate samples and include the standard deviation when applicable. Results for Sb, As, Ba, Be, Cd, Cr, Pb, Ni, Se, Ag, and Tl are from one sample. If all values are a less than (<) value, then the highest value is reported as the average. ^f United States EPA RSLs for tap water.²⁰

^gResults for the re-extracted sample are shown.

^h The less than (<) value was excluded from the calculation of this average.

ⁱValue is slightly different than reported in SRNL-STI-2011-00561¹⁵ due to rounding.

		Sample ID			2011	Regulatory
Analyte	W-17013-00001	W-17013-00002	W-17013-00003	2017 Average ^g	2011 Results ^{16,g}	Limit
	W-17013-00001		W-17013-00002 W-17013-00003			MCL ¹⁷
Gross a	6.46E+04	6.31E+04	6.31E+04	(6.36±0.09)E+04	<2.01E+03	15
Gross β	5.80E+07	5.83E+07	5.79E+07	(5.81±0.02)E+07	(1.8±0.1)E+07	
Gross γ^d	1.40E+07	1.46E+07	1.45E+07	(1.43±0.03)E+07	(1.69±0.15)E+07	
³ H	3.12E+05	2.87E+05	2.80E+05	(2.93±0.17)E+05	(1.2±0.5)E+03	
⁶⁰ Co	<1.41E+04	<1.60E+04	<1.55E+04	<1.60E+04	<4.0E+02	
⁹⁰ Sr	2.06E+07	2.02E+07	2.15E+07	(2.08±0.07)E+07	(9.7±4.3)E+04	
⁹⁹ Tc	2.16E+06	2.17E+06	1.98E+06	(2.10±0.11)E+06	(5.1±0.70)E+04	
¹⁰⁶ Ru	<2.43E+05	<2.52E+05	<2.48E+05	<2.52E+05	<3.3E+04	
¹⁰⁶ Rh ^e	<2.43E+05	<2.52E+05	<2.48E+05	<2.52E+05	<2.0E+04	
¹²⁵ Sb	<1.36E+05	<1.40E+05	<1.40E+05	<1.40E+05	<1.5E+04	
¹³⁷ Cs	1.48E+07	1.54E+07	1.53E+07	(1.52±0.03)E+07	(1.8±0.2)E+07	
^{137m} Ba ^f	1.40E+07	1.46E+07	1.45E+07	(1.43±0.03)E+07	(1.7±0.1)E+07	
¹⁴⁷ Pm	<8.81E+02	1.04E+03	<8.83E+02	$(9.35\pm0.91)E+02^{b}$	<1.2E+02	
¹⁵⁴ Eu	<2.68E+04	<2.75E+04	<2.72E+04	<2.75E+04	<4.9E+02	
²²⁶ Ra	<3.55E+01	<2.77E+01	<9.69E+01	<9.69E+01	<6.5E+04	5^{a}
²²⁸ Ra	8.87E+06	9.26E+06	1.12E+07	(9.78±1.25)E+06	<4.7E+03	3
²³⁸ Pu	6.99E+01	6.68E+01	9.34E+01	(7.67±1.45)E+01	<3.5E+01	
^{239/240} Pu	8.47E+00	9.40E+00	6.98E+00	(8.28±1.22)E+00	<1.3E+01	
²⁴¹ Pu	<9.38E+02	<9.19E+02	<8.12E+02	<9.38E+02	<1.3E+03	
²⁴¹ Am	<9.53E+00	<1.79E+01	<1.57E+01	<1.79E+01	<1.5E+01	
^{242}Cm	<8.41E+00	<8.54E+00	<8.23E+00	<8.54E+00	<1.3E+01	
^{243/244} Cm	<7.54E+00	<9.58E+00	<15.6E+00	<15.6E+00	<1.2E+01°	

Table 3-2. Radionuclide Results for the TCLP Leachates (pCi/L)

^a The MCL is for combined radium (²²⁶Ra and ²²⁸Ra).

^b At least one of the values is a less than (<) value. ^c Vendor reported as ²⁴⁴Cm only.¹⁶ ^d Gross γ is a calculated value and is equivalent to the sum of the *detected* values of ¹²⁵Sb, ¹²⁶Sb, ¹²⁶Sn, ²⁴¹Am, ^{137m}Ba and ⁶⁰Co. Since some of these species were not measured or are below the detection limit, gross γ is equal to the ^{137m}Ba value. ^{e 106}Rh is in secular equilibrium with 100% of ¹⁰⁶Ru. ^{f 137m}Ba is in secular equilibrium with 94.6% of ¹³⁷Cs.²¹

^g Results are the average of triplicate samples and include the standard deviation when applicable. If all values are a less than (<) value, then the highest value is reported as the average.

4.0 Conclusions

By comparing the 2017 waste characterization sample results to the regulatory limits, the following conclusions can be made:

- The saltstone waste form was not characteristically hazardous for toxicity per SC Regulation 61-79.261.24(b)¹⁹
- All of the inorganic and organic concentrations were below the nonwastewater standard levels per SC Regulation 61-79.268.48(a)¹⁸, except potentially phenol, which has an average concentration of <10 mg/L; however, phenol was measured at 1.1 mg/L in the corresponding quarterly saltstone sample from 1QCY17²² that was prepared from the same Tank 50 salt solution and premix as the samples analyzed in this report. The 1QCY17 sample concentration represents the *total* phenol in the solid sample (as opposed to the TCLP leachate concentration presented in this report), which is still less than the nonwastewater standard level of 6.2 mg/L.
- Concentrations of most of the organic and inorganic species were not greater than 10 times the MCL per SC Regulation 61-107.19 Part I, A.1(d)⁴, except as follows:
 - o Nitrate, nitrite, sum of nitrate and nitrite, sulfate, and potentially fluoride
- The gross alpha particle activity and combined ²²⁶Ra and ²²⁸Ra exceed the MCL by more than a factor of 10

