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2012 Accomplishments - Tritium Aging Studies on Stainless Steels

I. SUMMARY

This report summarizes the research and development accomplishments during FY12
for the tritium effects on materials program. The tritium effects on materials program is
designed to measure the long-term effects of tritium and its radioactive decay product,
helium-3, on the structural properties of forged stainless steels which are used as the
materials of construction for tritium reservoirs. The FY12 R&D accomplishments include:
(1) Fabricated and Thermally-Charged 150 Forged Stainless Steel Samples with Tritium for
Future Aging Studies; (2) Developed an Experimental Plan for Measuring Cracking
Thresholds of Tritium-Charged-and-Aged Steels in High Pressure Hydrogen Gas; (3)
Calculated Sample Tritium Contents For Laboratory Inventory Requirements and
Environmental Release Estimates; (4) Published report on “Cracking Thresholds and
Fracture Toughness Properties of Tritium-Charged-and-Aged Stainless Steels”; and, (5)
Published report on “The Effects of Hydrogen, Tritium, and Heat Treatment on the
Deformation and Fracture Toughness Properties of Stainless Steels”. These
accomplishments are highlighted here and references given to additional reports for more
detailed information.

I1. INTRODUCTION

Forged stainless steels are used as the materials of construction for tritium
reservoirs. During service, tritium diffuses into the reservoir walls and radioactively decays
to helium-3. Tritium and decay helium cause a higher propensity for cracking which could
lead to a tritium leak or delayed failure of a tritium reservoir. The factors that affect the
tendency for crack formation and propagation include: (a) time of exposure; (b) steel type;
(c) steel microstructure; (d) reservoir geometry and gas pressure; and, (e) reservoir residual
stresses from welding and manufacturing. Fracture toughness properties are needed for
designing tritium reservoirs and evaluating the long-term effects of tritium on their
structural properties. These effects are being characterized with the Enhanced Surveillance
Campaign Tritium Effects on Materials Program using the plan described in Reference 1.
Chiefly, the results are obtained by measuring the effects of tritium on the tensile and
fracture toughness properties of samples fabricated from forgings on pre-charged samples
tested in air.

This report describes the FY12 accomplishments for the Tritium Effects on
Materials Program. The FY12 R&D accomplishments include: (1) Fabricated and
Thermally-Charged 150 Forged Stainless Steel Samples with Tritium for Future Aging
Studies; (2) Developed an Experimental Plan for Measuring Cracking Thresholds of
Tritium-Charged-and-Aged Steels in High Pressure Hydrogen Gas; (3) Calculated Sample
Tritium Contents For Laboratory Inventory Requirements and Environmental Release
Estimates; (4) Published report on “Cracking Thresholds and Fracture Toughness
Properties of Tritium-Charged-and-Aged Stainless Steels”; and, (5) Published report on
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“The Effects of Hydrogen, Tritium, and Heat Treatment on the Deformation and Fracture
Toughness Properties of Stainless Steels”.

I11. FABRICATION AND TRITIUM CHARGING OF SAMPLES FOR FUTURE
TRITIUM AGING STUDIES

An important FY12 accomplishment was the fabrication and tritium precharging of 150
samples for future tritium aging studies. These samples are part of four new comprehensive
experimental research and development programs that are underway for investigating the
effects of hydrogen, tritium, and decay helium on the fracture toughness properties of
forged stainless steels. The programs and test matrices are described in a recent program
plan (1).

These programs are first-of-a-kind because they set out to measure tritium and decay
helium effects on the cracking properties of stainless steels using actual tritium reservoir
forgings instead of the experimental forgings of past programs. In this way, the properties
measured will be nearly identical to actual reservoir properties because the microstructure
of the samples will be like that of the forged reservoirs. There are four major programs each
designed to measure the effects of a specific forging variable on tritium compatibility.

The programs include three stainless steels, multiple yield strengths, four different
forging processes, and four different reservoir forgings. They are entitled: (1) Orientation
Effect - Type 316L Cup Forging; (2) Yield Strength Effect - Type 304L Cylindrical Block
Forging; (3) Fracture Toughness Variability - Type 21-6-9 Stainless Brick Forging; and (4)
Forging Process Effects. The plan describes the goals of each program, lists the sample test
matrices and experimental conditions, and reports on initial results (1).

