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EXECUTIVE SUMMARY

The Saltstone facilities at the DOE Savannah River Site (SRS) stabilize and dispose of low-level
radioactive salt solution originating from liquid waste storage tanks at the site. The Saltstone
Production Facility (SPF) receives treated salt solution and mixes the aqueous waste with dry
cement, blast furnace slag, and fly ash to form a grout slurry which is mechanically pumped into
concrete disposal cells that compose the Saltstone Disposal Facility (SDF). The solidified grout
is termed “saltstone”.

Cementitious materials play a prominent role in the design and long-term performance of the
SDF. The saltstone grout exhibits low permeability and diffusivity, and thus represents a
physical barrier to waste release. The waste form is also reducing, which creates a chemical
barrier to waste release for certain key radionuclides, notably Tc-99. Similarly, the concrete shell
of a saltstone disposal unit (SDU) represents an additional physical and chemical barrier to
radionuclide release to the environment. Together the waste form and the SDU compose a robust
containment structure at the time of facility closure. However, the physical and chemical state of
cementitious materials will evolve over time through a variety of phenomena, leading to
degraded barrier performance over Performance Assessment (PA) timescales of thousands to
tens of thousands of years. Previous studies of cementitious material degradation in the context
of low-level waste disposal have identified sulfate attack, carbonation influenced steel corrosion,
and decalcification (primary constituent leaching) as the primary chemical degradation
phenomena of most relevance to SRS exposure conditions.

In this study, degradation time scales for each of these three degradation phenomena are
estimated for saltstone and concrete associated with each SDU type under conservative, nominal,
and best estimate assumptions. The nominal value (NV) is an intermediate result that is more
probable than the conservative estimate (CE) and more defensible than the best estimate (BE).
The combined effects of multiple phenomena are then considered to determine the most limiting
degradation time scale for each cementitious material. Degradation times are estimated using a
combination of analytic solutions from literature and numerical simulation codes provided
through the DOE Cementitious Barriers Partnership (CBP) Software Toolbox. Task Technical
Requests HLW-SSF-2013-0001 Rev. 3, HLW-SSF-TTR-2013-0021 Rev. 2, and G-TTR-Z-
00007 Rev. 0 define the scope of the analysis and certain input data.

For the SDU 2 design with a clean cap fill, the roof, wall, and floor components are projected to
become fully degraded under Nominal conditions at 3855, 922, and 1413 years, respectively. For
SDU 4 the roof and floor are estimated to be fully degraded under Nominal conditions after 1106
and 1404 years, respectively; the wall is assumed to be fully degraded at time zero in the most
recent PA simulations. Degradation of these concrete barriers generally occurs from combined
sulfate attack and corrosion of embedded steel following carbonation. Saltstone is projected to
degrade very slowly by decalcification, with complete degradation occurring in excess of
200,000 years for any SDU type. Complete results are provided in Table 5-1 through Table 5-3.
Additional results for the SDU 2 and SDU 6 designs are provided in Table 5-5 through Table 5-7
assuming the absence of the traditional clean cap fill and column degradation by carbonation-
influenced steel corrosion. For the SDU 6 design, the roof and floor components are projected to
fully degrade by 1413 years while the tapered wall fully degrades at 815 years for the thinnest
section and 1822 years for the thickest section. Additional degradation results are presented in
Table 5-12 through Table 5-16 for SDU 2 and 6 assuming column degradation by sulfate attack.
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1.0 INTRODUCTION

The Saltstone facilities at the DOE Savannah River Site (SRS) stabilize and dispose of low-level
radioactive salt solution originating from liquid waste storage tanks at the site. The Saltstone
Production Facility (SPF) receives treated salt solution and mixes the aqueous waste with dry
cement, blast furnace slag, and fly ash to form a grout slurry which is mechanically pumped into
concrete Saltstone Disposal Units (SDUs) that compose the Saltstone Disposal Facility (SDF).
The solidified grout is termed “saltstone”. The Performance Assessment for the Saltstone
Disposal Facility at the Savannah River Site (SRR 2009) and supporting documents provide
further information about the general design and operation of the SDF,

Cementitious materials play a prominent role in the design and long-term performance of the
SDF. Saltstone exhibits low permeability and diffusivity, and thus represents a physical barrier to
waste release. The waste form is also reducing, which creates a chemical barrier to waste release
for certain key radionuclides, notably Tc-99. Similarly, the concrete shell of an SDU represents
an additional physical and chemical barrier to radionuclide release to the environment. Together
the waste form and disposal cell compose a robust containment structure at the time of facility
closure.

However, the physical and chemical state of cementitious materials will evolve over time
through a variety of phenomena, leading to degraded barrier performance over Performance
Assessment (PA) timescales of thousands to tens of thousands of years. Previous studies of
cementitious material degradation in the context of low-level waste disposal have identified
sulfate attack, carbonation-influenced steel corrosion, and decalcification (primary constituent
leaching) as the primary chemical degradation phenomena of most relevance to SRS exposure
conditions (Walton et al. 1990, Langton 2007, 2010a, Samson et al. 2009).

In this study, degradation time scales for each of these three degradation phenomena are
estimated for saltstone and the SDU concrete associated with each SDU type under conservative,
nominal, and best estimate assumptions. The nominal value (NV) is an intermediate result that is
more probable than the conservative estimate (CE) and more defensible than the best estimate
(BE). The combined effects of multiple phenomena are then considered to determine the most
limiting degradation time scale for each cementitious material. Degradation times are estimated
using a combination of analytic solutions from literature and numerical simulation codes
provided through the DOE Cementitious Barriers Partnership (CBP) Software Toolbox
(http://cementbarriers.org). Task Technical Requests HLW-SSF-2013-0001 Rev. 3, HLW-SSF-
TTR-2013-0021 Rev. 2, and G-TTR-Z-00007 Rev. 0 define the scope of the analysis and certain
input data.

Revision 1 (Flach and Smith 2013b) of this report differs from Revision 0 (Flach and Smith
2013a) in four aspects. First, the carbonation analysis was revised to account for the primary
dissolved carbon species being bicarbonate (HC03) at the elevated pH associated with cement
pore water, rather than carbonic acid (H,C 03) assumed in Revision 0. The practical impact is
insignificant to NV results because gas phase €0, diffusion dominates liquid phase carbon
transport. Second, the moisture characteristic curve (van Genuchten 1980) parameters for
saltstone were revised to implement the 20°C cure temperature ARP/MCU saltstone properties
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recommended by SRR (Sheppard 2013b). In Revision 0 values for 60°C ARP/MCU saltstone
were inadvertently used. The impact is again insignificant to the NV analysis. Third, degradation
times were estimated for the anticipated SDU 6 design that will supersede SDU 2. The SDU 6
design utilizes the same concrete formulation as SDU 2, so degradation analyses of the latter
generally apply to SDU 6 except for geometrical differences. “Design” and “Design w/Margin”
cases were analyzed. Finally, the absence of clean grout filling the upper interior volume was
considered for SDU 2 and SDU 6. The direct effect is earlier degradation of the concrete roof,
because sulfate attack begins immediately when saltstone is in contact with the underside of the
roof. Contact is assumed to occur at the time of facility closure; that is, any contact time prior to
closure, up to approximately 20 years, is considered minimal and neglected in the degradation
analysis.

The current Revision 2 includes added discussion of passive steel corrosion and biodegradation,
defines time zero for the degradation analysis as the time of facility closure, corrects a minor
molecular weight error embedded in the SDU 6 estimates of initial (t = 0) wall degradation, and
augments the Revision 1 SDU 2/6 analysis of column degradation to consider the presence of
sulfate attack on these reinforced concrete components.

1.1 Generic moving reaction front

The degradation mechanisms under consideration share the same basic functional form when the
chemical reaction zone moves slowly as a sharp front across the porous medium and diffusion
with constant diffusivity is the dominant transport mode for the fluid (gas or liquid) phase
reactant, as shown in Figure 1-1.

unreacted

X dx

Figure 1-1.  Generic moving reaction front controlled by diffusion.

The differential molar balance for this generic moving front system is
SnrDmidt = R(1 — n)psdx (1.2

where
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S = saturation of fluid phase delivering reactant to moving front
[cm?® phase / cm? void]
n = porosity [cm® void / cm?® total]
T = tortuosity, defined here as the ratio of effective to molecular diffusion coefficient (<
D[]
D,, = molecular diffusion coefficient for fluid phase [cm?/yr]
x = penetration depth [cm]
t = elapsedtime [yr]
¢ = concentration of fluid phase reactant [mol / cm® phase]
R = reaction capacity of solid [mol / g solid], i.e., moles of fluid phase reactant consumed

per mass of solid
ps = solid / mineral density [g/cm?® solid]

Integration of Equation (1.1) yields the following analytic expression for penetration depth

_ [ZSnrDmct] 1/2 (1.2)

(1-n)psR

Inspection of Equation (1.2) indicates that movement of the reaction front is proportional or
inversely proportional to the square root of all quantities except porosity. Equation (1.2) can be
used to define the relative effect of a parameter change compared to a baseline result. For
example, a modified exposure concentration (c,) produces an altered penetration depth (x,)
given by

62]1/2

Xy = |—
=13

X4 (1.3

where ¢, and x; are the baseline conditions.

The effective reaction capacity of a numerical reactive transport model can be derived using
Equation (1.2) for a selected penetration depth (x,) and time (¢,) as

__25ntDypyicty

B (1-n)psxd

(1.4)

Equation (1.4) is useful for translating numerical simulation results into the equivalent analytic
form given by Equation (1.2), assuming the numerical model exhibits the underlying behavior
implied by Equation (1.2). Alternatively, Equation (1.2) can be written as

x = At'/? (1.5)
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where the rate constant A is defined by
25nTDycC 1/2
A= [(1—n)psR] (1.6)
and empirically derived from a numerical simulation result (t,,x,) as
X
A= tl% .7
0
The time t, associated with a certain penetration depth x, is
2
ty =33 (18)

=

Equations (1.2) through (1.8) are generally applicable to all three degradation mechanisms being
considered in this study (provided that the diffusion coefficient is fixed), although the particulars
differ. In the case of sulfate attack, sulfate dissolved in the liquid phase diffuses into the porous
medium, and reacts with the solid forming ettringite. In the case of carbonation, carbon dioxide
in the gas phase diffuses in, reacts with the solid forming calcite, and the pH is lowered. In the
case of decalcification, the 'reaction’ is calcium in the solid dissolving into the liquid phase; the
dissolved calcium then diffuses out of the porous medium. The report sections that follow
address the specific analyses performed for sulfate attack, carbonation, and decalcification.
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2.0 SULFATE ATTACK

Pore water in the saltstone waste form is expected to contain on the order of 0.1 M sulfate. Over
time, as sulfate ions migrate into the cement barrier surrounding the waste and react with calcium
hydroxide (Portlandite) to form calcium sulfate (gypsum) according to the reaction:

Ca(OH), + SO2~ + 2H,0 — CaS0, « 2H,0 + 20H"

Calcium sulfate reacts with calcium/aluminum oxide minerals to form calcium aluminum
sulfates such as ettringite according to the overall reaction:

3Ca0 o Al,05  6H,0 + 3CaSO0, + 20H,0 — 3Ca0 « Al,05 » 3CaS0, » 26H,0

These reactions alter the mineral content of the concrete. Products of the sulfate reactions have a
greater volume than the reactants. The resulting expansion of the solid phase leads to cracking
which has a deleterious impact on structural integrity and the ability of the cementitious barrier
to contain the radioactive waste. Sulfate attack has been identified as one of the primary
mechanisms for the degradation of Saltstone concrete (SRR 2009, Samson et al. 2009, Sarkar, et
al., 2010a).