5.0 References

- 1. J.W. Ray, "Waste Acceptance Criteria for Aqueous Waste Sent to the Z-Area Saltstone Production Facility," Savannah River Remediation, Aiken, SC, X-SD-Z-00001, Rev. 16, 2016.
- 2. J.F. Litton, "Approval to Extend Waste Characterization to Every Six Years, Request to Extend Waste Characterization to Six Years Dated March 28, 2016 SRS Z-Area Class 3 Solid Waste Landfill: Permit#025500-1603," South Carolina Department of Health and Environmental Control, June 1, 2016.
- 3. K.R. Liner, "Sampling and Analysis Plan for the Z-Area Industrial Solid Waste Landfill Disposal Facility During Interim Salt Waste Processing," Westinghouse Savannah River Company, Aiken, SC, ESH-WPG-2005-00039, 2005.
- 4. "Solid Waste Management: Solid Waste Landfills and Structural Fill," South Carolina Code of Regulations, 61-107.19, added by State Register Volume 32, Issue No. 5, eff May 23, 2008, Available at: <u>http://www.scstatehouse.gov/coderegs/Ch%2061-93%20through%2061-124.pdf</u>.
- C.L. Crawford, "Results for the First Quarter Calendar Year 2017 Tank 50H Salt Solution Sample," Savannah River National Laboratory, Aiken, SC, SRNL-L3100-2017-00033, Rev. 0, 2017.
- 6. "Office of Environmental Quality Control Bureau of Land and Waste Management Class 3 Landfill Permit Facility ID # 025500-1603," South Carolina Department of Health and Environmental Control, Columbia, SC, December 17, 2012.
- 7. V.M. Kmiec, "Saltstone Waste Characterization (6 Year)," Savannah River Remediation, Aiken, SC, X-TTR-Z-00011, 2017.
- 8. "Vault Classification Samples-1Q17," Savannah River National Laboratory, Aiken, SC, Electronic Laboratory Notebook I7557-00151, 2017.
- 9. "Toxicity Characteristic Leaching Procedure," Environmental Protection Agency SW-846 Test Method 1311, 1992.
- 10. D.H. Miller, "Definition of TCLP Sample Term Collected," Savannah River National Laboratory, Aiken, SC, SRNL-L3100-2015-00081, Rev. 0, 2015.
- 11. K.A. Hill, "Task Technical and Quality Assurance Plan for SRNL Support of Saltstone Waste Characterization Sample Preparation and Analyses," Savannah River National Laboratory, Aiken, SC, SRNL-RP-2016-00821, Rev. 0, 2017.
- 12. "Technical Reviews," Savannah River Site, Aiken, SC, Manual E7, Procedure 2.60, current revision.
- 13. "Technical Report Design Check Guidelines," Westinghouse Savannah River Company, Aiken, SC, WSRC-IM-2002-00011, Rev. 2, 2004.
- 14. F.C. Johnson, "Data Package from Vendor for the 1QCY17 Saltstone Vault Classification Analysis," Savannah River National Laboratory, Aiken, SC, SRNL-L3300-2017-00019, Rev. 0, 2017.

- 15. R.E. Eibling, "Saltstone Vault Classificaton Samples Modular Caustic Side Solvent Extraction Unit/Actinide Removal Process Waste Stream April 2011," Savannah River National Laboratory, Aiken, SC, SRNL-STI-2011-00561, Rev. 0, 2011.
- 16. R.E. Eibling, "Data Package from Vendor for 2QCY11 Vault Classification Analysis," Savannah River National Laboratory, Aiken, SC, SRNL-L3100-2011-00185, Rev. 0, 2011.
- 17. "State Primary Drinking Water Regulations," South Carolina Code of Regulations, 61-58, 2014, Available at <u>https://www.scdhec.gov/Agency/docs/water-regs/r61-58.pdf</u>.
- 18. "Universal Treatment Standards," South Carolina Code of Regulations, 61-79.268.48(a), amended by State Register Volume 39, Issue No. 6, Doc. No. 4541, eff June 26, 2015., Available at http://www.scstatehouse.gov/coderegs/Ch%2061-79%20part%202.pdf.
- 19. "Toxicity Characteristic," South Carolina Code of Regulations, 61-79.261.24(b), amended by State Register Volume 27, Issue No. 6, Part 1, eff June 27, 2003, Available at http://www.scstatehouse.gov/coderegs/Ch%2061-79%20part%201.pdf.
- 20. "Regional Screening Levels (RSLs) Generic Tables (May 2016)," Environmental Protection Agency, Available at <u>https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-may-2016</u>.
- 21. "Integrated Date Base Report-1996: U.S. Spent Nuclear Fuel and Radioactive Waste Inventories, Projections, and Characteristics," Oak Ridge National Laboratory, Oak Ridge, TN, DOE/RW-0006, Rev. 13, 1997.
- 22. F.C. Johnson, "Saltstone 1QCY17 TCLP Toxicity Results," Savannah River National Laboratory, Aiken, SC, SRNL-L3300-2017-00011, Rev. 0, 2017.

Appendix A. Chain of Custody Forms

FIELD CHAIN OF CUSTODY for W-17013 010002

Savannah River Site SGCP/GM Building 730-2B Aiken, SC 29808				ate: 3 /9/1/7 Ti ample Id: W-17013 ation ID: 773A-17013- terval: eld QC Code: atrix: SOLIDS omp. Start Date: omp. Stop Date:	-00001	SDN: Group COC #: Sample Method: Comp. Start Time: Comp. Stop Time:	Contract	To: Southwest Research Inst. 6220 Culebra Rd. San Antonio, Tx 78228 210-522-5428 ract: 0000078769/SWR-W-17013 oling Event: W-17013 Name: W-17013-1		
				Lab	oratory W	ork Request Form	Lab ID: (1)		
tem	Preservative	pH(2)		Container	Filter?	Analysis Requested				
	NONE	-	1	250 mL HDPE		TCLP, FULL (VOA, SVOA, METALS) (RICE) [1]	
Cont.)		-	-			, CYANIDE [11], FLUORIDE [13], MER				
Cont.						, NITRATE-NITRITE [17], SULFATE [2	1], ICP MET	ALS [28]		
Cont.)	X	-				, AMERICIUM 241 [37] , ALPHA SPEC CURIUM (CM-242, CM	0402044 01	1 046 (046) (001		
Cont.)	9					, ALPHA SPEC CORIUM (CM-242, CM , ALPHA SPEC PLUTONIUM (PU-238				
Cont.	0					, GAMMA SPECTROSCOPY (LINES I			ALPHA [73]	
Cont.	1					NONVOLATILE BETA (CAN BE CON				RGE) [74
Cont.	2], PROMETHIUM-147 [80], RADIUM-2				
Cont.	X					STRONTIUM-90 [86], TECHNETIUM			RIDE [9]	
					-	CoelexContainer Wipe: <0.5 mRhr Tarep.: 5.1 Total com-mR/h (samples): <36,000 cpm; <1.7 mR/h (see Radioactive Material Receiving Form for more)	E "C (blue ice) / SN # r Wipe Fritsk Descr Information)	igition: Drum(s) + 1		tion
_				Comments	(1)	-		1 and	er Informa	non
			_	Comments ((1)				er Informa	
			_	Comments	(1)			Cooler number	Items in cooler	
				Comments	(1)			Cooler number	Items in cooler	Cooler temp
				Comments	(1)			Cooler number		Cooler temp
6	1							Cooler number	Items in cooler	Cooler temp
	1					ransfer Record		Cooler number	Items in cooler	Cooler temp
	, Relinquis	hed By (3	3) (pri	(Custody T	ransfer Record Received By (print/sign)	Date	Cooler number	Items in cooler	Cooler temp
1	1 1/ / //	1		(int/sign) Company	Custody T	Received By (print/sign)	1	Cooler number Drum 3 Cooler number Time	Items in cooler	Cooler temp
1	Kabitta	W vianin	(Sal	(int/sign) Company mpler) SPANS	Custody T Karen	Received By (print/sign) Palmer/Koren Palipuc	3年117	Cooler number Drum 3 Cooler number Time	Items in cooler	Cooler temp
1	Karen Palmer IK	1	(Sal	int/sign) Company mpler) SPLN5 12 SRALS	Custody T Karen c1 5	Received By (print/sign) Palmer/Kores Palmu Studins Al	3/11/	Cooler number Drum 3 Cooler number Time	Items in cooler	Cooler temp
1	Kabitta	W vianin	(Sal	(int/sign) Company mpler) SPANS	Custody T Karen c1 5	Received By (print/sign) Palmer/Kores Palmu Studins Al	3年117	Cooler number Drum 3 Cooler number Time	Items in cooler	Cooler temp
1	Karen Palmer IK	W vianin	(Sal	int/sign) Company mpler) SPLN5 12 SRALS	Custody T Karen c1 5	Received By (print/sign) Palmer/Koren Palipuc	3/11/	Cooler number Drwn 3 Cooler number Time 1015	Items in cooler	Cooler temp
1	Karen Palmer IK	W vianin	(Sal	int/sign) Company mpler) SPLN5 12 SRALS	Custody T Karen c1 5	Received By (print/sign) Palmer/Kores Palmu Studins Al	3/11/	Cooler number Drwn 3 Cooler number Time 1015	Items in cooler	Cooler tem
1	Karen Palmer IK	W vianin	(Sal	int/sign) Company mpler) SPLN5 12 SRALS	Custody T Karen c1 5	Received By (print/sign) Palmer/Kores Palmu Studins Al	3/11/	Cooler number Drwn 3 Cooler number Time 1015	Items in cooler	Cooler tem
1	Karen Palmer IK	W vianin	(Sal	int/sign) Company mpler) SPLN5 12 SRALS	Custody T Karen c1 5	Received By (print/sign) Palmer/Kores Palmu Studins Al	3/11/	Cooler number Drwn 3 Cooler number Time 1015	Items in cooler	Cooler ten