Two tritium charging runs were conducted in FY12 (2-3) by Tritium Programs
Operations and Engineering with support by SRNL R&D Engineering. The tritium fill
conditions were designed to saturate the samples with tritium at a nominal pressure of 5000
psia at a temperature of 350 C for two weeks. Table | shows the SRNL Data Sheet for the
specific fill conditions that were used to charge the samples in the first run and the samples
charged during the run are listed in Table Il (2). Likewise, Table 1l shows the SRNL Data
Sheet for the fill conditions that were used during the second run and the samples charged
are listed in Table IV (3).



SRNL-STI-2013-00048

Table | SRNL DATA SHEET
CHARGING CONDITIONS TRITIUM CHARGING RUN 2012-1
FORGING EFFECT SAMPLES

Document Number: SRNL-L4400-2012-00027 Rev O

Vessel Serial Number: 02151151-4

Vessel Charge History: First Use

Charge Type: Type 1 (C-Shaped Samples)
Total Free Volume, Vessel and Tubing: 248 cc

Acceptable Temperature Range During Fill: 18-28°C

Target Fill Pressure: 2619 psia
Target Fill Pressure Range: 2609-2629 psia
Heated Vessel Temperature: 350°C+5°C

Duration at Temperature and Pressure: 14 Days * 8 Hours
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Table Il Samples Charged During Tritium Charging Run 2012-1

VESSEL SN 02151151-4

FORGING EFFECT SAMPLES — Stacking Order

Source

No Anneal Herf
No Anneal Herf
No Anneal Mech
No Anneal Mech
No Anneal Hyd.
No Anneal Hyd.
No Anneal Screw
No Anneal Screw

Stage 2
Sandia Forging Samples

Stem

Cup

Stem

Cup

Rack Info.
Bottom =1, Top = 25

Total Samples: 75

Test Env.

Air
Air
Air
Air
Air
Air
Air
Air

Air

Air
Air
Air
Air
Air
Air
Air
Air
H2
H2
H2
H2
H2
H2
H2
H2

Material

304L

304L

304L

304L

304L

316L

316L

316L

316L

ID

F16-1
F71-1
M16-1
M71-1
Y16-1
Y71-1
S16-1
S71-2

S2A-4

26AL6
26AL5
26AL4
26AL3
26RES3
26RD4
26RC5
26RF1
26AL13
26AL14
26AL15
26AL16
26RES8
26RD9
26RC10
26RF6

F16-5
F71-5
M16-5
M71-6
Y16-5
Y71-5
S16-5
S71-5

S2B-3

26AL9
26AL10
26BL1
26BL2
26RF5
26RE1
26RD2
26RC3
26AL19
26AL20
26BL11
26BL12
26RF10
26RE6
26RD7
26RC8

ID

F16-9
F71-9
M16-9
M71-9
Y16-9
Y71-9
S16-9
S71-9

S2B-5

26BL5
26BL6
26BL7
26BL8
26RC2
26RF3
26RE4
26RD5
26BL15
26BL16
26BL17
26BL18
26RC7
26RF8
26RE9
26RD10

Layerin
Rack

25
24
23
22
21
20
19
18

17

P NWPAOOTO N OO
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Table 111 SRNL DATA SHEET
CHARGING CONDITIONS TRITIUM CHARGING RUN 2012-2

BLOCK FORGING SAMPLES

Document Number: SRNL-L4400-2012-00027 Rev 0

Vessel Serial Number: 02151151-3

Vessel Charge History: First Use

Charge Type: Type 1 (C-Shaped Samples)
Total Free Volume, Vessel and Tubing: 253 cc

Acceptable Temperature Range During Fill: 18-28°C

Target Fill Pressure: 2619 psia

Target Fill Pressure Range: 2609-2629 psia
Heated Vessel Temperature: 350°C + 5°C
Duration at Temperature and Pressure: 14 Days + 8 Hours
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Table IV Samples Charged During Run 2012-2

