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ABSTRACT 

A resin slurry venting analysis was conducted to address 
safety issues associated with overpressurization of ion exchange 
columns used in the Purex process at the Savannah River Site 
(SRS).  If flow to these columns were inadvertently interrupted, 
an exothermic runaway reaction could occur between the ion 
exchange resin and the nitric acid used in the feed stream.  The 
nitric acid-resin reaction generates significant quantities of 
noncondensable gases, which would pressurize the column.  To 
prevent the column from rupturing during such events, rupture 
disks are installed on the column vent lines. 

The venting analysis models accelerating rate calorimeter 
(ARC) tests and data from tests that were performed in a vented 
test vessel with a rupture disk.  The tests showed that the 
pressure inside the test vessel continued to increase after the 
rupture disk opened, though at a slower rate than prior to the 
rupture.  Calculated maximum discharge rates for the resin 
venting tests exceeded the measured rates of gas generation, so 
the vent size was sufficient to relieve the pressure in the test 
vessel if the vent flow rate was constant.  The increase in the 
vessel pressure is modeled as a transient phenomenon associated 
with expansion of the resin slurry/gas mixture upon rupture of 
the disk.  It is postulated that the maximum pressure at the end 
of this expansion is limited by energy minimization to 
approximately 1.5 times the rupture disk burst pressure.  The 
magnitude of this pressure increase is consistent with the 
measured pressure transients.  The results of this analysis 
demonstrate the need to allow for a margin between the design 
pressure and the rupture disk burst pressure in similar 
applications. 

NOMENCLATURE 

G  reaction rate constant, 1/s 
I  change in the slurry energy per unit mass due to  
 expansion, defined by Eq. (33), J/kg 

gM  molecular weight of the gas, g/mol 

P  pressure in vessel, Pa 

sP  stagnation pressure, Pa 

0P  initial pressure in vessel, or pressure at the time of disk  

 rupture, Pa 
r  radial distance from the centerline of the test chamber, m 

gR  gas constant, J/(gmol K) 

t  time after start of reaction excursion, s 
T  absolute temperature, K 
v  velocity at the vent or in the vent pipe, m/s 

rv  radial velocity, m/s 

sv  vent velocity at stagnation conditions, m/s 

zv  axial velocity, m/s 

y  ratio of stagnation pressure to pressure at vent entrance or  

 to pressure in test chamber 
z  streamwise distance from the entrance of the vent pipe or  
 axial distance from the bottom of the test chamber, m 
  wave number for dispersion equation (see Eqs. (13)  
 and (14)), 1/s 
  proportionality constant relating the substantial derivative  

 and the divergence of the pressure (the first and second  
 terms in Eq. (12)) 
  vapor volume fraction 
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s  vapor volume fraction at stagnation conditions 

0  initial vapor volume fraction 

  slurry mixture density, kg/m3 

g  vapor density, kg/m3 

gs  vapor density at stagnation conditions, kg/m3 

s  slurry density, kg/m3 

 
INTRODUCTION 

This document presents an analysis of vent flow rates and 
pressure transients during a postulated reaction excursion in one 
of the SRS Purex process anion exchange columns.  The anion 
exchange columns remove plutonium from nitric acid solutions 
by adsorbing plutonium nitrate on a styrene-based resin.  If flow 
to one of these columns were interrupted, the column 
temperature would rise due to heating by radiolysis, the 
adsorption reaction, and an acid-resin decomposition reaction.  
This heat would selectively drive off water from the acid 
solution, eventually leaving an azeotropic acid solution with an 
atmospheric boiling point of about 121°C.  Additional heating 
would then result in a rapid and uncontrolled pressure rise due to 
boiling of the nitric acid and generation of vapor from the 
oxidation of the resin.  The result would be either a column fire 
or, more likely, rupture of the column due to overpressure.  The 
goal of this study is to determine if the column vent lines are 
sufficiently large to relieve the pressure in the column to prevent 
a rupture.   

The analyses in this report use pressure transients based on a 
series of vent tests and ARC measurements conducted in 1986.  
These transients are combined with a homogeneous two-phase 
(gas-slurry) model of flow through the vent lines.  The two-
phase flow model is benchmarked with steam-water choked 
flow measurements. 