Figure A-1. Chain of custody for sample W-17013-00001.

FIELD CHAIN OF CUSTODY for W-17013 010003

Savannah River Site SGCP/GM Building 730-2B Aiken, SC 29808				ate: 5/9//7 Time ample Id: W-17013-02 ation ID: 773A-17013-02 erval: eld QC Code: atrix: SOLIDS omp. Start Date: omp. Stop Date:	0937	SDN: Group COC #: Sample Method: Comp. Start Time: Comp. Stop Time:	Contract	6220 Culebr San Antonio 210-522-542	o, Tx 78228 28 9/SWR-W-170 7013	13
	-			Labor	atory W	ork Request Form	Lab ID: (1)		
em	Preservative	pH(2)		Container	Filter?	Analysis Requested				
	NONE		1	250 mL HDPE		TCLP, FULL (VOA, SVOA, METALS) (PRICE) [1]	
ont.)		-	_			, CYANIDE [11], FLUORIDE [13], MER				
ont.)						NITRATE-NITRITE [17], SULFATE [2	I], ICP META	ALS [28]		
ont.)						, AMERICIUM 241 [37] , ALPHA SPEC CURIUM (CM-242, CM	1.949/244 (1	A-245/246) [20]		
ont.)			-			ALPHA SPEC CURIUM (CM-242, CM ALPHA SPEC PLUTONIUM (PU-238)				-
ont.)			-		-	GAMMA SPECTROSCOPY (LINES I			ALPHA [73]	-
ont.)			-			NONVOLATILE BETA (CAN BE CON				RGE) (74
ont.)						1. PROMETHIUM-147 [80], RADIUM-2				1.4
ont.)					-	STRONTIUM-90 [86], TECHNETIUM			ORIDE [9]	
_				Comments (1)		Codier/Contener Wips: <0.5 mR/tr Term: 3) Total com-mR/t (complex): <06,003 com; <1.7 mR/tr (viele Radinatilive Material Receiving Form for more it	t "C (blue ice) / SN ± (Mipe Frisk Descrij nformation)	pilon: Drum(s) - 1	ler Informa	tion
				Comments (1))					-
				с. — ж.				Drun 3	r Items in cooler	
			_	Cu	stody T	ransfer Record				
	Relinguis	hed By (3	3) (pri	nt/sign) Company		Received By (print/sign)	Date	Time	Reason for	Transfer
1	Katelfiel !	Capet	(i Bar	mpler) SVZNS		Palmer tasen alina	3/9/17	1015		
1	Karen Palimer / K FeO-EX	arin vil	inac	SENS FEETEX	Ster	hupin ver Dougles / Sept	3/9/17	1340		

Figure A-2. Chain of custody for sample W-17013-00002.

FIELD CHAIN OF CUSTODY for W-17013 010004

Savannah River Site SGCP/GM Building 730-2B Aiken, SC 29808			Sa St Int	ate: 3/9 / /7 Time: ample Id: W-17013-03 ation ID: 773A-17013-03 terval: eld QC Code: atrix: SOLIDS comp. Start Date: comp. Stop Date:	SDN: Group COC #: C Sample Method: S	Ship To: Southwest Research Inst. 6220 Culebra Rd. San Antonio, Tx 78228 210-522-5428 Contract: 0000078769/SWR-W-17013 Sampling Event: W-17013 SEIR Name: W-17013-1					
				Labora	atory W	ork Request Form La	ab ID: (1)			
	Preservative	pH(2)		Container	Filter? Analysis Requested						
	NONE	-	1	250 mL HDPE	-	TCLP, FULL (VOA, SVOA, METALS) (1311			PRICE) [1]		
Cont.)		-	-		-	, CYANIDE [11], FLUORIDE [13], MERCUR					
Cont.)					-	NITRATE-NITRITE [17], SULFATE [21], IC	PMETAL	.5 [28]			
Cont.)			-			, AMERICIUM 241 [37] , ALPHA SPEC CURIUM (CM-242, CM-243	DAA CM	245/246) [20]			
Cont.)						ALPHA SPEC CORION (CM-242, CM-243) ALPHA SPEC PLUTONIUM (PU-238, PU-					
Cont.)						GAMMA SPECTROSCOPY (LINES ITEM:		and the second	ALPHA [73]		
Cont.)			-			NONVOLATILE BETA (CAN BE COMBINE				RGE) (74	
Cont.)], PROMETHIUM-147 [80], RADIUM-226 [8	the second s	the second se		and and the state of the state	
Cont.)						STRONTIUM-90 [86], TECHNETIUM-99 [8			ORIDE [9]		
		_		Comments (1)		Total com-mR/h isamoles (= 38,000 cpm; ~1,7 mR/br _ Wipe (see Radioactive Material Receiving Form for mare informati	Frisk Description)	-	ler Informa	ation	
				Commonito (1)			11	Cooler numbe	r Items in cooler	Cooler tem	
								Cooler numbe	r Items in cooler	Cooler tem	
			_	Cus	stody T	ransfer Record					
l	1100 - 014	ieHill	(Sar	mpjer) SIRVS		Palmert Karin Rubar 3	Date	Time 1 015	Reason for	Transfer	
١	Raven Pulm Feat	reo/Ka	in	FedGe	CIS 5 Stere	10 0011	19/17	1310			
						0 - 1'					

Figure A-3. Chain of custody for sample W-17013-00003.