The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional
collaboration supported by the United States Department of Energy (US DOE) Office of Tank
Waste Management with the objective of developing a set of tools to improve understanding and
prediction of the long-term performance of cementitious barriers used in nuclear applications.
The CBP is a partnership of federal, academic, private sector, and international expertise. In
addition to the US DOE, the CBP partners are the Savannah River National Laboratory (SRNL),
Consortium for Risk Evaluation with Stakeholder Participation (CRESP) at Vanderbilt
University (VU), Energy Research Center of the Netherlands (ECN), and SIMCO Technologies,
Inc. The Nuclear Regulatory Commission (NRC) is providing support under a Memorandum of
Understanding. The National Institute of Standards and Technology (NIST) is providing research
under an Interagency Agreement.

The CBP Project has released a Software Toolbox that includes two models that can be used to
assess sulfate attack on SDUs (Brown, et al., 2013b). One model is a version of the STADIUM
code developed by SIMCO (Samson, 2010) which models the transport of chemical ions and
water through porous materials and reactions between the chemical and mineral species. The
model solves a set of coupled differential equations describing one dimensional transport
processes while simultaneously evaluating local diffusion coefficients and equilibrium chemical
and mineral compositions in the materials. STADIUM can model systems with one (concrete),
two (concrete and saltstone) or three (concrete, saltstone and soil) layers of materials. One
limitation of STADIUM modeling is that structural changes and damage to the concrete have no
direct impact on the diffusion and transport properties.

The other model included in the CBP Toolbox is a sulfate attack module based on
LeachXS/Orchestra (LXO) developed at the ECN and Vanderbilt University with CRESP
funding (Sarkar et al. 2010a, b, 2011; Meeussen, et al., 2010). Similar to STADIUM, LXO
calculates transport rates of species through porous media and chemical equilibria between local
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chemical and mineral phases. However, the LXO sulfate attack module also performs a damage
calculation and modifies transport properties where damage is predicted. LXO models the
material as a network of interconnected cells within which chemical equilibrium is maintained
while transport of chemical species between cells occurs by diffusion and convection. The
version of LXO released with the initial CBP Toolbox only allows modeling a single material.

2.1 STADIUM Sulfate Attack

Simulations of SDU 2 and SDU 1/4 concrete degradation were performed using the STADIUM
code through the CBP Toolbox interface. The SDU 6 conceptual design utilizes the same
concrete mix as SDU 2, so the SDU 2 simulations are applicable to the future SDU 6 design. For
quality assurance, a preliminary run was made to confirm that the STADIUM model in the CBP
Toolbox reproduced results for SDU 2 concrete as reported by Samson (2010) and again by
Protiere et al. (2012). Using the data and parameters in the CBP Toolbox, the STADIUM model
was run to simulate 1,000 years of concrete degradation for SDU 2 concrete. The concrete
thickness was 20 cm (8 in) which is representative of the SDU 2 wall and roof thickness. Results
from this trial calculation are plotted in Figure 2.1 which shows that, after 1,000 years of
exposure, an ettringite mineral front has penetrated to a depth of approximately 2.5 cm from the
saltstone interface (the concrete layer is from 120 cm to 140 cm in the plot). The shape of the
ettringite front is consistent with that shown in the previous reports and the front depth is in
agreement with the value reported at 1000 years in the cited publications. Using a simple linear
extrapolation, this result would predict a concrete life of approximately 8,000 years.

However, in June 2010 SIMCO published a revised saltstone composition (SIMCO, 2010) which
corrected an error in previous formulations and which produced a wasteform significantly more
resistant to chemical attack. In March 2012, SIMCO also published a document (SIMCO, 2012)
revising the SDU concrete compositions and properties based on better characterization of the
constituent materials. The revised SDU 2 saltstone and revised concrete compositions were run
using the STADIUM model with the CBP Toolbox. The simulations used a sulfate concentration
in the pore fluid of 0.1 M resulting from a mixing solution concentration of 0.05 M. As points of
reference, a recent WAC (Waste Acceptance Criteria) sample from Tank 50 had a sulfate
concentration of 0.05 M (Bannochie 2011) and the sulfate concentration in feedwater to the SPF
assumed in the Saltstone PA is 0.10 mol/L (Dean 2009). Results of the STADIUM calculations
are shown in Figure 2.2 for simulations of 1,000 and 5,000 years. The revised compositions
yielded significantly reduced ettringite penetration into the concrete, and suggest SDU 2 concrete
is highly resistant to sulfate attack compared to ordinary concrete. Physical properties of the
SDU 2 concrete have not changed significantly from previous values. Therefore, the reduced
ettringite formation appears to derive from changes in the concrete chemistry. The revised ionic
concentrations in SDU 2 concrete pore water reported by SIMCO (2012) are much lower than
previous values and the concrete mineral composition has also changed significantly.
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Figure 2-1. STADIUM prediction of sulfate attack on SDU 2 concrete at
saltstone/concrete interface using default CBP Toolbox parameters.

The revised SIMCO saltstone and cement compositions were also used to perform a 1000 year
STADIUM simulation of sulfate attack on 45 cm (18 in) of SDU 1/4 cement. The 45 cm
thickness is representative of the SDU 1/4 wall. Results from this simulation are shown in Figure
2.3. The predicted ettringite front for this system is more similar to that obtained by previous
STADIUM analyses, as shown in Figure 2.1.

Results from the STADIUM analyses using the latest SIMCO concrete and saltstone waste
compositions are listed in Table 2.1. The ettringite penetration depth is conservatively defined as
the furthest point of ettringite presence indicated by Figures 2.1 and 2.2. In comparison, SIMCO
(2010) used the vertical face of the ettringite peak. STADIUM does not predict whether damage
will occur, and thus does not alter transport properties in response to damage. To estimate
degradation times, physical damage (e.g., cracking, spalling) is assumed to coincide with the
presence of ettringite in STADIUM simulations. To approximately account for the effect of
physical damage on transport, the estimated time for complete concrete degradation is calculated
using a simple linear extrapolation of the model calculated results at 1000 years assuming no
degradation at time zero. That is, no credit is taken for the possibility that ettringite may

penetrate as a diffusion front obeying Equation (1.5), which would lead to longer times for
complete penetration.
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Table 2-1.  Results from STADIUM concrete degradation simulations.
Ettringite front Ettringite front Thickness Estimated Time for
Concrete depth* at 1000 depth* at 5000 Complete Degradation
years (a) years
(a)
SDU 2 0.5cm 1.5cm 20 cm 40,000 yr
SDU 1/4 5.5¢cm - 45 cm 8,200 yr

* based on furthest point of ettringite penetration

In the 2009 Saltstone PA, the following empirical relationship was derived to calculate sulfate
attack penetration depth, based on previous STADIUM calculations:

x = AcBt1/? (2.1)

In Equation (2.1), c is the molar concentration of sulfate in pore water and the coefficients A and
B are 0.412 and 0.380 for SDU 1/4 and 0.626 and 0.467 for SDU 2, respectively. These
calculations involved a single layer of concrete with approximate properties based on a surrogate
material. Application of this equation predicts degradation times of approximately 8,800 years
for 20 cm of SDU 2 concrete and 69,000 years for 45 cm of SDU 1/4 concrete. These results are
almost the converse of those obtained with STADIUM using the revised saltstone and concrete
compositions. These differences indicate the sensitivity of sulfate attack predictions to initial
mineral composition (Samson 2010) and transport properties. The results presented in Figures
2.1 and 2.2 and Table 2.1 are considered more reliable because they involve a more realistic two-
layer system and material properties have been updated using the best available characterization
studies.
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Figure 2-3. STADIUM prediction of sulfate attack on SDU 1/4 concrete at 1000 years.
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2.2 LXO Sulfate Attack

Several sets of calculations were also performed using the LXO module in the CBP Toolbox to
predict sulfate attack on SDU 1/4 concrete at thicknesses of 45 and 60 cm and SDU 2 concrete at
thicknesses of 20 and 30 cm. The smaller concrete thickness was representative of SDU 2 wall
thickness while the larger value was representative of SDU 1/4 floor thickness. The LXO
calculations used the default concrete chemical compositions in the CBP Toolbox and revised
mineral compositions based on the recent SIMCO analysis (SIMCO, 2012). Except as noted
below, the concrete parameters contained in the initial CBP Toolbox release such as thermal
conductivity, specific heat, and rate of hydration were also used in the analysis. The initial
sulfate concentration in the fluid phase was set to 0.1 M.

The use of Orchestra (the modeling part of LXO) to model sulfate attack on cementitious
material is discussed in detail by Sarkar et al. (2009). The model uses a parameter designated as
the “fractional porosity” (b) which is defined to be the fraction of the pore volume that must be
filled with mineral products from the chemical reactions that occur during concrete aging before
cracking and concrete damage occur. The larger the fractional porosity the more pore volume is
available for solid product deposition and the less damage occurs. Results are very sensitive to
this parameter.

Sarkar et al. (2009) concluded that in general the optimal value for fractional porosity is b = 0.3
based on model calibration and literature review. The main effect of fractional porosity in the
model is to cause an increase in the diffusion coefficient, which accelerates delivery of sulfate to
the reaction front and ettringite penetration. The model implicitly assumes saturated conditions
(i.e. pores in the concrete are filled with water) for this calculation. However, any cracks that
form during sulfate attack are expected to be unsaturated under Saltstone conditions, based on
Equation (3.10) and surrounding discussion in Section 3.0. Such “dry” cracks would likely cause
a smaller increase in diffusion coefficient compared to saturated cracks, or even impede diffusion
(Seol et al. 2003). Unsaturated cracks and slower diffusion compared to saturated conditions can
be approximately accounted for by increasing fractional porosity above 0.3. Based on
engineering judgment, the current study was performed using a fractional porosity of 0.45 as the
nominal value representative of unsaturated conditions with minimum (conservative estimate)
and maximum (best estimate) values of 0.3 and 0.6, respectively.