 
DESCRIPTION OF VENT TESTS 

In 1986, the DuPont Engineering Test Center conducted two 
series of tests in an effort to size a relief vent for the SRS Purex 
process anion exchange columns in the event of a runaway 
resin-acid reaction.  The first series used an ARC to characterize 
the nitric acid-resin reaction.  The second series used a small 
vented pressure vessel to simulate the reaction in a column.  
Both series of tests used a mixture of 8 M nitric acid and Dowex 
21K resin loaded with thorium, a plutonium surrogate.  The 
resin was irradiated to simulate the degradation that would occur 
in an actual column. 

The ARC tests used a sample consisting of 1.21 grams of 
resin and 1.28 g of 8 M nitric acid, of which 0.68 g was 
molecular HNO3.  The following table summarizes the reaction 
data obtained from these tests. 

 
TABLE 1 

RESULTS OF ARC TESTS 
Heat of reaction 619 J/g total mixture 
Gas evolution 0.00367 mol/g total mixture 
Activation energy 106119 J/mol 
 

The reaction rate constant also was measured.  However, 
because the rate was measured at a low temperature, the rate for 
the simulations was derived from the pressure vessel data. 

The pressure vessel tests used a cylindrical can with an 
internal volume of about 100 cc.  The vessel had a small top 
vent with a cross-sectional flow area scaled down so that the 
flow area:volume ratio was the same as that of the existing vent 
in the anion column.  For several tests there was also a bottom 
vent with a rupture disk downstream to simulate pressure relief.  
The first series of pressure vessel tests used the same resin-acid 
mix as the ARC tests.  A second series of tests used Dowex 
MSA-1 resin.  Fig. 1 depicts the pressure vessel setup for these 
tests. 

 

 
FIG. 1  CROSS-SECTION OF TEST APPARATUS 

 
Transient data were provided for four tests, two of which, 

designated as Tests 14, and 15, are analyzed in this study.  Tests 
14 and 15 used a 57-gram sample of wet, drained resin with 12.6 
grams of acid and had a 0.44-inch diameter bottom vent 
protected by rupture disks.  The rupture disk burst pressures 
were 215 psig for Test 14 and 61 psig for Test 15.  Tables 2 and 
3 list the transient pressures for these tests. 

The rate constant G for the rate of pressure increase is 
evaluated using data from resin vent test 14 taken prior to disk 
rupture.  During this initial phase of the transient, it is assumed 
that no venting occurs and that the vapor volume fraction 
remains constant.  Because the rate constant G is measured just 
prior to disk rupture, the initial conditions are defined as 
occurring at any time before venting begins.  With these 
restrictions, the rate constant is given by 

 

Sample Chamber

0.44-in. Orifice

Rupture
Disk

Pressure
Transducer

0.063-in. 
Ever-Open Vent

1.0 in.

2.0 in.

2.
0 

in
.



  SRNL-STI-2012-00196 

 
 
 3

nv

0

dt

P

P
lnd

G






























 

(1) 

 
where the subscript nv denotes no venting.  To calculate G, a 
least squares regression analysis was performed (see Fig. 2).  
The calculated value for G is 71.3 1/s. 

 
TABLE 2 

TRANSIENT PRESSURES FOR RESIN VENT TEST 14 
 
Time (ms) Vessel Pressure (psig) 

41 50 
46 75 
50 100 
56 175 
61 250 
66 263 
72 329* 

 
TABLE 3 

TRANSIENT PRESSURES FOR RESIN VENT TEST 15 
 
Time (ms) Vessel Pressure (psig) 

31 38 
43 50 
48 63 
51 75 
58 88 
60 90 
61 100 
65 106* 

*These were the maximum pressures measured. 
 