Appendix B. SCDHEC Forms

Table B-1. SCDHEC Form D-3657 ("RCRA & SW – TCLP Metals")

Г

dhe				Type Data	a.	RCRA &					
				Company N			River Reme				
				Subject/Pro				sification January 2	017		
								Landfills and RC		inction)	
				(Class One	, ciass i	wo and C	lass intee			-	
								Result	s in Milligrams pe		
									Waste Stream 1		
(Consult the Departm	nent for a	ny Radiati	ion / Ch	emical Mix	ed Waste	es.)		1/16/2017	1/16/2017	1/16/2017	
Facility Sample ID #								W-17013-00001	W-17013-00002	W-17013-00003	
· ·	Laboratory Sample ID #							612496	612497	612498	
Laboratory Name								SWRI	SWRI	SWRI	
Laboratory Certification	Laboratory Certification								DOECAP/NELAP	DOECA P/NELAP	
Subcontracted Laborat	ory Certific	cation #						-	-	-	
Subcontracted Laborat	ory Name							-	-	-	
Laboratory Receipt Info	ormation (c	hain of Custod	ly M ust be A	ttached)				Attached	Attached	Attached	
		Inorganic	TCLP C	hemicals							
Analytical Parameter ²	Digestion	Analytical	Detection	Quantitation	MCL ³	Class 2	TCLP				
Analytical Parameter *	Method	Method	Limit	Limit (mg/l)	(mg/l)	(mg/l)	Limits (mg/l)				
Aluminum	SW3010A	SW6010D	0.075	0.150	0.05-0.2	0.5-2	-	<0.075	<0.075	⊲0.075	
Antimony	SW3010A	SW6010D	0.020	0.040	0.006	0.06	-	⊲0.02	⊲0.02	⊲0.02	
Arsenic	SW3010A	SW6010D	0.020	0.030	0.01	0.1	5	<0.02	<0.02	<0.02	
Barium	SW3010A	SW6010D	0.005	0.010	2.0	20	100	0.417	0.386	0.387	
Beryllium	SW3010A	SW6020	0.005	0.010	0.004	0.04	-	<0.005	<0.005	⊲0.005	
Boron	SW3010A	SW6010D	0.100	0.200	4.0	40	-	0.572	0.584	0.552	
Cadmium	SW3010A	SW6010D	0.005	0.010	0.005	0.05	1	<0.005	<0.005	⊲0.005	
Chromium	SW3010A	SW6010D	0.005	0.010	0.1	1	5	<0.005	<0.005	≪0.005	
Cobali	SW3010A	SW6010D	0.005	0.010	0.006	0.06	-	<0.005	<0.005	⊲0.005	
Copper	SW3010A		0.005	0.010	1.0	10	-	<0.005	<0.005	⊲0.005	
iron	SW3010A		0.100	0.200	0.3	3	-	0.254	0.162	0.196	
Lead		SW6010D	0.005	0.010	0.015	0.15	5	< 0.005	<0.005	<0.005	
Lilhium	SW3010A		0.010	0.020	0.040	0.40	-	0.372	0.359	0.357	
Managanese	SW3010A		0.005	0.010	0.05	0.5	-	0.0176	<0.005	0.00607	
Mercury	-	SW7470A	0.001	0.002	0.002	0.02	0.2	0.0068	0.00703	0.00304	
Molybdenum	SW3010A	SW6010D	0.008	0.015	0.10	1.00	-	0.244	0.243	0.241	
Nickel	SW3010A		0.005	0.010	0.39	3.90	-	<0.005	< 0.005	<0.005	
Selenium	SW3010A		0.025	0.040	0.05	0.5	1	<0.025	0.0258	<0.025	
Silver	-	SW6010D	0.010	0.020	0.100	1.00	5	<0.01	<0.01	<0.01	
Strontium	SW3010A		0.005	0.010	12	120	-	2.94	2.850	2.840	
Thallium	SW3010A		0.005	0.010	0.002	0.02	-	<0.005	<0.005	<0.005	
Uranium —	SW3010A		0.200	0.400	0.030	0.30		≪0.2	<0.2	<0.2	
Zinc	SW3010A		0.005	0.010	5	50	-	< 0.005	<0.005	<0.005	
Chloride	-	EPA 300	200	200	250	2500	-	216	222	226	

Table B-1 continued. SCDHEC Form D-3657 ("RCRA & SW – TCLP Metals")

Vidhe		Type Data Company I Subject/Pr (Class One	Vame: oject:	Savannah Saltstone	RCRA & SW - TCLP Metals Savannah River Remediation Saltstone Vault Classification January 2017 wo and Class Three Landfills and RCRA Waste Determi Results in Milligrams per						
(Consult the Department for any Radiation / Chemical Mixed Wastes.) 1/16/2017 1/16/2017											
Fluoride	-	EPA 300	200	200	4.0	40	-	<200	<200	<200	
Nitrate as N	-	EPA 300	100	100	10	100	-	4980	5040	5000	
Nitrite as N	-	EPA 300	100	100	1	10	-	1710	1760	1720	
Nitrate/Nitrite (calc total)	-	-	-	-	10	100	-	6690	6800	6720	
Sulfate	-	EPA 300	200	200	250	2500	-	4460	4340	4460	
Cyanide	9010C	9012B	-	0.488	-	-	-	9.02	10.2	7.54	
Amenable Cyanide	9010C	9012B	0	0.488	0.2	2	-	<0.475	<0.488	<0.372	

1. Subcontracted Laboratory Used for these Parameters(Anal

2. These are the minimum elements to be considered. Class one and class two SW Landfills will require further parameters. Consult the department for further instructions.