VESSEL SN 02151151-3
FORGING EFFECT SAMPLES - Stacking Order

KC AND SANDIA SAMPLES
Source Test Env. Material ID ID ID Layer in Rack
KCP Remnants
Anneal Herf Air 304L AF16-3 AF16-5 AF16-7 25
Anneal Herf Air AF71-3 AF71-5 AF71-7 24
Anneal Mech Air 304L AM16-3 AM16-4 AM16-8 23
Anneal Mech Air AM71-3 AM71-4 AM71-8 22
Anneal Hyd. Air 304L AY16-3 AY16-5 AY16-7 21
Anneal Hyd. Air AY71-3 AY71-4 AY71-8 20
Anneal Screw Air 304L AS16-3 AS16-4 AS16-8 19
Anneal Screw Air AS71-3 AS71-4 AS71-8 18
Stage 2 Air 304L S2B-1 S2B-6 S2A-2 17
Sandia Forging Samples
11459 (LY) Air 304L 59RC7 59RD11 59RA5 16
Air 59RB10 59RC3 59RD8 15
Air 59RA2 59RB7 59RC12 14
Air 59RD5 59RA10 59RB3 13
11460 (HY) Air 304L 60RC7 60RD11 60RA5 12
Air 60RB10 60RC3 60RD3 11
Air 60RA2 60RB7 60RC12 10
Air 60RD5 60RA10 60RB3 9
11459 (LY) H2 304L 59RA3 59RB8 59RC1 8
H2 59RD6 59RA11 59RB4 7
H2 59RC9 59RD2 59RA7 6
H2 59RB12 59RC5 59RD10 5
11460 (HY) H2 304L 60RA3 60RB8 60RC1 4
H2 60RD6 60RA11 60RB4 3
H2 60RC9 60RD2 60RA7 2
H2 60RB12 60RC5 60RD10 1

Rack Info.  Bottom =1, Top =25
Note: AF16-4, AF71-4 and AY16-4 were changed to -5 because precracks were too long.
Note: AF16-8, AF71-8 and AY16-8 were changed to -7 because precracks were too long.
Total samples: 75
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IV. EXPERIMENTAL PLAN FOR MEASURING CRACKING THRESHOLDS
OF TRITIUM-CHARGED-AND-AGED STEELS IN HIGH PRESSURE
HYDROGEN GAS

Prior experiments and analysis have demonstrated that sustained-load cracking
threshold data are needed to conduct fracture mechanics analyses and establish safe
operating lifetimes of tritium reservoirs (4-6). Tritium and decay helium reduce the
fracture toughness properties of stainless steel and make crack nucleation and
propagation easier. Until now, these effects have been characterized in the laboratory by
measuring the fracture toughness properties as a function of tritium and decay helium
content on samples tested in air. Recent results suggest that stainless steels tested in high-
pressure hydrogen environments could have lower cracking thresholds than steels pre-
charged with hydrogen and tested in air. A similar result is expected for samples tested in
high-pressure tritium environments when compared to tritium pre-charged steels,
however, a facility for conducting fracture mechanics tests on radioactive tritium samples
is not available at this time.

An experimental concept for acquiring fracture mechanics properties on tritium pre-
charged steels tested in high-pressure hydrogen environments under sustained loads was
developed during FY12. The concept is modeled after ASTM E1681 “Standard Test
Method for Determining Threshold Stress Intensity Factor for Environmental Assisted
Cracking of Metallic Materials” (7) and utilizes bolt-loaded samples and an existing
tritium pre-charging facility at SRS. This concept could provide needed sustained-load
fracture mechanics data in the short term until a mechanical testing facility is available
for conducting rising-load mechanical property and fracture mechanics tests on tritium-
charged-and-aged samples tested in high-pressure hydrogen environments (8).

Cracking threshold experiments on tritium-precharged samples in high-pressure
deuterium gas would be conducted in the following way. A wedge-opening load (WOL)
compact tension specimen as shown in Figures land 2 will be used for the tests. Samples
will be fabricated from stainless steel brick forgings (1) with a width of 1 inch and a
thickness of .25 inches. The samples will be fatigue pre-cracked and then loaded into a
tritium charging vessel like those used for charging the samples in Section 111 above.

The vessel will then be sealed and pressurized on the tritium loading line in the same
way samples have been tritium pre-charged for the prior studies; i.e., the vessel will be
pressurized to 5000 psi and held at a temperature of 350°C for up to four weeks to
saturate the samples with tritium. A two-week longer charge time will be needed to reach
saturation because these samples are 0.05” thicker than previous samples.

