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Fracture Mechanics Approach to Estimate Fatigue Lives of 
Welded Lap-Shear Specimens 
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Abstract 

A full range of stress intensity factor solutions for a kinked crack is developed as a function 
of weld width and the sheet thickness.  When used with the associated main crack solutions 
(global stress intensity factors) in terms of the applied load and specimen geometry, the fatigue 
lives can be estimated for the laser-welded lap-shear specimens.  The estimations are in good 
agreement with the experimental data.  A classical solution for an infinitesimal kink is also 
employed in the approach.  However, the life predictions tend to overestimate the actual fatigue 
lives.  The traditional life estimations with the structural stress along with the experimental stress-
fatigue life data (S-N curve) are also provided.  In this case, the estimations only agree with the 
experimental data under higher load conditions. 
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1 Introduction 

This paper is a summary of recent development at the University of Michigan for estimating 
fatigue life of laser weld in a lap-shear specimen (e.g., the work of Sripichai et al., 2011; Asim et 
al., 2014).  The specimens are made of thin sheets of SAE J2340 300Y High Strength Low Alloy 
(HSLA) steel and are welded with 6 kW CO2 laser.  As a result, two main cracks are formed on 
each side of the weld.  The simple beam theory is used to calculate the structural stresses 
(membrane and bending) as experienced at the edges of the weld.  The principle of superposition 
is employed to decompose the loading system into several simpler configurations to facilitate the 
derivation of the stress intensity factors in crack opening mode ( IK ) and sliding mode ( IIK ). 

The fatigue lives of the lap-shear specimens can be estimated by three approaches: 

(1) With the structural stresses calculated from the beam theory, the fatigue lives can be estimated 
with the experimental fatigue data of the material, typically known as the S-N curve (stress vs. 
number of cycles); 

(2) The fatigue life can be obtained by integrating the empirical Paris law ( mKCdNda )(/ ∆= ), 

where a  is the crack length, N  is the number of cycles, K∆  is the loading characterized by the 
range of stress intensity factors, and C and m are material constants by curve-fitting.  The key for 
this approach is that the stress intensity factor solutions must be known.  From the lap-shear 
specimen fatigue testing, it is noted that a kinked crack is formed at the main crack tip and 
propagates through the sheet thickness leading to failure.  Therefore, two sets of stress intensity 
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factors must be determined: 1) for the main crack and 2) for the kinked crack.  The stress intensity 
factors for the main crack were obtained by previous work such as Sripichai et al. (2011).  The 
solution process will be summarized in this paper.  A theoretical solution of the stress intensity 
factors for a kinked crack has been derived by Cotterell and Rice (1980).  These solutions can be 
used with the Paris law and a simple equation for fatigue life can be obtained by direct integration; 
and 

(3) As the kinked crack grows eventually leading to failure, the stress intensity factor solutions of 
Cotterell and Rice for an infinitesimal kinked crack become inadequate.  A set of finite element 
based solutions must be used with the Paris law. 

This paper will describe the essential elements of these approaches.  The estimations will be 
compared with the experimental data.  

2 Specimen Configuration 

A welded lab-shear specimen is schematically shown in Fig. 1, in which W= 27mm, b= 8 
mm, c= 13.5 mm, w= 1 mm, L= 95 mm, V= 30 mm, t= 0.93 mm, R= 10 mm, and s= 50 mm.  The 
cyclic load F is applied to both ends of the specimen.  A detailed weld configuration is shown in 
Fig. 2.  Figure 3 shows the welded region of the test specimen prior to final failure by the cyclic 
load.  Note that the kinked crack on the right is longer than the one on the left.  The Young’s 
modulus, yield strength, and tensile strength of the HSLA steel are, respectively, 206 GPa, 315 
MPa, and 415 MPa.  The hardening exponent is 0.15 and the strength coefficient is 633 MPa. 

 

 

 

 
Figure 1.  A schematic of a lap-shear specimen 
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 Figure 2.  Weld details Figure 3.  A partially failed laser weld.  Note that 

the right kinked crack is always longer and the 
upper right leg always separates under high cycle 
fatigue testing 

 

 

3 Principle of Superposition – Global Stress and Stress Intensity Factors 

Radaj (1989), Radaj and Zhang (1991a, 1991b, 1992), Lin et al. (2007), and Lin and Pan 
(2008) showed that the load F of a lap-shear specimen (Fig. 4a) can be decomposed into statically 
equivalent symmetric and anti-symmetric loads.  The dog-bone area (mid-section) of a lap-shear 
specimen is modeled as two beams which are connected by the weld (Fig. 4b).  It can be seen that 
the equivalent loadings are the membrane force per unit width (F/b) and the bending moment per 
unit width (Ft/2), applied at the middle surfaces of the upper or the lower beams. 