3. MCL or current USEPA RSL Tap Water Value.

Table B-1 continued. SCDHEC Form D-3657 ("RCRA & SW – TCLP Metals")

					I	
Ahec	Type Data:	RCRA & SW - TC				
Nuchec	Company Name:	Savannah River Rem	ediation			
	Subject/Project:	Saltstone Vault Class				
	(Class One, Class	Two and Class Three	Landfills and RC	RA Waste Determ	ination.)	
			Result	s in Milligrams pe	er Liter	
				Waste Stream 1		
(Consult the Department for any Radiation / C	hemical Mixed Was	stes.)	1/16/2017	1/16/2017	1/16/2017	
Quality Assurance (or above samples)	•				
TCLP Bottle Extraction #			None	None	None	
TCLP Extraction Blank			EFB#2-83396	EFB#2-83396	EFB#2-83396	
			20170321-P002	20170321-P002	20170321-P002	
			20170321-P005	20170321-P005	20170321-P005	
Digestion Batch #			20170405-P007	20170405-P007	20170405-P007	
			20170321-P001	20170321-P001	20170321-P001	
			20170323-P001	20170323-P001	20170323-P001	
			PB17C21KE1	PB17C21KE1	PB17C21KE1	
Digestion Blank			PB17C21KE3	PB17C21KE3	PB17C21KE3	
Digestion blank			PB17C21PB1	PB17C21PB1	PB17C21PB1	
			PB17C23PB1	PB17C23PB1	PB17C23PB1	
			LCS17C21KE1	LCS17C21KE1	LCS17C21KE1	
			LCS17C21KE2	LCS17C21KE2	LCS17C21KE2	
			LCS17C21KE5	LCS17C21KE5	LCS17C21KE5	
Laboratory Control sample			LCS17C21KE6	LCS17C21KE6	LCS17C21KE6	
			ICV	ICV	ICV	
			LCS17C21CS1	LCS17C21CS1	LCS17C21CS1	
			LCS17C23CS2	LCS17C23CS2	LCS17C23CS2	
Matrix Spike (MS)			612496MS	612496MS	612496MS	
Matrix Spike Duplicate (MSD)			612496MSD	612496MSD	612496MSD	
Unspiked Duplicate (If Used)			612496D	612496D	612496D	
			20170322-A003	20170322-A003	20170322-A003	
			20170404-A006	20170404-A006	20170404-A006	
			20170404-A008	20170404-A008	20170404-A008	
			20170405-A003	20170405-A003	20170405-A003	
Analysis Batch Number			20170405-A004	20170405-A004	20170405-A004	
			20170405-A005	20170405-A005	20170405-A005	
			20170405-A006	20170405-A006	20170405-A006	
			20170406-A001	20170406-A001	20170406-A001	
			20170406-A003	20170406-A003	20170406-A003	
			20170419-A003	20170419-A003	20170419-A003	
LCS Recovery			Acceptable	Acceptable	Acceptable	
MS & MSD			Acceptable, ex Ag	Acceptable, ex Ag	Acceptable, ex Ag	

Table B-2. SCDHEC Form D-3658 ("RCRA & SW – TCLP Volatiles")

-										
				Type Dat	a:		R	CRA & SW - 1	CLP Volatile	es
V dh				Company	Name:	Savann	ah River	Remediation		
	PC			Subject/Pr	roject:	Saltsto	ne Vault	Classification	January 2017	
				(Class	One,	Class T	wo, Cla	ss Three Land	fills and RCR	A Waste.)
				-			-			-
								Results	in Milligrams	per Liter
									Waste Stream 1	
(Consult the Depar	rtment for	any Rad	iation / C	Chemical I	Mixed	Wastes	.)	1/16/2017	1/16/2017	1/16/2017
Facility Sample ID #	ŧ							W-17013-00001	W-17013-00002	W-17013-00003
Laboratory Sample	D#							612496	612497	612498
Laboratory Name								SWRI	SWRI	SWRI
Laboratory Certificat								DOECAP/NELAP	DOECAP/NELAP	DOECAP/NELAP
Subcontracted Labo			ŧ					-	-	-
Subcontracted Labo								-	-	-
Laboratory Receipt	nformation	(Chain of Cu	stody Must b	e Attached)				Attached	Attached	Attached
	TCLP V	olatile O	rganic C	ompounds	5					
Analytical Parameter ²	Preparation Method	Analytical Method	Detection Limit (mg/l)	Quantitation Limit (mg/l)	MCL ^{3,} 4 (mg/l)	Class 2 (mg/l)	TCLP (mg/l)			
Benzene	_	8260C	0.01	0.02	0.005	0.05	0.5	<0.02	<0.02	<0.02
Toluene	-	8260C	0.01	0.02	1	10	-	<0.02	<0.02	<0.02
n-Butanol	-	8260C	0.10	0.2	2	20	-	<0.2	<0.2	<0.2
	•		I							
	Quality As	surance	(for abo	ve sample	s)					
TCLP ZHE Extraction	n Batch #							None	None	None
Volatile Analysis Ba	tch #							R03171707	R03171708	R03171709
Surrogates, % Reco								None	None	None
	,2- Dichlorethane, d4								100	102
Toluene, dB	•								94	94
4-Bromoluorobenze	ne							99	98	98
Other								-	-	-
Other								-	-	-

1. Subcontracted Laboratory Used for these Parameters(A

2. These are the minimum compounds to be considered. Class one and class two SW Landfills will require further parameters. Consult the department for further instructions.

3. MCL or current USEPA RSL Tap Water Value.

4. The MCL values may change without notice. Verify at the beginning of each project.

Table B-3. SCDHEC Form D-3659 ("RCRA & SW Semi-Volatiles")

Г

				Type Dat	a:	RCRA	& SW	- TCLP Sem	i-Volatile s			
				Company	Name:	Savann	ah Rivei	r Remediation				
				Subject/Pr	oject:	Saltsto	ne Vauli	t Classification	January 2017			
				(Class One, Class Two, Class Three Landfills and RCRA Waste.)								
								Results	s in Milligrams	per Liter		
									Waste Stream 1			
(Consult the Department	for any Ra	diation /	Chemic	al Mixed \	Nastes.	.)		1/16/2017	1/16/2017	1/16/2017		
Facility Sample ID #								W-17013-00001	W-17013-00002	W-17013-00003		
Laboratory Sample ID #								612496	612497	612498		
Laboratory Name								SWRI	SWRI	SWRI		
Laboratory Certification								DOECA P/NELA P	DOECAP/NELAP	DOECAP/NELAP		
Subcontracted Laboratory	Certification	#						-	-	-		
Subcontracted Laboratory								-	-	-		
Laboratory Receipt Informa	tion (Chain (of Custor	ly Must b	e Attached)			Attached	Attached	Attached		
	Semi-Volat	ile Orga	nic Com	pounds								
	Descention	Analytic	Detection	Quantitation	MCL 3, 4	0	TCLP					
Analytical Analaytes ²	Preparation Method	al	Limit	Quantitation Limit (Mg/I)	(mg/l)	Class 2 (mg/l)	Limit					
		Method	(mg/l)	Link (mg/)	(119/1)	(119/1)	(mg/l)					
Phenol	3520C 3510C	8270D	5	10	5.8	58	-	<10	<10	<10		
1. Subcontracted Laboratory us	ed for this An	alyte.										
2. These are the minimum element	nts to be consi	idered. Cla	ss one and	l class two S	W Landfi	ls w ill req	uire furth	er parameters. Co	nsult the departme	nt for further		
instructions.								-	-			
3. MCL or current USEPA RSL T	ap Water Valu	Ie.										
4. The MCL values may change	without notice	. Verify at	the beginn	ing of each p	roject.							
Qı	uality Assur	ance (fo	or above	samples)								
TCLP Bottle Extraction #								None	None	None		
Semivolatile Extraction Bat	ch #							None	None	None		
Analysis Batch Number								P041817004	P041817005	P041817006		
Surrogates. % Recovery								-	-	-		
Nitrobenzene, d5								-	-	-		
2-Fluorobiphenol								-	-	-		
Terphenyl, d14 Phenol, d6								- 0	- 0	- 0		
2-Fluorophenol								5	4	6		
2,4,6-Tribromophenol								0				
									-	-		