After the tritium pre-charging operation, the vessel will be cooled down and
evacuated. The samples will be removed from the vessel and transported to SRNL for
freezer storage at -70 C to minimize tritium off-gassing losses. The samples will be
stored and aged for up to five years to build-in helium from tritium. After a set of samples
reach the desired helium content from tritium decay, they will be loaded with a bolt to
specific crack-opening displacement (COD) level (Figures 3 and 4). The COD will
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correspond to an initial load dervived from the load-COD calibration curve. A potential-
drop system may also be used to monitor crack length during the loading operation.

Identical samples with the desired helium content will be loaded to low, medium, and
high levels of COD. These bolt-loaded samples will then be placed back in a tritium
charging vessel on the tritium loading line. Each vessel will be able to accommodate
about 20 bolt-loaded specimens. The vessel will then be back-filled with high-pressure
hydrogen or deuterium gas and then valved off and held at ambient temperature in the
loading line glove box for up to three months at pressure. This hold step will provide a
high-pressure gas environment around the loaded crack tip in a tritium-precharged
sample with a given helium content.

After three months, the vessel will evacuated and the samples recovered and
transferred to SRNL. The samples will be heat-tinted in a furnace to mark the exent of
any crack growth, and unloaded in a mechanical testing machine while measuring the
current load on the bolt. Again, a potential drop system may be used to measure any
crack growth that may have occurred during the high-pressure exposure.The load on the
bolt and the measured crack length at the end of the hold period will be used to establish
the cracking threshold at the current helium level in the sample.

For samples that cracked during the hold period, new samples will be loaded using
low, medium, and high loads, but now lower than the values that caused cracking in the
earlier experiment. In this way, a more precise cracking threshold value will be found.
Conversely, if samples do not crack during the defined hold period, a safe operating load
is established. Subsequent samples will be loaded at higher loads to establish the cracking
threshold.

More detailed procedures will be developed during FY 13 using hydrogen exposures
on non-charged samples.
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Figure 1. Wedge-Opening-Load Specimen.
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Figure 3. Wedge-Opening-Load Specimen Showing Allen Wrench, Bolt for Loading
the Specimen, and Grips for Unloading the Specimen on Mechanical Test Machine.
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Figure 4. Wedge-Opening-Load Specimen Showing Bolt Loading Technique with Allen
Wrench, COD Gage, and Leads For Crack Length Measurement.

V. TRITIUM CONTENTS AND FOR LABORATORY INVENTORY
REQUIREMENTS AND ENVIRONMENTAL RELEASE ESTIMATES

Two tritium charging runs were conducted for SRNL during October of 2012 and
November of 2012. The samples are listed in Section Il above. In order to satisfy SRNL
tritium inventory requirements and to provide future estimates of tritium release during
testing the total tritium dissolved in the samples after charging, a tritium diffusion
calculation was conducted (9-10). The calculations were performed using the Diff
computer program (11). The Diff computer program will also be used for estimating
tritium off-gassing rates once the samples are transferred to SRNL and tested and a more
complete exposure history is defined. For the off-gassing calculation, the procedure
described in Reference 12 will be used.

11



SRNL-STI-2013-00048

There were seventy-five arc-shaped stainless steel coupons stacked together for each
charging assembly for the two tritium charging runs conducted for SRNL on the Tritium
Loading Line during October and November, 2012 (Figures 5-6). The samples were
stacked on a stainless steel assembly shown in Figure 6. The assembly consists of two
stainless steel caps 1.94” in diameter by .170” thick and six .170” diameter x 5.5” long
rods and a .75”long x .5” wide x .170” thick handle. The tritium charging was conducted
at temperature of 350°C and a fill pressure at temperature of approximately 5000 psia.

Calculations were performed that resulted in the following findings (9-10) that will be
used for inventory control of the samples stored in the laboratory: For the first charging
run, the total tritium content for the samples and charging assembly was calculated to be
1908 Curies. The seventy-five samples have a tritium content of 19.3 Curies each for a
total of 1449 Curies. The samples are stacked on a stainless steel assembly consisting of
two caps, 6 rods and a handle. The stainless steel assembly has a tritium content of 459
Curies. For the second tritium charging run conducted for SRNL during November of
2012. The total tritium content for the samples and charging assembly was calculated to
be 1888 Curies. The seventy-five samples have a tritium content of 19.1 Curies each for a
total of 1432 Curies. In this case, the stainless steel assembly has a tritium content of 456
Curies.