The progression of an ettringite mineral front into the concrete coincides with the extent of
concrete damage according to the LXO sulfate attack model. The ettringite front also coincides
with a decrease in concrete porosity as predicted by the LXO model which would be indicative
of concrete damage. After an initial period of rapid penetration, the rate of progression of the
ettringite front predicted by LXO was found to be approximately linear, in contrast to a square
root of time dependence indicated by Equations (1.2) and (1.5) for fixed diffusivity. Results
showing ettringite mineralization in the concrete for the case of 30 cm of SDU 2 concrete with a
fractional porosity of 0.6 at 100 year intervals are shown in Figure 2.4. The maximum ettringite
penetration depth is plotted as a function of time in Figure 2.5 where the linear progression
between 100 and 500 years is apparent. LXO simulations were performed for either 350 years or
500 years. Based on the results shown in Figure 2.5, the time for complete concrete degradation
was estimated from the penetration depth predicted at the end of the simulation using linear
extrapolation.

10
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Ettringite front penetration as a function of time for 30 cm of SDU 2 concrete
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2.2.1 LXO Simulation of Sulfate Attack on SDU 2 Concrete

SDU 2 calculations were performed for a concrete thickness of 20 cm, which is representative of
the SDU 2 wall thickness, and for a concrete thickness of 30 cm, representative of the SDU 2
floor. An initial concrete porosity of 0.115 was used in these calculations and the VCT (“Vault
Concrete Two”, SDU 2 mix) concrete composition was selected through the CBP user interface.
Results for the 20 cm concrete thickness are shown in Figure 2.6 for the three values of fractional
porosity specified and results for the 30 cm thickness are shown in Figure 2.7. It was intended to
run all of the simulations for 500 years; however, when the front progressed beyond 50% of the
concrete thickness, the LXO code had difficulty converging. Therefore, to obtain a consistent set
of results, all SDU 2 calculations for 20 cm thickness were performed for only 350 years.

Linear extrapolation was used to estimate a time for complete concrete degradation from the
front penetration times shown in Figures 2.6 and 2.7. Results of these calculations are listed in
Table 2.2 and 2.3 for the 20 cm and 30 cm concrete thickness, respectively. The degradation
times were then plotted as a function of fractional porosity and fit to a polynomial function. The
fitting function was used to interpolate degradation times at intermediate values of the fractional
porosity with the results plotted in Figure 2.8. The results shown in Figure 2.8 illustrate the
sensitivity of the estimate of degradation to the fractional porosity. Beyond a fractional porosity
of 0.5, the curves increase sharply.

Table 2-2. SDU 2 LXO sulfate attack calculations for 20 cm of concrete.

Estimated Time
Fractional Front Depth Fraction for Complete
Porosity Years (cm) Degraded Degradation
0.60 350 3.8 0.190 1842
0.45 350 7.4 0.370 946
0.30 350 94 0.470 745

Table 2-3. SDU 2 LXO sulfate attack calculations for 30 cm of concrete.

Estimated Time
Fractional Front Depth Fraction for Complete
Porosity Years (cm) Degraded Degradation
0.60 500 4.5 0.150 3333
0.45 500 8.4 0.280 1786
0.30 500 11.1 0.370 1351
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Figure 2-8.  Predicted times for 100% SDU 2 concrete degradation as a function of
fractional porosity.

2.2.2 LXO Simulation of Sulfate Attack on SDU 1/4 Concrete

SDU 1/4 calculations were performed for a concrete thickness of 45 cm, which is representative
of the SDU 1/4 wall thickness, and for a concrete thickness of 60 cm, representative of the SDU
1/4 floor. An initial concrete porosity of 0.12 was used in these calculations and the VCO
(“Vault Concrete One”, SDU 1/4 mix) concrete composition was selected through the CBP
Toolbox user interface. Results for the 45 cm concrete thickness are shown in Figure 2.9 for the
three values of fractional porosity specified and results for the 60 cm thickness are shown in
Figure 2.10. All simulations were performed to simulate 500 years.

Linear extrapolation was used to calculate a time for complete concrete degradation from the
front penetration times shown in Figures 2.9 and 2.10. Results from these calculations are listed
in Table 2.4 and 2.5 for the 45 cm and 60 cm concrete thickness, respectively. As was done with
the SDU 2 results, the degradation times were then plotted as a function of fractional porosity
and fit to a smooth polynomial function. This fitting function was used to interpolate degradation
times at intermediate values of the fractional porosity with the results plotted in Figure 2.11.
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Estimated Time

Table 2-4.
Fractional Front Depth Fraction
Porosity Years (m) Degraded Degradation
0.60 500 0.076 0.170 2941
0.45 500 0.189 0.420 1190
0.30 500 0.230 0.510 980
Table 2-5. SDU 1/4 LXO sulfate attack calculations for 60 cm of concrete.
Estimated Time
Fractional Front Depth Fraction for Complete
Porosity Years (m) Degraded Degradation
0.60 500 0.072 0.120 4167
0.45 500 0.162 0.270 1852
0.30 500 0.222 0.370 1351
Al-Ettringite
[
1.8 ] —
\ Vault 1/4
1.6 Concrete degradation
45 cm at 500 Years
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Figure 2-9.  Ettringite front penetration as a function of concrete fractional porosity for
45 cm SDU 1/4 concrete.
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Figure 2-10. Ettringite front penetration as a function of concrete fractional porosity for
60 cm SDU 1/4 concrete.
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2.3 Sulfate Attack Results

From the analyses described in the preceding sections, the LXO model was found to predict
faster concrete degradation from sulfate attack than was seen in the STADIUM simulations, in
part because the model modifies transport properties based on predicted damage. LXO
incorporates mineral availabilities that are generally less than 100%, which leads to faster
depletion of solid reactants. STADIUM and LXO also assume different initial chemical
compositions, which affects the results (Sarkar et al. 2011). Therefore, lacking long term
experimental data to confirm either model, the more conservative LXO results shown in Tables
2.2 through 2.5 are recommended for estimating concrete degradation from sulfate attack.

Degradation times obtained using a fractional porosity of 0.45 represent nominal values while
the degradation times obtained with fractional porosities of 0.3 and 0.6 represent conservative
and best estimate values, respectively. With this approach, the best estimate of the degradation
time is approximately twice the nominal, while the nominal and conservative values differ less.
Therefore, a large variation in the estimated degradation time is not introduced into the analysis
by choosing a fractional porosity of 0.45 for the nominal value compared to 0.3 for fully
saturated conditions.

While degradation times are presented in the summary tables for the thicknesses involved in the
simulations, degradation times for other thicknesses will be needed in Section 5.0, in which
degradation times are defined for the various SDU 1, 2, and 4 concrete components. To this end,
general degradation rates are defined from simulation results using the linear relationship

A, =2 (2.2)
to
instead of Equation (1.7), which was found to be not applicable to LXO simulation results. Here
(to,xo) represents a selected penetration time and depth from a numerical simulation and the
subscript £ denotes a linear rate constant to distinguish it from the square of time rate constants
defined by Equations (1.6) and (1.7). The time t, associated with another penetration depth x, is
then

—Xo
to = (2.3)
Somewhat faster degradation rates were observed for a thinner model domain (e.g. 20 versus 30
cm), so Table 2.2 and Table 2.4 are used to generate linear degradation rates, which are
presented in Table 2.6.

Calculation of specific degradation times is provided in Section 5.0. SDU 6 is expected to be
constructed with the same concrete mix as the SDU 2. Therefore the SDU 2 rates are used to
predict degradation times for the SDU 6 design.
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Table 2-6. Sulfate attack rates for SDU 2 and SDU 1/4 concrete.
Parameter SDU | SDU | SDU | SbU 1/4 | SDU 1/4 | SDU 1/4

2 CE! | 2NV? | 2BE® CE! NV/2 BE?®
Fractional porosity, b 0.3 0.45 0.6 0.3 0.45 0.6
Penetration depth, x, 9.4 7.4 3.8 23 18.5 7.7
(cm)
Penetration time, t, (yr) | 350 350 350 500 500 500
Linear rate constant, A, | 0.027 | 0.021 | 0.011 0.046 0.037 0.015

(cmlyr)

lCE — Conservative Estimate
2NV — Nominal Value
BE — Best Estimate
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3.0 CARBONATION

Carbonation, more properly termed carbonatation, commonly refers to the reaction of carbon
dioxide with calcium hydroxide (Portlandite) to form calcium carbonate (calcite):

Ca(OH), + H,0 + CO, - CaC05 + 2H,0

More generally, carbonation in the context of concrete may include other reactions of carbon
dioxide with calcium-bearing minerals, such as calcium-silicate-hydrate (CSH). Carbonation
increases mechanical strength and decreases alkalinity to a pH around 8.5 in cementitious
materials. While the former is generally beneficial, corrosion of embedded steel accelerates as
pH approaches carbonated conditions, approximately pH < 10. The volume of the corrosion
products far exceeds that of the uncorroded steel, which typically introduces sufficient internal
pressure to cause cracking and spalling of the surrounding concrete. Most concrete components
of the various SDUs contain reinforcing steel, notable exceptions being the upper and lower
mudmats in the SDU 2 design. Saltstone also contains embedded steel in the form of support
columns (SDU 2 and 4) and roof trusses (SDU 4).

Papadakis et al. (1989) developed an analytical solution for carbonation penetration depth with
the same basic form as Equation (1.2). Using the nomenclature of this report, the expression is

1/2
i e @
where
x = penetration depth [cm]
6 = gas content, Sn [cm® phase / cm® total]

D, = effective diffusion coefficient for gas phase, TD,, [cm?/yr]

Cco,= carbon dioxide concentration [mol / cm® gas]

t = elapsedtime [yr]

Ccaom), = Portlandite concentration [mol / cm?® total]

cesy= CSH concentration, CSH = 3Ca0 - 2Si0, - 3H,0 [mol / cm?® total].

In the context of Equation (1.6), ccqcom), + 3ccsu = (1 — n)psR. Equation (3.1) considers only
transport of carbon dioxide through the gas phase, which is appropriate for unsaturated concrete
in typical applications. However, fully saturated conditions are also of interest for the SDF and
Equation (3.1) can be generalized to include delivery of dissolved carbon dioxide to the reaction
front as follows
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1/2
_ 2(GgDe,gCCOZ,g+0{’De,€CC02,€)t — 1/2
_ [ o~ = At (3.2)
where the subscripts g and ¢ denote the gas and liquid phases, respectively, and
A= [2(GgDe,gCCOZ,Cg+9£’De,€CC02r¢’)]1/2 (3.3)
Ca

Also, the denominator of Equation (3.1) is equivalent to the cumulative molar concentration of
Cain Ca(OH), and CSH, and denoted by c., in these equations. Equation (3.2) is used to
predict carbonation depth under saturated and unsaturated conditions in this study.