Table B-4. SCDHEC Form D-3732 ("Characterization Associated Quality Assurance Data")

								Char	acteri	izatio	n Ass	<mark>ociate</mark>	<mark>d Quality A</mark>	ssurance	<mark>e Data</mark>		
	he	С		Laboratory			Research Ins	titute (S	wRI)							_	
				Certificatio	on:	DOECAP/N	ELAP									_	
				Method:		SW6010D,	SW6020, SV	V7470A	, SW90	12B, S	W8270E), SW82	260C and EPA	300			
				Subject:		QA-Blk, La	boratory Cont	trol Sam	ple (LCS	S), Matri	ix Spike	(MS), M	latrix Spike Du	olicate (MSE))	-	
																-	
Reference:	Forms D-	-3657 D	3658 and D	-3659 for sar	nples W-1701	3-00001 -00	002 and -00	003									
nstrument:	Various	,2				,				-							
notraniont.	Vanous		۸n	alvte Conce	entrations, I	, Mg / I Recovery Percent							Haqs				
Analytes	RDL	MDL	Blank		LCSD	MS	MSD	Other	LCS	LCSD	MS	MSD	Ave MS/MSD			RPD Limits	пауз
Aluminum	0.15	0.0750		3.95	3.96	4.43	4.23	Other	98.8	99.0	88.6	84.6	86.6	75-125	4.6	20	
Antimony	0.15	0.0750		1.01	1.01	4.43 5.36	4.23		101.0	101.0	107.2	101.2	104.2	75-125	4.0	20	-
Arsenic	0.0400	0.0200		3.91	3.9	2.66	2.55	-	97.8	97.5	107.2	101.2	104.2	75-125	4.2	20	-
Barium	0.0300	0.0200		3.89	3.87	5.02	4.74	-	97.2	96.8	92.1	86.5	89.3	75-125	6.3	20	-
Beryllium	0.0100	0.0050		0.0945	0.0951	0.434	0.406	-	94.5	95.1	86.8	81.2	84.0	75-125	6.7	20	-
Boron	0.0100	0.0030	<0.1	1.97	2	2.56	2.43	-	98.5	100.0	99.4	92.9	96.2	75-125	6.8	20	_
Cadmium	0.0100	0.0050		0.0953	0.0944	0.483	0.455	-	95.3	94.4	96.6	91	93.8	75-125	6.0	20	-
Chromium	0.0100	0.0050		0.377	0.379	0.914	0.869	-	94.2	94.8	91.4	86.9	89.2	75-125	5.0	20	-
Cobalt	0.0100	0.0050		0.962	0.96	2.35	2.24	-	96.2	96.0	94.0	89.6	91.8	75-125	4.8	20	-
Соррег	0.0100	0.0050		0.489	0.488	0.962	0.91	-	97.8	97.6	96.2	91	93.6	75-125	5.6	20	-
iron	0.2	0.1	<0.1	1.94	1.95	4.89	4.64	-	97.0	97.5	92.7	87.7	90.2	75-125	5.5	20	-
Lead	0.0100	0.0050		0.972	0.952	2.33	2.22	-	97.2	95.2	93.2	88.8	91.0	75-125	4.8	20	-
Lithium	0.0200	0.0100	< 0.0100	1.94	1.93	2.29	2.18	-	97.0	96.5	95.9	90.4	93.2	75-125	5.9	20	-
Manganese	0.0100	0.0050	0 < 0.00500	0.977	0.977	0.482	0.456	-	97.7	97.7	92.9	87.7	90.3	75-125	5.8	20	-
Mercury	0.00200	0.0010	0 < 0.00100	0.00104	0.00105	0.0108	0.0107	-	104.0	105.0	100.0	97.5	98.8	75-125	2.5	20	-
Molybdenum	0.0150	0.0075	0 < 0.00750	1.95	1.98	2.23	2.16	-	97.5	99.0	99.3	95.8	97.6	75-125	3.6	20	-
Nickel	0.0100	0.0050	0 < 0.00500	0.946	0.942	2.28	2.16	-	94.6	94.2	91.2	86.4	88.8	75-125	5.4	20	-
Selenium	0.0400	0.0250	<0.0250	3.86	3.78	2.57	2.45	-	96.5	94.5	102.8	98	100.4	75-125	4.8	20	-
Silver	0.0200	0.0100	<0.0100	0.0938	0.0959	0.372	0.329	-	93.8	95.9	74.4	65.8	70.1	75-125	12.0	20	low rec
Strontium	0.0100	0.0050	0 < 0.00500	1.98	1.99	4.7	4.43	-	99.0	99.5	88.0	74.5	81.3	75-125	17.0	20	-
Thalium	0.0100	0.0050	0 < 0.00500	3.90	3.99	2.43	2.28	-	97.5	99.8	97.2	91.2	94.2	75-125	6.4	20	-
Uranium	0.4	0.2	<0.2	1.83	1.84	1.88	1.79	-	91.5	92.0	94.0	89.5	91.8	75-125	4.9	20	-
Zinc	0.0100	0.0050	0 <0.00500	0.947	0.956	0.472	0.452	-	94.7	95.6	94.4	90.4	92.4	75-125	4.3	20	-
Chloride	200	200	<200	196	-	7300	-	-	98.0	-	88.6	-	-	75-125	-	-	-
Fluoride	200	200	<200	93.0	-	2820	-	-	93.0	-	70.5	-	-	75-125	-	-	low rec
Nitrate as N	100	100	<100	83.3	-	8260	-	-	92.1	-	90.6	-	-	75-125	-	-	-
Nitrite as N	100	100	<100	134	-	6900	-	-	93.7	-	90.7	-	-	75-125	-	-	-
Nitrate/Nitrite (Total)							Calculat	ted valu	e (not m	neas ure	ed)						
Sulfate	200	200	<200	399	-	19,700	-	-	99.8	-	95.2	-	-	-	-	-	-
Benzene	0.001	0.0005	<0.001	0.0094	0.01	0.22	0.21	-	94	100	110	105	107.5	70-130	5	20	-
Toluene	0.001	0.0005	<0.001	0.0095	0.0095	0.21	0.2	-	95	95	105	100	102.5	70-130	5	20	-
n-Butanol	0.01	0.005	<0.01	0.094	0.11	2.9	2.6	-	94	110	145	130	137.5	50-150	11	50	-
Cyanide (total)	0.480	0.480	<0.480	0.699	0.668	33.5	31.6	-	102.8	98.2	106.4	96.9	101.7	75-125	9.3	35	-
Phenol	10	5	<1	3.06	-	26.7	20.9	-	61	-	53	42	47.5	12-110	24	42	holding tir
Clock ID	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