The loading in Fig. 4b can further be decomposed into four symmetric and anti-symmetric 
loading conditions: counter bending (Fig. 4c), central bending (Fig. 4d), tension (Fig. 4e), and in-
plane shear (Fig. 4f).  The bending moments per unit width of the counter bending and central 
bending loading conditions have a magnitude of Ft/4b, and the forces per unit width of the tension 
and in-plane shear loading conditions are F/2b. 
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Figure 4.  Decomposition of the lap-shear loading system.  The shaded area is the weld zone.  The 
two-beam model is subjected to the lap-shear loading as shown in (a), which is equivalent to the 
loading in (b).  By superposition, (b) is the sum of (c) counter bending, (d) central bending, (e) 
tension, and (f) in-plane shear loading. 

 
 

3.1  Global Structural Stress at Weld Edge 

From Fig. 4b, the structural stress in the lap-shear specimen can be easily shown as 

tb

F

tb

F 3
+=σ  (1) 

Note that the first term on the right hand side of Eq. 1 corresponds to the membrane force per 
unit width and the second term is from the bending moment per unit width.  With Eq. (1) defined 
as the cyclic structural stress at the edge of the weld bead and utilizing the experimental stress-
fatigue life data (S-N Curve) of the HSLA steel, the fatigue lives of laser welds in lap-shear 
specimens can be estimated. 

 

3.2  Global Stress Intensity Factors for the Main Cracks 

In terms of linear elastic fracture mechanics, the crack driving force ( G ) or the energy 
released rate of a crack is the decrease of potential energy per unit crack extension.  In addition, it 
has been shown that the energy released rate and the stress intensity factors are related by 

E

KK
G III

′
+

=
22

 (2) 

where )1/( 2ν−=′ EE  for plane strain and EE =′  for plane stress, E  is the Young’s modulus, 

and ν  is the Poisson’s ratio.  Based on these conditions, Sripichai et al. (2011) showed that the 
stress intensity factors with respect to the decomposed configurations are: 
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(i) Figure 4c, Counter Bending 
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(ii) Figure 4d, Central Bending 
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(iii) Figure 4e, Simple Tension along the Crack Face 
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(iv) Figure 4f, In-plane Shear 
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Therefore, by superposition, the “global” stress intensity factors for the main cracks of the lap-
shear specimen subject to load F (Fig. 1) are 
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F
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2
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Note that Eqs. (3) and (4) are valid only when the weld width w is large compared to the sheet 
thickness t.  When w becomes smaller, the Westergaard stress function solutions in Tada et al. 
(2000) prevail: 
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To obtain the full range of the global stress intensity factor as a function of w/t, the finite 

element analysis was carried out by Sripichai et al. (2011).  Their approximate solutions for IK  

and IIK  are given as (also shown graphically in Fig. 5): 
 

(a) Solution for IK  

(i) For 0 ≤ w/t < 2, 
t

w
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(ii) For w/t ≥ 2, 
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(b) Solution for IIK  

(i) For 0 ≤ w/t < 0.37, 
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(ii) For 0.37 ≤ w/t <1.12, 
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(iii) For w/t ≥ 1.12, 
tb

F
K =II  

 

 
Figure 5. The global stress intensity factors as functions of tw /  
(all IK ’s and IIK ’s are normalized by Eq. (4)) 

 
3.3  Stress Intensity Factors for the Kinked Crack  

3.3.1  Analytical Solution  

In reality, the experimental observation suggested that the fatigue cracks of the lap-shear 
specimens never follow the direction of the main cracks (formed by the two sheets and the weld).  
Instead, as shown in Fig. 3, a kinked crack was initiated at each of the main crack tips.  Figure 6 is 
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a schematic of a kinked crack with length a  and a kink angle α .  Denoting IK  and IIK  as the 
global stress intensity factors for the main crack, the solutions for the local stress intensity factors 

Ik  and IIk  for the kinked crack are given by Bilby et al. (1978) and Cotterell and Rice (1980):  
 

( ) III0I 2

3
sin

2
sin

4

3

2

3
cos

2
cos3

4

1
KKk 





 +−






 +=

αααα   (7) 

( ) III0II 2

3
cos3

2
cos

4

1

2

3
sin

2
sin

4

1
KKk 





 ++






 +=

αααα  (8) 

where ( )0Ik  and ( )0IIk  represent the local Ik  and IIk  solutions for the kinked crack with its 

length a  approaching to 0 (i.e., an infinitesimal kink).  Note that the arrows in Fig. 6 indicate the 
positive sense of the stress intensity factors IK , IIK , Ik , and IIk . 
 