Millings (2012) estimated the average and median partial pressure of C0O, in the vadose zone to
be roughly 0.01 atm at the Savannah River Site, compared to an atmospheric partial pressure of
0.00039 atm. Using the ideal gas law at 20°C, the molar concentration of carbon dioxide in the
vadose zone becomes 4.16E-07 mol/cm® gas. The concentration of dissolved €0, in cement pore
water at the cement-soil interface can be estimated by analyzing a calcium carbonate (calcite)
system in equilibrium with gaseous C0,:

H,0 = H* + OH-
C0,(g) + Hy0 = HyCO5
C0,(g) + H,0 = HCO; + H*
H,CO; = HCO; + H
HCO; = CO¥ + H*
CaCO05(s) = Ca’t + CO3~ (3.4)

For a partial pressure of 0.01 atm, pH= 7.3 and the dominant form of dissolved carbon is HCO3
at a concentration ¢, = 3.07E-06 mol/ cm? liquid. The total concentration of dissolved carbon is
Caq = 3.41E-06 mol/ cm? (Table 3-1). The transport properties and solid phase concentrations for
the SDU 1/4 floor and wall concrete and SDU 2 concrete are available from the Saltstone PA
(SRR 2009) and a more recent characterization report, SIMCO (2012). Similar data for the
Saltstone grout are provided in SRR (2009) and SIMCO (2010). These input data to Equations
(3.2) and (3.3) are summarized in Table 3-2. The solid phase concentration of calcium in SDU 1
and 4 roof concrete is approximated by scaling the SDU 1/4 floor/wall concrete value using the
CaO ratios computed in Table 3-3 based on the composition (SIMCO 2012, Table 3; SRR 20009,
Tables 3.2-1 and 3.2-2) of the unhydrated binders. The SDU 2 concrete mix will also be in the
SDU 6 design.
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Table 3-1.

Calcium Carbonate (Calcite) System

1)
2)
3)
4)
5)
6)

1)

1)

2)

3)

4)
5)

6)

1)
2)
3)
4)
5)
6)

Reactions
H,0 < H'+OH
CO,(g) + H,0 <> H,CO;
CO,(g) + H,0 <> HCO; +H"
H,CO; <> HCO; +H*
HCO, ¢ CO,” +H'
CaCOs(s) <> Ca® +CO,>

Specifications

Pco2

Equations
Ky =[HI[OH]

Kcoz = [H2C03]/Pco2

Ky = [H'][HCO47]/[H,CO;5]

Ky = [H1[HCO51/Pcoa

K, =[H"1[CO5”1/[HCO5]
Keo = [Ca”][CO57]
2*[Ca”] + [H'] = [HCO5] + 2*[CO,”] + [OH]

Variables
[H,CO5]
[H']
[OH]
[HCO;]
[CO,"]
[Ca*]
[H,CO5]+[HCO5 1+[CO5”]

0.010000 atm

@25C
1.00E-14 pp2

3.39E-02 M/atm

4.47E-07 M

M?*/atm

4.68E-11 M

4.47E-09 \2

3.39E-04 M
4.93E-08 M
2.03E-07 M
3.07E-03 M
2.91E-06 M
1.54E-03 M
3.41E-03 M
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Chemical equilibrium for calcium carbonate (calcite) at 0.01 atm CO,.

See, for example, p. 180, Stumm
and Morgan, Aquatic Chemistry,
Wiley, 1970

2.00 Millings, M. Summary of Carbon
Dioxide in Water Table Wells and
the Vadose Zone at SRS, SRNL-
L3200-2012-00017. Mav 30. 2012.

-log10K
14 e.g. Table 3.4 (25C), R. A. Freeze
and J. A. Cherry, Groundwater,
Prentice-Hall, 1979
1.47 Table 4-1, J.I. Drever, The_
Geochemistry of Natural Waters,

2nd edition, Prentice-Hall, 1988
6.35 Table 4-1, J. |. Drever, The

Geochemistry of Natural Waters,

2nd edition, Prentice-Hall, 1988
7.82 same as Table 5-1, Stumm and

Morgan, Aquatic Chemistry,

Wiley, 1970
10.33 Table 5-1, Stumm and Morgan,
Aquatic Chemistry, Wiley, 1970
8.35 Table 5-1, Stumm and Morgan,
Aquatic Chemistry, Wiley, 1970
Charge balance

3.39E-07 mol/cm?
7.31 pH
6.69 pOH
3.07E-06 mol/cm?
2.91E-09 mol/cm?
1.54E-06 mol/cm®
3.41E-06 mol/cm®

Notes: (a) All equilibrium constant calculations assume that the solution is ideal with respect to carbonates, i.e., that
all activity coefficients are equal to one in Equations 1) through 5). (b) Equilibrium expressions are written without
explicitly indicating the activity of H,O.
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Table 3-2. Input data and rate constants for carbonation calculations.
Parameter | SDU 2 | SDU 1/4 SDU 4 SDU 1 | Saltstone | Units
Roof Roof
Pco, (@) | 0.01 0.01 0.01 0.01 0.01 atm
Cco,g (0) | 4.16e-7 | 4.16e-7 4.16e-7 4.16e-7 | 4.16e-7 | mol/cm® gas
Cco,e (C) | 3.41e-6 | 3.41e-6 3.41e-6 3.41e-6 | 3.41e-6 | mol/cm® liquid
n(d)| 0.11 0.12 0.136 0.145 0.58 | cm®void/cm®
total
pp (d) | 222 2.24 2.21 2.20 1.01 g/lcm® total
Dy (€) | 0.165 0.165 0.165 0.165 0.165 |cm?/s
7 (f,g) | 0.005 0.008 0.008 0.008 0.014 |-
(f) (f) (f) (f) (9)
D, (h) | 8.25e-4 | 1.32e-3 | 1.32e-3 | 1.32e-3 | 2.31e-3 |cm/s
D, (d,i) | 5.0e-8 | 5.0e-8 1.0e-7 1.0e-7 | 1.0e-8 |cm?/s
(d) (d) (d) (d) (i)
[Ca(OH),] 0 7.2 - - 0 g/kg
(f9) | (f () (9)
Mcacomy, (1) 74 74 - - 74 g/mol
Ccaomy, (K) 0 2.18e-4 - - 0 mol/cm?® total
[CSH] (f,g) | 81.2 118.8 - - 147.4 | g/kg
(f) (f) (9)
Mcgy (1) | 182.1 182.1 - - 182.1 | g/mol
cesy (M) | 9.90e-4 | 1.46e-3 - - 8.18e-4 | mol/cm® total
Ccq (N,0) | 1.63e-3 | 2.63e-3 2.11e-3 1.82e-3 | 1.35e-3 | mol/cm® total
(n) (n) (0) (0) (n)
Best estimate BE BE BE BE BE
Sg (p) | 6.6e-6 6.6e-6 6.6e-6 6.6e-6 0.0004 | cm®gas/
(~0) (~0) (~0) (~0) cm® void
S, (q) 1 1 1 1 0.9996 | cm® liquid / cm®
void
Oy (r) | 7.2e-7 7.9e-7 9.0e-7 9.6e-7 2.1e-4 |cm’gas/
cm’ total
8, (s)| 0.110 0.120 0.136 0.145 0.580 | cm’ liquid / cm’
total
A)| 0.027 0.022 0.037 0.042 0.10 | cm/yr
Nominal value NV NV NV NV NV
Sg (u) | 0.02 0.02 0.02 0.02 0.02 cm® gas /
cm’ void
S,(q) | 0.98 0.98 0.98 0.98 0.98 | cm’ liquid / cm®
void
6, (r) | 0.0022 | 0.0024 0.0027 0.0029 0.0116 |cm’gas/
cm® total
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Parameter | SDU2 | SDU 1/4 SDU 4 SDU 1 | Saltstone | Units
Roof Roof
6, (s) | 0.108 0.118 0.133 0.142 0.568 | cm? liquid / cm®
total
AM)| 017 0.18 0.21 0.24 0.72 | cm/Ayr
Conservative CE CE CE CE CE
estimate
Sy (u)| 0.05 0.05 0.05 0.05 0.05 |cm’gas/
cm® void
Sp(q) | 0.95 0.95 0.95 0.95 0.95 | cm’ liquid / cm’
void
6, (r) | 0.0055 | 0.0060 0.0068 0.0073 | 0.0290 |cm’gas/
cm?® total
6, (s) | 0.105 0.114 0.129 0.138 0.551 | cm? liquid / cm®
total
AM)| 027 0.28 0.33 0.37 1.14 | cmAyr

Table 3-2 notes:

(@) Millings (2012)

(b) pco, and ideal gas law at 20°C

(c) Sum of H,CO5, HCO3, and CO5~ concentrations from Table 3-1

(d) SRR (2009), Table 4.2-16

(e) Marrero and Mason (1972), Table 20, N,-CO, system

(F) SIMCO (2012), Tables 9 and 13, 28 day cure

(g) SIMCO (2010), Tables 6 and 13, WS-2 grout

(h) Dgyg = ™D g

(1) Langton (2010b) Table 1-1, based on SIMCO (2010), rounded to one significant figure
() Mcacom,= 40 + 2(16+1) g/mol

(k) Cca(oH), = [Ca(OH)2],019/1‘/1&1(011)2

(I) The stoichiometry of CSH in cement paste is variable. SIMCO assumes

CSH - 0.65Ca(0H), + CaH,Si0, = 1.65Ca0 - Si0, - 1.65H,0 in STADIUM modeling
(Samson 2010, Table 7). Mgy = 1.65(40) + 3.3(1) + 1(28) + 5.3(16) g/mol

(M) ccsy = [CSH]py/Mcsu

(N) cca = Cca(omy, + 1.65 - ccsp; see note (1)

(o) scaled from “SDU 1/4” concrete using CaO ratio from Table 3-3

(p) computed from van Genuchten (1980) water retention curve and 1500 cm suction

(@) Sg +S,=1
(r) g = Syn
(s) 8, = Syn

(t) Equation (3.3)
(u) postulated condition.
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Table 3-3. Estimated calcium content in SDU 1 and 4 roof concrete relative to SDU 1/4
floor concrete.

Binder CaO | SDU 1/4 Floor | SDU 4 Roof | SDU 1 Roof
(%) (Ibslyd®) (Ibslyd®) (Ibstyd®)
Type I/1l cement Lafarge | 64.8 419 466 400
Type IV cement Lehigh | 63.8 0 0 0
GGBFS Holcim 37.8 278 0 0
Force 10000 SF Grace 0.6 0 0 0
Class F Fly Ash SEFA 1.32 0 62 70
Caoroof /Caoﬂoor - = 0.80 0.69

The molar concentrations of CO, in the gas and liquid phases are observed to be similar (within
an order of magnitude), whereas the effective diffusion coefficient for gas phase transport is 4 to
5 orders of magnitude larger than its counterpart for the liquid phase. Therefore gas phase
transport generally controls the carbonation process, and liquid phase transport is commonly
neglected in the literature (e.g. Papadakis et al. 1989). The exception is saturated conditions,
where liquid phase transport is the only mechanism delivering €0, to the reaction front. The
carbonation rate is minimal under these conditions. As a specific example, Rast and Rinker
(2012) reported a carbonation depth of 1-2 mm for a concrete core taken from a 50 year old
Hanford waste tank. The rate of carbonation is also minimal under dry conditions, because water
is required to support the aqueous reaction Ca(OH), + H,0 + CO, —» CaC05 + 2H,0. The
maximum rate of carbonation occurs at intermediate conditions, roughly 50% relative humidity
(e.g. Papadakis et al. 1989, Walton et al. 1990). The carbonation rate is very sensitive to liquid
saturation near full saturation.