			Cross Referen	ce Report for QA an	d Analyte	s			
dhea				SW7470A, 6010D, 6020, 8260C, 8270D, 9012B, EPA 300					
		Analytical Method	Reference:						
		Lab Reference (to	Facility Sample):	612496 (W-17013-00	001)				
		Subject / Project:		Saltstone Vault Clas	ssification January 2017				
		Facility:			Savannah River Remediation				
LAB ID #	FACILITY SAMP ID	TC EXTR BATCH	DIGESTION BATCH	ANALYSIS BATCH	OTHER	COMMENTS			
PB17C21KE3	None	None	20170321-P005	20170406-A001	None	SW7470A			
LCS17C21KE5	None	None	20170321-P005	20170406-A001	None	SW7470A			
LCS17C21KE6	None	None	20170321-P005	20170406-A001	None	SW7470A			
EFB#2-83396	None	None	20170321-P005	20170406-A001	None	SW7470A			
612496	W-17013-00001	None	20170321-P005	20170406-A001	None	SW7470A			
612496D	W-17013-00001D	None	20170321-P005	20170406-A001	None	SW7470A			
612496MS	W-17013-00001MS	None	20170321-P005	20170406-A001	None	SW7470A			
612496MSD	W-17013-00001MSD	None	20170321-P005	20170406-A001	None	SW7470A			
612497	W-17013-00002	None	20170321-P005	20170406-A001	None	SW7470A			
612498	W-17013-00003	None	20170321-P005	20170406-A001	None	SW7470A			
PB17C21KE1	None	None	20170321-P002	20170406-A003	None	SW6010D			
LCS17C21KE1	None	None	20170321-P002	20170406-A003	None	SW6010D			
LCS17C21KE2	None	None	20170321-P002	20170406-A003	None	SW6010D			
EFB#2-83396	None	None	20170321-P002	20170406-A003	None	SW6010D			
612496	W-17013-00001	None	20170321-P002	20170406-A003	None	SW6010D			
612496D	W-17013-00001D	None	20170321-P002	20170406-A003	None	SW6010D			
612496MS	W-17013-00001MS	None	20170321-P002	20170406-A003	None	SW6010D			
612496MSD	W-17013-00001MSD	None	20170321-P002	20170406-A003	None	SW6010D			
612497	W-17013-00002	None	20170321-P002	20170406-A003	None	SW6010D			
612498	W-17013-00003	None	20170321-P002	20170406-A003	None	SW6010D			
PB17C21KE1	None	None	20170321-P002	20170322-A003	None	SW6010D (Li)			
LCS17C21KE1	None	None	20170321-P002	20170322-A003	None	SW6010D (Li)			
LCS17C21KE2	None	None	20170321-P002	20170322-A003	None	SW6010D (Li)			
EFB#2-83396	None	None	20170321-P002	20170322-A003	None	SW6010D (Li)			
612496	W-17013-00001	None	20170321-P002	20170322-A003	None	SW6010D (Li)			
612496D	W-17013-00001D	None	20170321-P002	20170322-A003	None	SW6010D (Li)			
612496MS	W-17013-00001MS	None	20170321-P002	20170322-A003	None	SW6010D (Li)			
612496MSD	W-17013-00001MSD	None	20170321-P002	20170322-A003	None	SW6010D (Li)			
612497	W-17013-00002	None	20170321-P002	20170322-A003	None	SW6010D (Li)			
612498	W-17013-00003	None	20170321-P002	20170322-A003	None	SW6010D (Li)			
PB17C21KE1	None	None	20170321-P002	20170404-A006	None	SW6020 (TI)			
LCS17C21KE1	None	None	20170321-P002	20170404-A006	None	SW6020 (TI)			
LCS17C21KE2	None	None	20170321-P002	20170404-A006	None	SW6020 (TI)			

Table B-5. SCDHEC Form D-3733 ("Cross Reference Report for QA and Analytes")

			Cross Referen	ce Report for QA an	d Analyte	s				
		Analytical Method				C, 8270D, 9012B, EPA 300				
		Lab Reference (to	raciny sample):	612496 (W-17013-00		0017				
		Subject / Project		Saltstone Vault Clas		January 2017				
		Facility:		Savannah River Rem	ediation					
LAB ID #	FACILITY SAMP ID	TC EXTR BATCH	DIGESTION BATCH	ANALYSIS BATCH	OTHER	COMMENTS				
EFB#2-83396	None	None	20170321-P002	20170404-A006	None	SW6020 (TI)				
612496	W-17013-00001	None	20170321-P002	20170404-A006	None	SW6020 (TI)				
612496D	W-17013-00001D	None	20170321-P002	20170404-A006	None	SW6020 (TI)				
612496MS	W-17013-00001MS	None	20170321-P002	20170404-A006	None	SW6020 (TI)				
612496MSD	W-17013-00001MSD	None	20170321-P002	20170404-A006	None	SW6020 (TI)				
612497	W-17013-00002	None	20170321-P002	20170404-A006	None	SW6020 (TI)				
612498	W-17013-00003	None	20170321-P002	20170404-A006	None	SW6020 (Be)				
PB17C21KE1	None	None	20170321-P002	20170404-A008	None	SW6020 (Be)				
LCS17C21KE1	None	None	20170321-P002	20170404-A008	None	SW6020 (Be)				
LCS17C21KE2	None	None	20170321-P002	20170404-A008	None	SW6020 (Be)				
EFB#2-83396	None	None	20170321-P002	20170404-A008	None	SW6020 (Be)				
612496	W-17013-00001	None	20170321-P002	20170404-A008	None	SW6020 (Be)				
612496D	W-17013-00001D	None	20170321-P002	20170404-A008	None	SW6020 (Be)				
612496MS	W-17013-00001MS	None	20170321-P002	20170404-A008	None	SW6020 (Be)				
612496MSD	W-17013-00001MSD	None	20170321-P002	20170404-A008	None	SW6020 (Be)				
612497	W-17013-00002	None	20170321-P002	20170404-A008	None	SW6020 (Be)				
612498	W-17013-00003	None	20170321-P002	20170404-A008	None	SW6020 (Be)				
PB17C21KE1	None	None	20170321-P002	20170419-A003	None	SW6010D (As, Mo, Zn)				
LCS17C21KE1	None	None	20170321-P002	20170419-A003	None	SW6010D (As, Mo, Zn)				
LCS17C21KE2	None	None	20170321-P002	20170419-A003	None	SW6010D (As, Mo, Zn)				
EFB#2-83396	None	None	20170321-P002	20170419-A003	None	SW6010D (As, Mo, Zn)				
612496	W-17013-00001	None	20170321-P002	20170419-A003	None	SW6010D (As, Mo, Zn)				
612496D	W-17013-00001D	None	20170321-P002	20170419-A003	None	SW6010D (As, Mo, Zn)				
612496MS	W-17013-00001MS	None	20170321-P002	20170419-A003	None	SW6010D (As, Mo, Zn)				
612496MSD	W-17013-00001MSD	None	20170321-P002	20170419-A003	None	SW6010D (As, Mo, Zn)				
612497	W-17013-00002	None	20170321-P002	20170419-A003	None	SW6010D (As, Mo, Zn)				
612498	W-17013-00003	None	20170321-P002	20170419-A003	None	SW6010D (As, Mo, Zn)				
TCLP Ext. Fluid #1 Blank_031717	None	None	None	R03171706	None	SW8260C (vols)				
W-17013-00001	W-17013-00001	None	None	R03171707	None	SW8260C (vols)				
W-17013-00002	W-17013-00002	None	None	R03171708	None	SW8260C (vols)				
W-17013-00003	W-17013-00003	None	None	R03171709	None	SW8260C (vols)				
BLANK031717 MBLK	None	None	None	R031717B2	None	SW8260C (vols)				