 
 

Figure 6.  A schematic of a main crack and a kinked crack with kink length a  and kink angle α  

 

3.3.2  Numerical Solutions for a finite kinked Crack 

Note that the theoretical solutions for a kinked crack in Eqs. (7) and (8) are functions of the 
kink angle α  and the specimen overall geometry (through the global stress intensity factors IK  

and IIK ), and is independent of the kink length a .  However, as the kinked crack continues to 

grow under fatigue load, it is expected that the local stress intensity factors ( Ik  and IIk ) will 
increase with the kink length.  Therefore, finite element analysis was conducted by considering 
that the kinked crack has a finite length.  In addition, for the particular lap-shear specimens 
discussed in this paper, the kink is assumed to be perpendicular to the main crack (i.e., °−= 90α ) 
as shown in Fig. 3.  The finite element model is schematically shown in Fig. 7 and the calculated 
stress intensity factors Ik  and IIk , which both are normalized by ( )0Ik , are plotted in Figs. 8 and 

9. 
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Figure 7.  A schematic of a two-dimensional finite elemental model of a lap-shear specimen with 
two kinked cracks 

 

 

   
Figure 8. The values of ( )0II / kk  Figure 9. The values of ( )0III / kk   

for tw / =0.5, 1, and 2 with °−= 90α  for tw / =0.5, 1, and 2 with °−= 90α  
 

4 Estimation of Fatigue Life 

The fatigue life of a structural component can be estimated based on: 1) structural stress, 
using the fatigue data from material testing, typically known as the S-N Curve, and 2) fracture 
mechanics, using the stress intensity factor solutions at the tip of a fatigue crack. 

 
4.1  Structural Stress Model 

The structural stress for the welded lap-shear specimen was derived in Section 3.1 as 
tbFtbFtbF /4/3/ =+=σ  (Eq. (1)).  With the applied stress (σ ) and the S-N fatigue curve for 

HSLA steel, the fatigue life curve can be constructed.  However, the stress-life data for the SAE 
300Y HSLA (with the tensile yield strength of 315 MPa) are not available, and the stress-life data 
of SAE 950X (with the tensile yield strength of 350 MPa) are used instead.  The fatigue life 
estimations with the structural stress are plotted against the experimental data in Fig. 10. 
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4.2  Fatigue Crack Growth Model 

Here the Paris law ( mKCdNda )(/ ∆= ) is adopted to describe the fatigue crack propagation 

for kinked cracks emanating from the main cracks in the lap-shear specimens.  Because both Ik  

and IIk  exist at the crack tip, an equivalent stress intensity factor range ( eqk∆ ) is used.  The Paris 

law is rewritten as  

( )( )makC
dN

da
eq∆=  (9) 

 

where  

( ) ( ) ( )2II
2

Ieq akakak ∆+∆=∆ γ  (10) 
 

In the above equation, γ  is an empirical constant to account for the sensitivity of material to 

the Mode II loading conditions.  In the absence of information, the value of γ  is simply taken as 
unity (1).  By substituting Eq. (10) into Eq. (9) and integrating, the fatigue life of a laser weld in 
lap-shear specimens can be expressed as 
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where 0, 0.025, 0.05, …, and 0.7, are arbitrarily chosen and represent the values of the normalized 
kink length ta , at which the local stress intensity solutions are available (e.g., by referencing 

Figs. 8 and 9).  The variable t′  is the actual crack growth distance ( )αsin/tt =′ .  In the case of 

°−= 90α such as in Fig. 7, tt =′ . 

The material constants, 91089.6 −×=C  
m)m(MPa

mm/cycle
 and =m 3, for ferritic-pearlitic steels 

listed in Dowling (1998) are used to estimate the fatigue lives.  The fatigue lives predicted by Eq. 
(11) with the use of the complete solutions Ik  (Fig. 8) and IIk  (Fig. 9) are shown in Fig. 10.  Note 

that the global stress intensity factors IK  and IIK  are implicit in Figs. 8 and 9 through the 

normalization factor ( )0Ik  (Eq. (7)).  In addition, the effect of the load ratio (R) is ignored when 

the range of the stress intensity factor ( eqk∆ ) is used in Eqs. (9) and (11).  The load ratio is 

actually 0.2 in the fatigue experiments but is not expected to have significant impacts on the 
fatigue life estimations of these laser welds. 