Relative humidity and saturation are related through thermodynamic relationships and a material
specific water retention curve. Total suction is related to water vapor pressure through the
equilibrium thermodynamic relationship (Richards 1965, cited in Fredlund and Rahardjo 1993,
Equations 4.1 and 4.3)

Y = (Pg—Pf)/pg+n=¢C+n=—;—Tln(ﬁ) = - -In(RH)  (35)

Py

known as the Kelvin relationship where

Y = total suction [m]

P, = gas pressure [Pa]

P, = liquid pressure [Pa]

p = liquid density [kg/m®]

g = gravitational acceleration [m/s’]
m = o0smotic suction [m]
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Y, capillary or matric suction [m]

R = universal (molar) gas constant [J/mol-K = m*Pa/mol-K]
T = temperature [K]

M,, = molar mass of water [kg/mol]

P, = water vapor pressure [Pa]

P, = vapor pressure at saturation [Pa]

RH = relative humidity, B,/P, [-]

In light of this expression, water vapor pressure can be viewed as a master variable defining the
pressure state of both the gas and liquid phases (Hall and Hoff 2002). The osmotic suction can be
estimated from the Morse equation (http://en.wikipedia.org/wiki/Osmotic_pressure)

pgm = iMRT (3.6)
where
p = liquid density [kg/m?]
g = gravitational acceleration [m/s°]
m = osmotic suction [m]
i = van’t Hoff factor [-]

M = molarity of the solution [mol/m?]
R = universal (molar) gas constant [J/mol-K = m*Pa/mol-K]

T

temperature [K].

Equation (3.6) assumes a dilute solution, but can be used with increasing approximation for more
concentrated solutions. The dimensionless van’t Hoff factor is approximately one
(http://en.wikipedia.org/wiki/Van_%27t_Hoff factor). Capillary suction is related to saturation
through a water retention curve commonly expressed in the form (van Genuchten 1980)

Se = ii: - :S_—Ge: - [1+(a1¢c)"]m 3.7)
where
S = saturation [m? liquid / m® void]
S, = material specific fitting parameter [m* liquid / m* void]
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6 = water content [m® liquid / m® total]

0, = material specific fitting parameters [m® liquid / m® total]
0, = saturated water content = porosity [m* liquid / m® total]
a = material specific fitting parameter [1/m]

Ye

n, m= material specific fitting parameters [-]

capillary or matric suction [m]

and the subscripts e and r denote “effective” and “residual”. Note that S, and 6, are correlated
(not independent) parameters. It is commonly assumed that m = 1 — 1/n. Figure 3-1 illustrates
water retention curves characteristic of SDU concrete (Phifer et al. 2006) and 20°C cure
temperature ARP/MCU saltstone (Dixon 2011).

1.E+07

1.E+06 -

LE+05 -+

& =—+HQconcrete

1E404 - —&-Saltstone

Matric Suction {cm)

1.E+03 4

1.E402 , ! | |
0 0.2 0.4 0.6 0.8 1

Saturation

Figure 3-1.  Water retention curves for SDF concrete and saltstone.

As mentioned previously, the saturation state of a cementitious material strongly affects the rate
of carbonation, particularly in the vicinity of full saturation. The anticipated saturation states for
SDF cementitious materials can be assessed using Equations (3.5) through (3.7) and estimated
soil suction and relative humidity values.

Once buried under a low-permeability cover system, the SDF will initially be exposed to soil
conditions approaching gravity equilibrium (no infiltration), where the matric suction head is
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equal to height above the water table. Soil moisture contains dissolved solids, but the
concentrations are dilute such that osmotic suction is negligible compared to that within
cementitious materials. Any infiltration above zero produces lower capillary suction levels than
gravity equilibrium. Thus as the cover system degrades over time, soil suction levels will
decrease. With this consideration, the maximum suction head anticipated for SDUs is roughly
1500 cm, the approximate height of the SDUs above the water table (15 meters). From Figure
3-1 the air entry head is observed to exceed 1500 cm for SDF grout and 10,000 cm for SDF
concrete. Thus SDF concrete is expected to be saturated for all time. Ignoring osmotic effects,
saltstone could potentially be slightly unsaturated immediately after cap placement, but if so,
would then become saturated by the time the soil suction levels fall below approximately 1500
cm. Table 3-4 shows saturation calculated from the water retention curves depicted in Figure 3-1
for the expected maximum capillary suction of approximately 1500 cm, and 10x higher and
lower levels as points of reference.

Table 3-4.  Saltstone and concrete saturation for selected capillary suctions.

Parameter |Saltstone Concrete Units
saturated water content, 6, 0.58 0.58 0.58 0.1 0.1 0.1
residual water content, 6, 0 0 0 0 0 0

van Genuchten (1980) a| 1.008E-05 1.008E-05 1.008E-05| 2.086E-06 2.086E-06 2.086E-06|1/cm
van Genuchten (1980) n| 1.67131  1.67131 1.67131 1.9433 1.9433 1.9433

m=1-1/n 0.402 0.402 0.402 0.485 0.485 0.485
capillary suction, Wc 15000 1500 150 15000 1500 150|cm
saturation 0.983 1.000 1.000 0.999 1.000 1.000

The chemical compositions of pore water in SDU concrete and saltstone have been characterized
by SIMCO (2010, 2012) and are reproduced in Table 3-5 through Table 3-7. The osmotic
suctions associated with these molar concentrations are shown in Table 3-8 based on Equation
(3.6). Over time dissolved species will advect and/or diffuse out of cementitious materials, thus
lowering the initial molar concentrations, to levels approaching zero with sufficient time. Table
3-8 includes calculations for two additional concentrations: half the initial values and zero. The
total suction is assumed to be 1500 cm in all cases based on the exposure to soil conditions. The
relative humidity corresponding to 1500 cm is 99.89% from Equation (3.5). In comparison,
carbonation rates reported in the literature are typically focused on 50-70% relative humidity,
which is reflective of atmospheric exposure conditions and maximum penetration. For the initial
and intermediate molar concentrations, the osmotic suctions exceed the total suction and the
capillary suctions are negative-valued (Equation (3.5), total suction is composed of capillary and
osmotic suction). The latter implies the pore water pressure is positive, in contrast to pure water
that is under tension (negative pressure). Therefore, saturation is 100% when dissolved species
are present at these concentrations.
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Table 3-5.  Pore fluid composition for SDU 2 concrete (SIMCO 2012, Table 11).

28d V2 MW 28d V2 28d V2 water

ion mmol/L g/mol mol/L g/L g/L
OH 113.9 17 0.114 1.94
Na* 26.5 23 0.027 0.61
K* 35.8 39 0.036 1.40
S0,” 0 96 0.000 0.00
ca® 2 40 0.002 0.08
cr 4.2 35 0.004 0.15
Nt 0.000 0.00
COz* 0.000 0.00

0.182 42 998
0.4%

T includes NO; and NO3
Table 3-6.  Pore fluid composition for SDU 1/4 concrete (SIMCO 2012, Table 11).

28d V4 MW 28d V4 28d V4 water

ion mmol/L g/mol mol/L g/L g/L
OH 244.4 17 0.244 4.15
Na® 73.9 23 0.074 1.70
K* 140.7 39 0.141 5.49
S0,” 0.1 96 0.000 0.01
ca® 1.8 40 0.002 0.07
cr 4.8 35 0.005 0.17
Nt 0.000 0.00
CO* 0.000 0.00

0.466 11.6 998
1.1%

T includes NO; and NO3
Table 3-7.  Pore fluid composition for saltstone (SIMCO 2010, Table 8).

28d saltstone 28d saltstone 28d saltstone 28d saltstone water

ion mmol/L mg/L mol/L g/L g/L
OH" 383.9 6528 0.384 6.53
Na* 4144.2 95274 4.144 95.27
K* 120.5 4712 0.121 4,71
S0,” 111.7 10731 0.112 10.73
ca® 0.1 2 0.000 0.00
Cr 11.9 421 0.012 0.42
Nt 3552.1 214540 3.552 214.54
0032' 46.8 4683 0.047 4.68

8.371 336.9 998
25%

T includes NO; and NO3
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Relative humidity and capillary suction corresponding to a total suction of

1500 cm.

Table 3-8.
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The practical implication is that saltstone is expected to be fully saturated at early times, when
soil suction levels are the highest, because of osmotic suction. At later times when the molar
concentration of the pore fluid drops, soil (total) suction levels will also be lower such that
saltstone will remain saturated, even with pure water in its pore space. Thus the pore spaces of
both concrete and grout are expected to be fully saturated for all time once these materials are in
the subsurface.

While saturated pores preclude gas-phase €O, transport and relatively fast carbonation, these
processes may occur should either cementitious material be fractured, depending on matric
suction levels and crack aperture. For a perfectly wetting fluid, the capillary rise between two
vertical parallel surfaces is

20

=35 (3.8)
where
h = capillary rise [m]
o = surface tension [N/m]

p = density [kg/m’]
g = gravitation acceleration [m/s?]
b = aperture [m]

In the context of a vertical fracture subjected to a given pressure head, P/pg [m], in the
surrounding matrix, the aperture will be liquid-filled under the condition (Wang and Narasimhan
1985)

P 20

Y > ~ogb (3.9)
In other words, the fracture will be liquid-filled for positive pressure head and suction (negative
pressure) head less than 2a/pgb. Alternatively, the maximum aperture that can be liquid-filled
for a given capillary suction head, ¥, [m], is

20

"~ pgve

(3.10)

For 1. = 1500 cm = 15m, the result is b = 1 um = 0.04 mil. Hence fractures, if present, are
expected to be unsaturated unless very narrow. If these postulated fractures are connected, then
they would provide a means for gas-phase transport of C 0, through the porous medium.

Returning to Equations (3.2) and (3.3), three conditions are considered for predicting carbonation
rates in SDU concrete and saltstone, as shown in Table 3-2. The best-estimate (BE) rate is
calculated assuming a capillary suction of 1500 cm and pure water occupying pore space, i.e.,
neglecting osmotic effects. Under these conditions SDF concrete is fully liquid saturated and
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SDF grout is liquid saturated at 99.96% (practically saturated). The “best-estimate (BE)” label is
somewhat of a misnomer because suction levels will be less than 1500 cm for much of the
performance period, osmotic effects are present, and saltstone is expected to be liquid saturated.
Rather, the label is used in a relative sense compared to the other two scenarios. The
conservative-estimate (CE) rate implicitly assumes that connected fractures or similar
unsaturated macro-porous features are present such that an equivalent of 5% of the pore space is
open for gas-phase transport, i.e., 5% gas saturation. An intermediate setting of 2% gas
saturation is chosen for the nominal value (NV) calculation. Table 3-2 indicates the carbonation
rate coefficient A [cm/yr] from Equation (3.3) for the BE, NV, and CE conditions. The
carbonation rate coefficient can be used in Equation (1.8) to predict degradation time ¢, for a
specified material thickness x,.