Table B-5 continued. SCDHEC Form D-3733 ("Cross Reference Report for QA and Analytes")

		Cross Reference Report for QA and Analytes							
N dhea			Cross Referen	ce Report for QA an	d Analyte	\$S			
				SW7470A, 6010D, 6020, 8260C, 8270D, 9012B, EPA 300					
		Analytical Method							
		Lab Reference (to	Facility Sample):	612496 (W-17013-00	/				
		Subject / Project:		Saltstone Vault Classification January 2017					
		Facility:		Savannah River Rem	ediation				
LAB ID #	FACILITY SAMP ID	TC EXTR BATCH	DIGESTION BATCH	ANALYSIS BATCH	OTHER	COMMENTS			
BLANK032117 MBLK	None	None	None	R032117B2	None	SW8260C (vols)			
LCS031717 LCS	None	None	None	R03171705	None	SW8260C (vols)			
LCS032117 LCS	None	None	None	R03211705	None	SW8260C (vols)			
W-17013-00001 MS	None	None	None	R03211706	None	SW8260C (vols)			
W-17013-00001 MSD	None	None	None	R03211707	None	SW8260C (vols)			
W-17013-00001 RE	W-17013-00001	None	None	P041817004	None	SW8270D (phenol)			
W-17013-00002 RE	W-17013-00002	None	None	P041817005	None	SW8270D (phenol)			
W-17013-00003 RE	W-17013-00003	None	None	P041817006	None	SW8270D (phenol)			
W-17013-00003 RE MS	None	None	None	P041817007	None	SW8270D (phenol)			
W-17013-00003 RE MSD	None	None	None	P041817008	None	SW8270D (phenol)			
WQCBLK_12APR17	None	None	None	P041817001	None	SW8270D (phenol)			
EFB#2-83396 RE	None	None	None	P041817002	None	SW8270D (phenol)			
LCS_12APR17 LCS RE	None	None	None	P041817003	None	SW8270D (phenol)			
612496	W-17013-00001	None	20170405-P007	20170405-A005	None	EPA 300			
612497	W-17013-00002	None	20170405-P007	20170405-A005	None	EPA 300			
612498	W-17013-00003	None	20170405-P007	20170405-A005	None	EPA 300			
#83396 (EFB#2-83396)	None	None	20170405-P007	20170405-A005	None	EPA 300			
612496D	W-17013-00001D	None	20170405-P007	20170405-A005	None	EPA 300			
612496S	W-17013-00001MS	None	20170405-P007	20170405-A005	None	EPA 300			
ICV (LCS)	None	None	20170405-P007	20170405-A005	None	EPA 300			
612496	W-17013-00001	None	20170405-P007	20170405-A006	None	EPA300 (Nitrite)			
612497	W-17013-00002	None	20170405-P007	20170405-A006	None	EPA300 (Nitrite)			
612498	W-17013-00003	None	20170405-P007	20170405-A006	None	EPA300 (Nitrite)			
#83396 (EFB#2-83396)	None	None	20170405-P007	20170405-A006	None	EPA300 (Nitrite)			
612496D	W-17013-00001D	None	20170405-P007	20170405-A006	None	EPA300 (Nitrite)			
612496S	W-17013-00001MS	None	20170405-P007	20170405-A006	None	EPA300 (Nitrite)			
ICV (LCS)	None	None	20170405-P007	20170405-A006	None	EPA300 (Nitrite)			
612496	W-17013-00001	None	20170321-P001	20170405-A003	None	SW9012B			
612496D	W-17013-00001D	None	20170321-P001	20170405-A003	None	SW9012B			
612490	W-17013-00001D W-17013-00002	None	20170321-P001	20170405-A003	None	SW9012B SW9012B			
612498	W-17013-00002 W-17013-00003	None	20170321-P001	20170405-A003	None	SW9012B SW9012B			
PB17C21PB1	None	None	20170321-P001	20170405-A003	None	SW9012B SW9012B			
PB17C23PB1	None	None			None	SW9012B SW9012B			
PB1/023PB1	None	None	20170323-P001	20170405-A004	None	2009012B			

Table B-5 continued. SCDHEC Form D-3733 ("Cross Reference Report for QA and Analytes")

	-		Cross Referen	ce Report for QA an	d Analyte	'S	
	-	Analytical Method Lab Reference (to		SW7470A, 6010D, 6020, 8260C, 8270D, 9012B, EPA 300 612496 (W-17013-00001)			
		Subject / Project: Facility:		Saltstone Vault Clas Savannah River Rem	January 2017		
LAB ID #	FACILITY SAMP ID	TC EXTR BATCH	DIGESTION BATCH	DIGESTION BATCH ANALYSIS BATCH OTHER COM			
612496S	W-17013-00001MS	None	20170321-P001	20170405-A003	None	SW9012B	
612496SD	W-17013-00001MSD	None	20170321-P001	20170405-A003	None	SW9012B	
LCS17C21CS1	None	None	20170321-P001	20170405-A003	None	SW9012B	
LCS17C23CS2	None	None	20170323-P001	20170405-A004	None	SW9012B	
PB17C23PB1	None	None	20170323-P001	20170407-A006	None	SW9012B (Am. Cyanide)	
612496	W-17013-00001	None	None	20170407-A006	None	SW9012B (Am. Cyanide)	
612496D	W-17013-00001D	None	None	20170407-A006	None	SW9012B (Am. Cyanide)	
612497	W-17013-00002	None	None	20170407-A006	None	SW9012B (Am. Cyanide)	
612498	W-17013-00003	None	None	20170407-A006	None	SW9012B (Am. Cyanide)	

Table B-5 continued. SCDHEC Form D-3733 ("Cross Reference Report for QA and Analytes")