 
FIG. 2  CORRELATION OF PRESSURE TRANSIENT FOR 

RESIN VENT TEST 14 PRIOR TO DISK RUPTURE 

 
DESCRIPTION OF VENTING MODEL 

The model for the pressure transient in the ion exchange 
columns and the flow out the vent pipes combines a vapor 
generation rate expression with a criterion for choked flow in the 
vents.  The vapor generation rate expression is based on the 
results of the pressure vessel tests described in the previous 
section.  The choked flow criterion is derived from a 
homogeneous flow model in which the vapor and the slurry are 
assumed to flow through the vent at the same velocity.  Vapor 
and slurry mass flow rates are assumed to be proportional to the 
amount of each phase remaining in the column, i.e., the column 
is assumed to be uniform.  Two-phase mixture composition and 
temperature changes in the vents are ignored because the 
pressure and temperature changes are small during the short 
transit time through the vent.   

The choked flow criterion is applied to calculate the vent 
velocity.  This criterion is derived by combining the integral 
Bernoulli equation with a constant flow area momentum 
balance.  The derivation assumes that both slurry and vapor 
phases flow at the same velocity and that the temperature is 
nearly constant during the transit through the vent.  The 
derivation is a two-phase extension of the isothermal choked 
flow analysis presented by Lapple [1] and others. 

Moody [2] derived a model that accounts for slip.  Although 
his model more accurately predicts choked flow rates at lower 
pressures, it is not used in this study.  One reason it is not used is 
that it is not apparent that slip would occur to as great an extent 
in a slurry as in pure liquid-vapor systems, due to the high 
slurry-phase viscosity. 

Due to a lack of data for slurry-vapor mixtures, the choking 
criterion is evaluated by comparing it with steam-water data.  
Comparisons are made with measurements of vent exit flow 
rates at different exit and stagnation pressures.  The exit pressure 
data serve as a direct benchmark of the choking criterion, and 
the stagnation pressure data serve as a test of the combination of 
the choking criterion and the homogeneous flow models. 

Two different choked flow models were examined, a so-
called frozen flow model that neglects flashing of volatile liquid 
during flow through the vent and an equilibrium flow model that 
includes flashing.  Figs. 3 and 4 compare choking predictions 
from the frozen and thermal equilibrium flow models with 
measured choking rates at different stagnation pressures and 
qualities.[3,4]  Results in these figures show that the frozen flow 
model is more accurate and therefore more appropriate than the 
thermal equilibrium model.   

Henry and Fauske [4] suggested the use of the single-phase 
discharge coefficient of 0.84 for venting from an orifice.  
Predictions of choked flow rates using the frozen flow model 
with this discharge coefficient also appear in Figs. 3 and 4.  Use 
of the discharge coefficient improves agreement between 
predicted and measured choking rates, but only slightly.  In this 
analysis, the discharge coefficient is set equal to one. 

To calculate the rate of pressure change during venting, the 
frozen flow model is combined with vapor phase and slurry 
phase mass balances.  The pressure is introduced through the 
vapor phase mass balance by stipulating that the temperature 
remain constant during venting, so that the vapor density is 
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proportional to the pressure.  This approximation should not 
introduce significant errors, since pressure changes due to 
volumetric expansion should be smaller than pressure changes 
due to venting and to gas formation by reaction.  For brevity’s 
sake, this manuscript does not present details of the venting 
calculations. 
 
 

 
FIG. 3  COMPARISON OF HENRY AND FAUSKE CHOKED 
FLOW DATA WITH HOMOGENEOUS FLOW PREDICTION, 

STAGNATION PRESSURE = 200 PSIG 
 

 
FIG. 4  COMPARISON OF HENRY AND FAUSKE CHOKED 
FLOW DATA WITH HOMOGENEOUS FLOW PREDICTION, 

STAGNATION PRESSURE = 300 PSIG 
 

EFFECT OF RUNAWAY REACTION ON VENTING 

The no-slip, frozen flow venting model just described does 
not account for the effect of a concurrent runaway reaction.  To 
model the initial slurry expansion, a two-dimensional 
axisymmetric analysis is required.  The axisymmetric vapor and 
slurry phase mass balances are, respectively,   
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The rate constant on the right side of Eq. (2) is multiplied 

by 
01

1


  to account for the decrease in the slurry bulk density 

as the slurry mixture expands.  The factor g0  is included to 

normalize the rate constant G. 
The mass balances are combined with the ideal gas law for 

the vapor, 
 

TR

PM

g

g
g   (4) 

 
to get the following expressions for the rates of change of the 
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The axial and radial momentum balances, in terms of the 

substantial derivative, are 
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Elimination of the velocity gradient terms from Eqs. (5) and 