As a point of reference, Brown et al. (2012) performed detailed simulations of carbonation in
“VCT” concrete, which is essentially Saltstone SDU 2 concrete, using
LeachXS™/ORCHESTRA in a developmental CBP Software Toolbox carbonation module
(Brown et al. 2013a, b). The carbonation depth was defined as the location where pH < 9. Figure
3-2 is a reproduction of simulation results for various €0, concentrations based on 30%
porosity, 90% liquid saturation, and a diffusion coefficient of 1.E-6 m?/s. These settings are more
conservative than any of the cases considered in Table 3-2. Focusing on the 1% €O, curve (0.01
atm), the numerical simulations are observed to exhibit an initial time lag before the carbonation
front advances from the exposure surface. After vt = 15 vyr (t = 225 yr), the carbonation front
stalls at about 1.25 cm. Using t, = 225 yr and x, = 1.25 cm in Equation (1.7), the equivalent
carbonation rate constant is A = 0.083 cm/\yr. The latter is significantly lower than the
conservative-estimate value in Table 3-2, which suggests that the analytic solution given by
Equation (3.2) and other input assumptions are biased in the conservative direction.

Implicit in Equations (1.2) and (3.2) is the assumption of a constant diffusion coefficient. If
physical damage is occurring as a result of carbonation, then the diffusion coefficient may
increase and the front penetrate deeper than indicated by a Vt dependence. The t dependence is
a result of increasing distance between the exposure boundary and reaction front. If damage
occurs around the reaction front, then the diffusion distance may effectively not increase beyond
some maximum distance, & [cm], and penetration will be proportional to time instead of t.
Assuming penetration initially follows Equation (1.5), this alternative relationship is described

by

x—%tzaz/Aztzyt (3.11)
where
6 = penetration through time tgs [cm]
ts = time at which penetration reaches & [yr]

Equations (1.5) and (3.11) are schematically depicted in Figure 3-3. Solving Equation (3.11) for
time yields
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compared to
x2

for a fixed diffusion coefficient from Equation (1.5). To account for the feedback effects of
physical damage on diffusion rates, the minimum of Equations (3.12) and (3.13) is taken as the
estimated degradation time ¢, for a specified material thickness x:

2
to = min [, 22|, (3.14)
The minimum time curve is shown in Figure 3-3 as a dashed red line. A reasonable assumption
for the maximum diffusion distance, & [yr], is the depth of concrete cover over reinforcing steel,
approximately 5 cm in typical construction based on American Concrete Institute (ACI) code
318 (http://en.wikipedia.org/wiki/Concrete cover). Calculation of specific degradation times is
postponed until Section 5.0.
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Figure 3-2.  Carbonation simulation results as a function of soil-gas CO, concentration
for 90% concrete saturation from Brown et al (2012) (VCT = SDU 2
concrete, HPC = high performance concrete).
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Figure 3-3.  Square-root and linear penetration with respect to time.
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4.0 DECALCIFICATION

Decalcification in this application refers to leaching of Ca?* in pore water to exterior soil, where
the concentration is assumed to be zero (Walton et al. 1990, Langton 2007, 2010a). Leaching
may occur through diffusion and/or advection. For diffusion-controlled release between a sharp
dissolution front and the soil interface, the penetration depth follows the general Equation (1.2)
as

x = [z e (4.0)
where
x = penetration depth [cm]
6 = liquid content, Sn [cm?® liquid / cm?® total]

D, = effective diffusion coefficient for liquid phase, TD,, [cm?/yr]
t = elapsed time [yr]
ccq2+ = dissolved Ca?* concentration [mol / cm? liquid]

ccq = calcium concentration in solid phase [mol / cm® total]

AE[ s

29DeCCa2+]

CCa

(4.2)

Table 4-1 summarizes best-estimate input parameters for use in Equations (4.1) and (4.2). Most
parameters come from Table 3-2. The concentration of Ca?* varies through the leaching
process; alkali metals leach first, followed by (OH), , and then CSH (Walton et al. 1990). In this
analysis dissolution of CSH is assumed to control the concentration of Ca?* over most of the
leaching process, considering that little or no Portandite is expected in SDF cementitious
materials (Table 4-1). CSH dissolves incongruently in that calcites leach preferentially in
comparison to silicates. SIMCO (2012, Table 11) measured c,z+ = 1.8 - 2.0 mmol/L in SDU
concrete, which is consistent with Clodic and Meike (1997, Table 15, Ca/Si = 0.9). A value of
2.e-6 mol/cm?® is assumed in Table 4-1. The rate constants for decalcification controlled by
diffusion are low indicating a slow process.

While diffusion may control the decalcification of thinner features at earlier times, specifically in
concrete barriers, advection is more likely to control decalcification of saltstone considering its
greater dimensions and high hydraulic conductivity. Considering downward flow, a quasi-steady
state advective mass balance for decalcification is

U-coget"t=ccqh (4.3)
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where
U = Darcy velocity (volumetric water flux) [cm/yr]
t = elapsedtime [yr]
h = monolith height [cm]

and the concentrations are as defined for Equation (4.1). Equation (4.3) assumes that advection
occurs uniformly through the entire thickness, the dissolution front advances uniformly, and the
exit concentration coincides with Ca?* solubility. Solving for time yields

t=-".2=(2)-h (4.4)

Cog2+ U Ay

where A, [cm/yr] is the rate coefficient for this advection-based degradation. Equation (4.4) is
more limiting than Equation (4.1) for saltstone.

The hydraulic head gradient in vadose zone soil tends to be one or less, such that the flowrate is
equal to or less than the saturated hydraulic conductivity, per Darcy’s law. For a cementitious
monolith placed in the vadose zone, the head gradient can be higher as infiltration flows around
the lower permeability obstacle. The assumptions for the BE, NV, and CE scenarios are U =1,
10, and 100 times the saturated conductivity respectively.

The hydraulic conductivity of saltstone may vary with water to premix ratios and curing
temperature profiles. An analysis of recent production runs (Isom 2012) indicates the water to
premix ratio is bounded by a low value of 0.59 and a high value of 0.64. Reigel et al. (2012)
characterized the saturated conductivity of saltstone for various water to premix ratios and two
different curing temperature profiles. The average hydraulic conductivity for this operating band
is 6.4E-09 cm/s (Table 4-2). Calculation of specific degradation times is postponed until Section
5.0.
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Table 4-1. Input data and rate constants for diffusion-limited decalcification.
Parameter | SDU 2 | SDU 1/4 SDU 4 SDU 1 | Saltstone | Units
Roof Roof
Coqe+ (@) | 2.0e-6 | 2.0e-6 2.0e-6 2.0e-6 2.0e-6 | mol/cm” liquid
n(b)| 0.11 0.12 0.136 0.145 0.58 | cm® void / cm® total
p, (0) | 2.22 2.24 2.21 2.20 1.01 | g/em® total
D, (b,c) | 5.0e-8 | 5.0e-8 1.0e-7 1.0e-7 1.0e-8 | cm“/s
(b) (b) (b) (b) (©)
[Ca(OH),] 0 7.2 - - 0 g/kg
(de) | (d) (d) (€)
Mcacomy, (f) 74 74 - - 74 g/mol
Cca(o), (9) 0 2.18e-4 - - 0 mol/cm? total
[CSH] (d,e) | 81.2 118.8 - - 147.4 | g/kg
(d) (d) (e)
Mgy (n) | 182.1 182.1 - - 182.1 | g/mol
cesy (i) | 9.90e-4 | 1.46e-3 - - 8.18e-4 | mol/cm® total
Cca (,K) | 1.63e-3 | 2.63e-3 2.11e-3 1.82e-3 | 1.35e-3 | mol/cm® total
() () (k) (k) ()
Y0 1 1 1 1 0.9983 | cm® liquid / cm®
void
6, (m)| 0.110 | 0.120 0.136 0.145 0579 | cm® liquid / cm®
total
A(n)| 0.021 0.017 0.028 0.032 0.023 | cm/yr

Table 4-1 notes:

(a) approximate solubility of CSH

(b) SRR (2009), Table 4.2-16

(c) Langton (2010b) Table 1-1, based on SIMCO (2010), rounded to one significant figure
(d) SIMCO (2012), Tables 9 and 13, 28 day cure

(e) SIMCO (2010), Tables 6 and 13, WS-2 grout

(f) Mcacomy,= 40 + 2(16+1) g/mol

(9) ccacomy, = [Ca(OH);1pp/Mcacom,

(h) The stoichiometry of CSH in cement paste is variable. SIMCO assumes

CSH - 0.65Ca(0H), + CaH,Si0, = 1.65Ca0 - Si0, - 1.65H,0 in STADIUM modeling
(Samson 2010, Table 7). M sy = 1.65(40) + 3.3(1) + 1(28) + 5.3(16) g/mol

(1) ccsu = [CSH]pp/Mcsn

() ¢ca = Ccaconmy, + 1.65 - ccsp; See note (h)

(k) scaled from “SDU 1/4” concrete using CaO ratio from Table 3-3

(I) computed from van Genuchten (1980) water retention curve and 1500 cm suction

(m) 919 = Sgn

(n) Equation (4.2).
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Table 4-2. Measured hydraulic conductivity from SRNL-ST1-2012-00558 (Reigel et al.

2012).
Hydraulic Conductivity (cm/s)
Final w/p Cell K Tem_perature Cell F Temperature
ratio Profile Profile
Saturated Exposed Saturated Exposed
Surface Surface
0.59 1.7E-09 4.5E-09 1.4E-09 4.3E-09
0.59 1.9E-09 3.9E-10 3.6E-09 1.6E-09
0.6 1.7E-09 1.7E-09 4.1E-09 2.1E-09
0.6 2.1E-09 2.2E-09 3.7E-09 1.3E-09
0.64 3.2E-08 4.5E-08 7.0E-09 1.3E-09
0.64 9.6E-09 1.3E-08 5.0E-09 3.1E-09
Maximum | 3.2E-08 4.5E-08 7.0E-09 4.3E-09
Average | 8.2E-09 1.1E-08 4.1E-09 2.3E-09
Maximum 4.5E-08 7.0E-09
Average 9.7E-09 3.2E-09
Maximum 4.5E-08
Average 6.4E-09
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5.0 SDF CEMENTITIOUIS MATERIAL DEGRADATION TIMES

Degradation rates are defined for sulfate attack, carbonation-induced steel corrosion, and
decalcification in Table 5-1 through Table 5-3 for SDU 2, 4, and 1 respectively at three levels:
conservative estimate (CE), nominal value (NV), and best estimate (BE). As noted in the
Introduction, the nominal value is defined to be an intermediate result that is more probable than
the conservative estimate and more defensible than the best estimate. Table 5-1 through Table
5-3 present the thicknesses of the key SDU cementitious components. Degradation times can be
computed from degradation rates and material thicknesses using Equation (2.3) for sulfate attack,
Equation (3.14) for carbonation, and Equation (4.4) for decalcification.