(TYP TOP AND
BOTTOM EDGE)

T

Figure 5. Seventy-Five Arc-Shaped Stainless Steel Coupons (on left) Stacked onto
Tritium Charging Assembly in Three Columns (on right).

Figure 6. Tritium Charging Assembly Show Top and Bottom Caps and Six Rods

12
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V1. CRACKING THRESHOLDS AND FRACTURE TOUGHNESS PROPERTIES
OF TRITIUM-CHARGED-AND-AGED STAINLESS STEELS

A report entitled “Cracking Thresholds and Fracture Toughness Properties of
Tritium-Charged-and-Aged Stainless Steels” was presented at the 2012 International
Hydrogen Conference and submitted for publication in the conference proceedings (13-
14). Cracking thresholds and fracture toughness properties were measured for hydrogen
and tritium pre-charged Types 304L and 21-6-9 stainless steels. The purpose of the
experiments was to measure the effect of decay helium on the fracture properties of
stainless steels and to compare sustained-load cracking thresholds with rising-load
fracture toughness values. Sustained-load cracking threshold tests were conducted by
step-loading and holding tritium pre-charged samples at constant loads until crack
extension was detected. Rising-load fracture toughness values were measured using
ASTM E1820. The results show that while both cracking thresholds and fracture
toughness values decreased with increasing 3He content (Fig. 7), cracking thresholds
were lower.

350

T T T
0 Sustained-Load Threshold Type 304L SS
[ O Sustained Load Threshold Type 21-6-9 SS
300 M Rising-Load Fracture Toughness Type 304L SS  —
@ Rising-Load Fracture Toughness Type 21-6-9 SS
250
(€]

200 O B

Mpa-m2

150 |

100 |

©)

O ‘ .P

50 [ e ©

Sustained-Load Cracking Threshold or
Rising-Load Fracture Toughness

oL
0 200 400 600 800 1000

Decay Helium Content, appm

Figure 7. Effect of Decay Helium Content on Sustained-Load Cracking Thresholds
and Rising Load Fracture Toughness Values.

The results of this study have important implications for tritium storage vessels. First,
the results indicate that the threshold for tritium-induced cracking depends on the age of a
vessel and its exposure history to tritium. During service, the vessel will age and become
more embrittled with time because of tritium dissolution, diffusion, and radioactive
decay. The effect of tritium and decay helium on cracking threshold and fracture

13
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toughness (Fig. 7) means that tritium vessels may become susceptible to subcritical
cracking and delayed failure. Cracking threshold values like those shown in Figure 7 are
needed for establishing safe lifetimes for vessels in tritium service. In this study,
sustained-load cracking thresholds were lower than rising-load cracking thresholds.

The results suggest that the difference between sustained-load cracking thresholds
and rising-load cracking thresholds is not due to problems associated with detecting the
actual point of crack extension. Sustained-load thresholds are still lower than rising-load
thresholds even after adjustments are made to the rising-load data to account for the
actual point of crack extension. Rather, the results suggest that sustained-load cracking
thresholds are lower because of greater tritium diffusion and redistribution during the
cracking process. Sustained-load tests apparently have sufficiently longer loading times
for greater tritium redistribution and concentration near the crack tip. The higher crack tip
tritium concentration causes a lower cracking threshold.

Because of the uncertainties associated with the establishing hold times that are
sufficiently long enough for the tritium-induced cracking process, the sustained-load
testing protocol needs further work. It may be possible to refine the test protocol using
hydrogen pre-charged samples so that fewer samples would be needed for the tritium
tests. Alternatively, a correlation between long-time sustained-load tests results and the
short-term rising-load test results could be developed. These will be subjects of future
investigations.

The complete presentation is depicted in Figure 8.