 
4.3  Simplified Fatigue Crack Growth Model 

In a simplified model, the local stress intensity factors ( )0Ik  and ( )0IIk  in Eqs. (7) and (8) are 

used with the Paris law (Eq. 9).  Note that the stress intensity factor solutions are valid only as the 
kink length a  approaching to 0.  As treated by Newman and Dowling (1998) and Lin et al. 
(2006), the ranges of the equivalent local stress intensity factors are assumed to be constant for all 
kink lengths and are assumed to be equal to those for the kinked cracks with vanishing length 
( a → 0).  For this simplified model, the fatigue life of a laser weld can then be obtained by 
substituting Eqs. (7) and (8) into Eq. (9).  By direct integration,  



10 
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0eq∆
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where ( )
0eqk∆  is the range of the equivalent stress intensity factors at vanishing kink length.  The 

fatigue life prediction curve (i.e., Eq. (12)) obtained from this simple approach is plotted in Fig. 
10.  Again, the effects of the load ratio (R) are ignored. 

 

 
Figure 10. The experimental results and the fatigue life estimations based on the 
(1) structural stress model, (2) fatigue crack growth model, and 
(3) simplified fatigue crack growth model. 

 

5 Discussions 

Figure 10 shows the experimental results of the CO2 laser welded lap-shear specimens made 
from SAE J2340 300Y HSLA steel.  It also includes the fatigue life estimations based on (1) the 
structural stress (Section 4.1), (2) the fatigue crack growth model (Section 4.2), and (3) the 
simplified fatigue crack growth model (Section 4.3).  It can be seen that the fatigue life estimations 
based on the fatigue crack growth model (with the global and the local stress intensity factor 
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solutions for tw / = 0.86) are in agreement with the experimental results, while the fatigue lives 
estimated with the simplified fatigue crack growth model are consistently higher than the 
experimental data.  This is understandable because the value of the equivalent local stress intensity 
factor increases as the kink length becomes longer, but in the simplified model this quantity is 
assumed to remain at its initial value evaluated at nearly zero kink length and is lower than the 
realistic value, which implies a slower crack growth rate and a longer fatigue life. 

The solutions of Ik  and IIk  in Section 3.3.2 for a finite kinked crack can be further improved 
by considering the actual weld configuration (Fig. 2) to include the weld bead in the finite element 
model (Fig. 11).  As shown in Asim et al. (2014), with the weld bead, the solution for Ik  for the 

right main crack becomes higher than that for the left main crack, but on the other hand, IIk  is 

higher on the left side.  Because the absolute value of IIk  is only about 10% of Ik , the range of the 

equivalent stress intensity factor eqk∆  remains higher at the right kinked crack.  This suggests that 

the right kinked crack should grow faster and the failure would occur first in the right side of the 
lap-shear specimen.  Indeed this is consistent with the experimental observation for high cycle 
fatigue testing (Asim et al., 2014) and is shown in Fig. 3. 

 

 
Figure 11.  A schematic of a two-dimensional finite element model of a lap-shear specimen with a 
weld bead 
 

6 Conclusions 

This paper summarizes part of the research at the University of Michigan on predicting the 
fatigue lives of lap-shear specimens based on fracture mechanics.  A full range of approximate 
closed-form solutions for global stress intensity factors are first developed for the main crack 
based on the results of (1) finite element analyses in conjunction with (2) analytical solutions with 
beam bending theory and (3) Westergaard stress function solutions for two semi-infinite solids 
which share a common boundary with a length equal to the size of the weld.  It is followed by a 
series of finite element analysis to calculate the local stress intensity factors at the tip of the kinked 
crack emanating from the main crack tips.  The computational results indicate that the kinked 
cracks are under dominant Mode I loading ( Ik >> IIk ).  Combining the calculated local stress 

intensity factors with the global stress intensity factors ( IK  and IIK ), the fatigue life of laser 
welded lap-shear specimen can be estimated.  In addition, a standard engineering practice of using 
the structural stress and the S-N curve to predict the fatigue lives is also presented.  Comparing 
with the fatigue test data of the lap-shear specimens, it can be concluded that the fatigue lives 
estimated with the kinked fatigue crack growth model agree well with the experimental results, 
whereas the estimations based on the structural stress agree only at higher fatigue loads. 
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