As noted earlier, steel corrosion products (rust) are expansive and when present inside concrete
(e.g. corroded rebar) can exert stresses that cause cracking. Under high pH conditions, such as
found in uncarbonated concrete, a passivating layer forms on steel surfaces leading to relatively
slow corrosion rates. Specifically, the passive corrosion rate is typically 0.1 um/yr (ACI 222R-
01) and might range between 0.01 and 1 um/yr (see Ahmad 2003, Equation (14) and surrounding
discussion). Much higher corrosion rates, roughly 1000x (ACI 222R-01, Ahmad 2003), occur at
lower pH, found in concrete following the arrival of a carbonation front. Degradation of concrete
barriers via corrosion of embedded steel is analyzed here in the manner typical of civil
engineering applications focused on structural service life. That is, corrosion is assumed to be
negligible prior to carbonation and extensive damage is assumed to coincide with carbonation.
Neglecting passive steel corrosion prior to carbonation is deemed an acceptable simplifying
assumption considering the time scale of combined carbonation and external sulfate attack on
concrete. In the degradation analysis that follows, concrete barriers become fully degraded after
roughly a thousand years from a combination of sulfate attack and carbonation. The corrosion
depth for passivated steel over this time frame would be nominally 0.1 mm and conservatively 1
mm, which is not expected to cause significant damage. That is, passive steel corrosion is
expected to be a non-limiting degradation phenomenon and is thus not explicitly considered in
the degradation calculations that follow. Regarding other degradation mechanisms, Turick and
Berry (2012) concluded that biodegradation of SDU concrete is likely, but would be
concentrated near outer surfaces with penetration limited by the high pH and osmotic pressure of
saltstone grout pore fluid, at least for early times. Biodegradation is also assumed to be a non-
limiting phenomenon and neglected in degradation calculations. Carbonation advances from the
outside in, while sulfate attack, arising from sulfate in saltstone pore water, occurs from the
inside moving outward. Complete degradation is assumed to occur when the two reaction fronts
meet. In some cases, one or the other degradation mechanism is delayed. Sulfate attack on the
underside of each SDU roof is delayed until sulfate migrates through the clean grout overlying
saltstone. SDU 2 has a High Density Polyethylene (HDPE) liner along the exterior of the walls
and a composite layer of HDPE and a Geosynthetic Clay Liner (GCL) that covers the roof and
separates the upper and lower mudmats. Carbonation in SDU 2 concrete is assumed to be
delayed until HDPE/GCL liners are significantly degraded. If the delay is long enough for one
process, the other may fully penetrate the thickness in question.

Sulfate attack and carbonation are assumed to begin at facility closure, time zero with respect to
the Performance Assessment, on the general basis that the operational period is short compared
to PA timeframes and can be neglected compared to analysis uncertainties. However, in some
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cases concrete will be fully protected from degradation for at least the operational phase, thus
avoiding any non-conservative approximation. For example, the SDU 2 interior waterproof
coating and exterior shotcrete layer will protect wall concrete for at least several decades from
sulfate attack and carbonation respectively. Also, the SDU 1 and 4 wall concrete is assumed to
be already fully degraded at t=0.

The lag time for sulfate to reach the roof is estimated using the analytic solution for diffusion
into a semi-infinite medium (Myer 1971, Equation (6.4.29); Flach et al. 2009, Equation 19b)

c = cperfc (ZLDet) (5.1)
where
¢ = interior concentration [mol/L]
co, = boundary concentration [mol/L]
x = penetration depth [cm]
D, = effective diffusion coefficient for liquid phase, TD,,, [cm?/yr]
t = elapsed time [yr]

The penetration depth is the thickness of the clean grout. Effective diffusion coefficients are
defined in Table 3-2 and Table 4-1 (same values). The ratio c/c, is assumed to be 10%, 20%,
and 50% for the CE, NV, and BE cases. When these trigger values are reached, carbonation is
conservatively assumed to occur as though the underside of the roof were exposed to the full
sulfate concentration, c,. The resulting delay times are indicated in Table 5-1 through Table 5-3.

Significant degradation of the HDPE and GCL barriers is assumed to be necessary for C0O,
diffusion into the concrete. The degradation of these barriers is evaluated in Flach et al. (2009)
and data extracted from Appendix E of SRNL-STI-2009-00115 is provided in Table 5-4.
“Significant” degradation is defined as a 100x increase in hydraulic conductivity (due to holes,
tears), and occurs at approximately 900 and 1400 years for HDPE and HDPE-GCL respectively.
These delay times appear in Table 5-1.

The maximum diffusion distance, 6 [cm], in Equation (3.14) is generally assumed to be 5 cm,
the typical thickness of concrete cover over reinforcing steel based on ACI code 318, as
previously discussed. The exception is the floor and upper mudmat system. Because the 10 cm
thick upper mudmat does not contain rebar, carbonation is assumed to cause no damage to this
material. Therefore the minimum diffusion distance is 10 cm. Although presented in the context
of carbonation, Equation (3.14) is also applied to diffusion-controlled decalcification.

For SDU 4, the top portion of saltstone and the clean grout contains roof support trusses. The
joist girder system employed for the construction of the permanent roof in SDU 4 has a depth of
28 inches (Drawing C-CC-Z-0011). The top elevation of the girder is at least 296 feet, 0 inches
(Drawing C-CS-Z-0002). Thus, the bottom elevation of the girder would be no less than 294 feet,
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4 inches. With a top of concrete floor elevation of 271 feet (Drawing W828992) and a maximum
saltstone fill height of 24 feet, 9 inches (Phifer et al. 2006, Section 4.6.2), the maximum
elevation of saltstone would be 295 feet, 9 inches. Thus, the joist girders would not extend more
than 1 foot, 5 inches into the saltstone. However, Performance Assessment analysts anticipate
modeling the upper 3.45 feet of grout and saltstone (“Top saltstone”) as influenced by
carbonation-induced steel corrosion to be conservative. The remaining saltstone thickness, with
the exception of the roof support columns, degrades by decalcification.

The 12 inch “FloorUMM?” thickness for SDU 2 denotes the combination of an 8 inch floor with
rebar and a 4 inch upper mudmat without rebar. “Grout” thicknesses include saltstone and clean
grout that covers the saltstone. Decalcification of concrete by diffusion is much slower than
sulfate attack and carbonation and not limiting; only best-estimate values are provided to indicate
the slowness of this process. Sulfate attack and carbonation occur simultaneously, generally
meeting at a point in the interior of the concrete. Thus the indicated degradation times are usually
the same for both phenomena. Exceptions occur when one phenomenon is significantly delayed,
such that the other mechanism is capable of degrading the entire thickness before the lag time of
the former expires. Carbonation does not damage saltstone in general, an exception being in the
vicinity of vertical steel columns supporting the roof. These column regions degrade differently
than the surrounding grout and saltstone.

Column degradation for SDU 1/4 is driven by carbonation fronts advancing inside the pipe
column through concrete and outside the column through grout; both processes lead to
accelerated steel corrosion. Carbonation occurs faster through the grout, so only the outer
carbonation front is calculated. Carbonation through the column region is assumed to start after
the earlier of the roof and floor degradation times, such that columns degrade symmetrically
from the top and bottom. Performance Assessment analysts anticipate discretizing the columns in
2 ft segments for flow and transport simulations; therefore, degradation times are computed for
24 inch increments. The main calculation table indicates the degradation times for the first pair
of column segments. Degradation times for all column segments (denoted “groutl”, “grout2”,
etc.) are indicated by a summary list adjoining the main table. Because the carbonation front
advances at a constant rate (past 5 cm), the elapsed time for the carbonation front to pass through
a segment is the same for all segments.

In Revisions 0 and 1 of this report, SDU 2/6 columns were assumed to degrade in the same
manner as SDU 1/4, that is, by carbonation progressing longitudinally. For continuity with these
earlier report versions and associated flow and transport simulations (e.g. Flach and Taylor
2014), degradation estimates are first presented assuming carbonation-induced steel corrosion as
the controlling mechanism for SDU 2/6 columns (Table 5-1, Table 5-5 through Table 5-7, and
Table 5-11). However, unlike the concrete-filled steel pipes of the SDU 1/4 design (SRR 2013),
SDU 2/6 columns are actually reinforced concrete (SRR 2013, 2014), which enables sulfate
attack to advance radially inward. With this realization, further results are presented for each
prior SDU 2/6 case assuming sulfate attack as the controlling degradation mechanism. Under this
scenario, SDU 2/6 columns degrade uniformly from top to bottom, precluding the need to define
vertical segments as with SDU 1/4. The maximum sulfate attack depth for these circular cross-
sections is approximated by half the side length of the equivalent area square.
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Degradation times are defined for sulfate attack, carbonation-induced steel corrosion, and
decalcification in Table 5-1 through Table 5-3 for SDU 2 (assuming column degradation by
carbonation), 4, and 1, respectively. The differences among the CE, NV, and BE values is an
indication of the level of uncertainty inherent in the underlying degradation analyses. The
nominal values, which are intended to reflect moderate conservatism, are recommended for
baseline Performance Assessment simulations.

Compared to Revision 0, the BE degradation rates for column segments are much slower in this
report. The reason is a 4x decrease in the gas phase saturation for grout from 0.0017 to 0.0004,
due to a revised saltstone moisture characteristic curve, and the fact that gas phase diffusion
dominates liquid phase diffusion. The carbonation analysis invokes a simplified concept for steel
corrosion, specifically, that no corrosion occurs prior to the arrival of the carbonation front due
to high pH and passivated steel, and instantaneous corrosion at the time of arrival. The
assumption of zero corrosion prior to carbonation becomes increasingly inaccurate for longer
carbonation times, and the BE column corrosion degradation times are biased high from this
perspective.

Compared to Revision 0, additional degradation times are defined for SDU 2 and future SDU 6
designs in Table 5-5 through Table 5-7 assuming saltstone fills the upper portion of the interior
volume (no clean cap fill), to bound expected future operations which may reduce the thickness
of the clean cap. The direct effect is immediate, rather than delayed, sulfate attack on the
underside of the concrete roof for each SDU type. The earlier roof degradation time leads to
earlier degradation of saltstone and the roof support columns. The cementitious materials
associated with SDU 2 will also be used in SDU 6 construction and operation. Thus the basic
degradation rates calculated for SDU 2 apply to SDU 6 as well. However, geometric differences
in the two designs lead to different degradation times. Also, the SDU 6 design lacks an interior
waterproof coating which protects the interior wall from sulfate attack during operations. Flach
(2013, Tables 4 and 7) estimated an initial degradation thickness for SDU 6 wall segments
(segmented because the wall is tapered) and these values were used in Revision 0 and 1 of this
report. Since then an error in the molecular weight of the AFm phase used in the analysis was
discovered and Table 5-8 through Table 5-10 reflect the corrected analysis. The changes to the
remaining intact thickness at the time of facility closure are practically insignificant. Two sets of
SDU 6 estimates for overall degradation are provided in Table 5-6 and Table 5-7. The “Design”
case constitutes the expected nominal dimensions of the final SDU 6 design. The “Design
w/Margin” case is based on more conservative (thinner) dimensions. Table 5-11 presents SDU 2
degradation times for the intermediate case of a six inch clean cap. Because Equation (5.1) is
non-linear in time the benefit of a six inch clean cap is minimal compared to the traditional 24
inch thickness.