14
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Figure 8. 2012 International Hydrogen Conference Presentation “Cracking Thresholds
and Fracture Toughness Properties of Tritium-Charged-and-Aged Stainless Steels”.
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VIIl. THE EFFECTS OF HYDROGEN, TRITIUM, AND HEAT TREATMENT ON
THE DEFORMATION AND FRACTURE TOUGHNESS PROPERTIES OF
STAINLESS STEELS

A report on the effects of hydrogen, tritium, and heat treatment on the deformation
and fracture toughness properties of stainless steels was also presented at the 2012
International Hydrogen Conference and submitted for publication in the conference
proceedings (15-16). In this work, the deformation and fracture toughness properties of
forged stainless steels pre-charged with tritium were compared to the deformation and
fracture toughness properties of the same steels heat treated at 773 K or 873 K and pre-
charged with hydrogen (Fig. 9). Forged stainless steels pre-charged with tritium exhibit
an aging effect: Fracture toughness values decrease with aging time after pre-charging
because of the increase in concentration of helium from tritium decay. The study showed
that forged stainless steels given a prior heat treatment and then pre-charged with
hydrogen also exhibit an aging effect: Fracture toughness values decrease with increasing
time at temperature. A microstructural analysis showed that the fracture toughness
reduction in the heat-treated steels was due to patches of recrystallized grains that form
within the forged matrix during the heat treatment (Fig. 10). The combination of
hydrogen and the patches of recrystallized grains resulted in more deformation twinning.
Heavy deformation twinning on multiple slip planes was typical for the hydrogen-
charged samples; whereas, in the non-charged samples, less twinning was observed and
was generally limited to one slip plane. Similar effects occur in tritium pre-charged
steels, but the deformation twinning is brought on by the hardening associated with decay
helium bubbles in the microstructure. The complete presentation is depicted in Figure 11.
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Heat Treatment Time at 873 K, hours

0 20 40 60 80 100

5_ 450.0 ‘ ; T — i

s 400.0 m Tritium Precharged and Aged Steels ———
; 350.0 (Lower Axis)

= I Heat Treated Steels Precharged with

g‘ 300.0 Hydrogen (Upper Axis)

E 250.0 :

g) 200.0 - ﬂ

|2 150.0 5 B

g 100.0 g "

° 50.0

E F ol [ |
w 0.0 | | | | L | L L L

o

100 200 300 400 500 600 700 800 900
Helium Content, appm

Figure 9. Hydrogen-Precharged Steels Given a Prior Heat Treatment at 873 K Show
SimilarFracture Toughness Reductions As Tritium-Precharged Samples.

Figure 10. Microstuctures of (a) As Forged Steel (optical image); (b) Heat-Treated for
10 Min. at 873 K (Scanning Electron Microscope Image); and (c) Heat Treated for
10 Hours at 873 K (SEM Image).
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Figure 11. 2012 International Hydrogen Conference Presentation on “The Effects of
Hydrogen and Tritium and Heat Treatment on the Deformation and Fracture Toughness
Properties of Stainless Steels.
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ViIl. SUMMARY

New experimental programs designed to measure the effects of the forging process
and materials on tritium compatibility are underway. The programs are designed to
investigate the effects of hydrogen, tritium, and decay helium on the fracture toughness
properties of reservoir forgings. These programs will be unique because the effects of
tritium on actual reservoir forgings have not been measured until now. Samples have
been cut from a variety of forgings and exposed to hydrogen or tritium gas. Samples will
be aged for up to five years and fracture mechanics tests conducted to measure the effect
of decay helium on properties. Tests will be conducted in air until facilities are available
for testing in high-pressure hydrogen gas. The specific objectives of each program are:

1. For Type 316L Cup forgings, measure the effect of crack orientation and in-part
fracture toughness property variation.

2. For Type 304L Block forgings, measure fracture toughness properties for low-
yield strength and high-yield strength forgings.

3. For Type 21-6-9 Brick forgings, measure effect of crack orientation and in-part
fracture toughness variability. Also investigate sample size and geometry effect of
fracture toughness and compare results with measurements conducted at LANL,
SNL, and AWE.

4. For Type 304L forgings, measure effect of forging process, forging temperature,
and prior anneal on fracture toughness properties. Also, measure forging strain
rate effects on toughness and tritium compatibility by measuring toughness for
forgings made using HERF, Mechanical Press, Screw Press, and Hydraulic Press.

5. For Type 21-6-9 Brick and Type 304L Block forgings, measure sustained load
cracking thresholds using bolt-loaded specimens held in high pressure hydrogen
environments.
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