As discussed previously, the SDU 2/6 degradation calculations summarized in Table 5-1, Table
5-5 through Table 5-7, and Table 5-11 assume carbonation as the controlling degradation
mechanism for roof support columns. These five scenarios were reanalyzed under the
assumption of column degradation by sulfate attack and summary results are presented in Table
5-12 through Table 5-16.
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Degradation analysis for SDU 2 concrete and saltstone with 24 inch clean cap
and column degradation by carbonation.

Table 5-1.
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* Use degradation time for successive column segments
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Degradation analysis for SDU 4 concrete and saltstone.

Table 5-2.
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* Use degradation time for successive column segments
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Degradation analysis for SDU 1 concrete and saltstone.

Table 5-3.
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Degradation of HDPE and HDPE-GCL materials.

HDPE-GCL Hydraulic

HDPE Hydraulic Conductivity Conductivity
Time Period Value Ratio to Initial Value Ratio to Initial
(years) (cm/sec) Value (cm/sec) Value
0-50 5.87E-10 1 2.19E-11 1
900 - 1,000 6.04E-08 103 1.50E-09 68.5
1,400 — 1,600 9.69E-08 165 2.31E-09 105
9,500 — 10,000 6.44E-07 1,097 1.09E-08 498
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Degradation analysis for SDU 2 concrete and saltstone assuming no clean cap
fill and column degradation by carbonation.

Table 5-5.
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* Use degradation time for successive column segments
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Degradation analysis for SDU 6 “Design” case assuming no clean cap fill and

Table 5-6.

column degradation by carbonation.
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* Use degradation time for successive column segments
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Degradation analysis for SDU 6 “Design” case assuming no clean cap fill and
column degradation by carbonation (continued).

Table 5-6
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* Use degradation time for successive column segments
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Degradation analysis for SDU 6 “Design w/Margin” case assuming no clean

Table 5-7.

cap fill and column degradation by carbonation.
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* Use degradation time for successive column segments
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* Use degradation time for successive column segments
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Table 5-8. Estimated reaction capacity for concrete reaction with sulfate.

SIMCO March 2012 report
Bulk density 2309 kg/m3
2.309 g/mL
Mass Molecular Molar
fraction mass density Ca Al
g/kg g/mol mol/mL mol/mL mol/mL
CSH 81.2 182.1 1.03E-03 1.70E-03 0.00E+00
Portlandite 0 74 0 0 0
AFm 10.0 622 3.71E-05 1.48E-04 7.42E-05
C4FH13 0
SDU-2 Concrete 1.85E-03  7.42E-05
Ca/Al Al/Ca
24.9 0.040
Ettringite 3 0.3333333
Al is limiting
Maximum ettringite  3.71E-05 mol/mL
Sulfate per ettringite 3
Sulfate required for reaction  1.11E-04 mol/mL
4.82E-05 mol/g

Minerals Ca Si H @) Al S MW Note
MW (g/mol) 40 28 1 16 27 32 g/mol
1.65Ca0 . Si02 . 1.65H20 CSH 1.65 1 33 53 0 0 182.1 a)
Ca(OH)2 Portlandite 1 0 2 2 0 0 74
3Ca0. Al203. CaS04 . 12H20 AFm 4 0 24 22 2 1 622 b)
? C4FH13 0

3Ca0. Al203 . 3Cas04 . 32H20 Ettringite 6 0 64 50 2 3 1254 )

Notes
a) see Note (I) to Table 3-1, SRNL-STI-2013-00118, Rev. 0 for CSH formula

b) http://www.understanding-cement.com/hydration.html, http://en.wikipedia.org/wiki/Cement_chemist_notation
c) http://en.wikipedia.org/wiki/Ettringite, http://webmineral.com/data/Ettringite.shtml
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Table 5-9.
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Initial SDU-6 wall degradation from bleedwater exposure, “Design” case.

SDU-6
thickness, L

initial saturation, S;
final saturation, S¢
change in saturation, AS
porosity, n

surface crack depth

Slow reaction
penetration fraction
penetration distance, x
total degraded thickness

Fast reaction

bulk density, py,
bleedwater concentration, c

reaction capacity, R

penetration fraction
penetration distance, x
total degraded thickness

Initial damage
Geometric mean value

Intact wall thickness~

Notes:

Wall 1
22.37
56.82

0.73
1
0.277
0.11
1
0.39

0.27
15.34
16.34

6.43

2.22
150
0.15
1.50E-04
4.8E-05
1.1E-04
0.11
0.04
2.36
3.36
1.32

7.41

2.92
r

49.41

19.45

Wall 2 Wall 3
19.07 15.66
48.44 39.78

0.73 0.73
1 1

0.277 0.277
0.11 0.11
1 1
0.39 0.39
0.27 0.27
13.08 10.74
14.08 11.74
5.54 4.62
2.22 2.22
150 150
0.15 0.15
1.50E-04  1.50E-04
4.86-05  4.8E-05
1.1E-04  1.1E-04
0.11 0.11
0.04 0.04
2.02 1.65
3.02 2.65
1.19 1.05
6.52 5.58
2.57 2.20

41927 34197
16.50 13.46

a) based on 73% average observed in Sappington and Phifer (2005)
b) SRNL-STI-2013-00118, Rev. 0, Table 3-1
c) Page 5 in Levitt, M. Concrete Materials: Problems and Solutions. Taylor & Francis e-Library. 2003.
d) bleedwater taken as the midpoint between feedwater (0.1 mol/L) and porewater (~2x) values;
2x based on SIMCO June 2010 report
e) based on SIMCO March 12 characterization

Wall 4
12.28
31.19

0.73
1
0.277
0.11
1
0.39

0.27
8.42
9.42
3.71

2.22
150
0.15
1.50E-04
4.8E-05
1.1E-04
0.11
0.04
1.30
2.30
0.90

4.65

1.83
r

26.54

10.45

Wall 5
10.35 in
26.29 cm
0.73 mL liquid / mL void
1 mL liquid / mL void
0.27 mL liquid / mL void
0.11 mL void / mL total
1cm
0.39 in

0.27
7.10 cm
8.10 cm
3.19 in

2.22 g/mL
150 mmol/L
0.15 mol/L
1.50E-04 mol/mL
4.8E-05 mol/g
1.1E-04 mol/mL
0.11 mol/L
0.04
1.09 cm
2.09 cm
0.82 in

4.12 cm
1.62 in
22.17 cm
8.73 in

Note

b)
d)

e)
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Table 5-10. Initial SDU-6 wall degradation from bleedwater exposure, “Design w/Margin” case.

SDU-6 Wall 1 Wall 2 Wall 3 Wall 4 Wall 5 Note
thickness, L 18.49 15.43 12.26 9.12 7.33 in
46.96 39.19 31.14 23.16 18.62 cm
initial saturation, S; 0.73 0.73 0.73 0.73 0.73 mL liquid / mL void  a)
final saturation, S¢ 1 1 1 1 1 mL liquid / mL void
change in saturation, AS 0.277 0.277 0.277 0.277 0.27 mL liquid / mL void
porosity, n 0.11 0.11 0.11 0.11 0.11 mL void / mL total  b)
surface crack depth 1 1 1 1 1cm c)
0.39 0.39 0.39 0.39 0.39 in
Slow reaction
penetration fraction 0.27 0.27 0.27 0.27 0.27
penetration distance, x 12.68 10.58 8.41 6.25 5.03 cm
total degraded thickness 13.68 11.58 9.41 7.25 6.03 cm
5.39 4.56 3.70 2.86 2.37 in
Fast reaction
bulk density, py, 2.22 2.22 2.22 2.22 2.22 g/mL b)
bleedwater concentration, c 150 150 150 150 150 mmol/L d)
0.15 0.15 0.15 0.15 0.15 mol/L
1.50E-04 1.50E-04 1.50E-04 1.50E-04 1.50E-04 mol/mL
reaction capacity, R 4.8E-05 4.8E-05 4.8E-05 4.8E-05 4.8E-05 mol/g e)
1.1E-04 1.1E-04 1.1E-04 1.1E-04 1.1E-04 mol/mL
0.11 0.11 0.11 0.11 0.11 mol/L
penetration fraction 0.04 0.04 0.04 0.04 0.04
penetration distance, x 1.95 1.63 1.30 0.96 0.77 cm
total degraded thickness 2.95 2.63 2.30 1.96 1.77 cm
1.16 1.04 0.90 0.77 0.70 in
Initial damage
Geometric mean value 6.36 5.52 4.65 3.77 3.27 cm
2.50 2.17 1.83 1.49 1.29 in
Intact wall thickness”  40.61"  33.677  26.49°  19.39° 1535 cm
15.99 13.26 10.43 7.63 6.04 in
Notes:
a) based on 73% average observed in Sappington and Phifer (2005)
b) SRNL-STI-2013-00118, Rev. 0, Table 3-1
c) Page 5 in Levitt, M. Concrete Materials: Problems and Solutions. Taylor & Francis e-Library. 2003.
d) bleedwater taken as the midpoint between feedwater (0.1 mol/L) and porewater (~2x) values;
2x based on SIMCO June 2010 report
e) based on SIMCO March 12 characterization
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Degradation analysis for SDU 2 concrete and saltstone assum

Table 5-11.

clean cap fill and column degradation by carbonation.
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Degradation analysis for SDU 2 concrete and saltstone with 24 inch clean cap
and column degradation by sulfate attack.

Table 5-12.
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Degradation analysis for SDU 2 concrete and saltstone assuming no clean cap
fill and column degradation by sulfate attack.

Table 5-13.
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Degradation analysis for SDU 6 “Design” case assuming no clean cap fill and

Table 5-14.

column degradation by sulfate attack.
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Degradation analysis for SDU 6 “Design” case assuming no clean cap fill and

Table 5-14

column degradation by sulfate attack (continued).
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Degradation analysis for SDU 6 “Design w/Margin” case assuming no clean
cap fill and column degradation by sulfate attack.

Table 5-15.
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Degradation analysis for SDU 6 “Design w/Margin” case assuming no clean

cap fill and column degradation by sulfate attack (continued).

Table 5-15
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Degradation analysis for SDU 2 concrete and saltstone assuming a six inch

Table 5-16.

clean cap fill and column degradation by sulfate attack.
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