(6) gives 
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Another equation is needed to solve for  and P.  This is 

obtained by recasting Eq. (5) as an ordinary, second-order 
differential equation in time, i.e., a dispersion equation, in which 
the first two terms account for dispersion of pressure and the last 
term represents a pressure source.  This is accomplished by 
taking the substantial derivative, which gives 
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It is assumed that the first two terms in this equation both 

account for pressure dispersion, so they should be proportional 
to each other.  Therefore, 
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where  is a proportionality constant relating the substantial 
derivative and the divergence of the pressure (the first and 
second terms in Eq. (5)).   is assumed to be positive. 

The source term (the last term in Eq. (5)) can be expressed 
as the product of a growth rate constant G that is invariant and 
the substantial derivative of the pressure.  The rate of pressure 
increase due to reaction is exponential, so the substantial 
derivative, and therefore the entire term, scales proportionally 
with the pressure.  In other words, 
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where  represents a wave number. 

The two preceding assumptions combine to give 
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There are three possible types of solutions to this equation, 

simultaneous exponentially growing solution and decaying 
solutions corresponding to positive and negative square roots of 
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The following analysis will demonstrate that these 

requirements are consistent with each other. 
Differentiation of Eq. (16) yields 
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This expression can be combined with Eq. (9) to get 
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Substitution of this equation into Eq. (9) gives an ordinary 

equation for the vapor volume fraction. 
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Eqs. (18) and (19) are ordinary differential equations, so 

they may be integrated with respect to time, if one assumes that 
the pressure inside the slurry is independent of position.  With 
the initial conditions, when 0t  , 
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Substitution of this solution in Eq. (19) and integration give 

the solution for the pressure. 
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It may be noted that this is a linear solution, as stipulated by 
Eq. (15). 

A solution for the stagnation pressure can be obtained by 
comparing this solution to Eq. (5), with the velocity components 
set at zero.  This results in the following expression. 
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Since the mass balances ignore the volume of slurry lost to 

evaporation, the stagnation vapor volume fraction remains 
constant.  Thus, 
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A comparison of Eqs. (19) and (24) shows that when 0t  ,  
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It follows from this expression and Eq. (23) that 
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The intrinsic transients predicted by Eqs. (22) and (23) will 

continue only so long as the expansion of the slurry results in a 
net decrease in the energy of the slurry per unit mass.  Over a 
given time interval, this change in the energy of the slurry due to 
its expansion is just the difference between the change in the 
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Accordingly, for a time interval t , the change in the slurry 
energy per unit mass due to expansion, I, is given by 
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where the partial derivative of the pressure denotes the time rate 
of change for the static head and the substantive derivative is the 
rate of change for the dynamic pressure. 

A comparison of Eqs. (18) and (24) shows that the static 
pressure increases twice as fast for a stationary slurry as for an 
expanding slurry.  Therefore, 
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The density in Eq. (28) is the slurry mixture density, defined 

as 
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The density appears outside the time derivative because the 
differences in the rates of increase of the dynamic and static 
heads apply to the same slurry. 

The velocity is calculated by applying a pseudo-steady state 
approximation that the acceleration of the slurry from its 
stagnation state occurs over a much shorter time scale than 
increases in pressure due to the decomposition reaction.  With 
this approximation, the slurry velocity can be calculated from 
the integral momentum balance.  The generalized form of this 
momentum balance is 
 

2

v
dP

1 2P

Ps











   (31) 

 
Substitution of the density from Eq. (30) and integration 

give 
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The desired expression for I is obtained by substituting for 

the density from Eq. (30), the velocity from Eq. (32), and the 
time derivative of the pressure from Eq. (29).  This yields 
 

  t
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P
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




















































  

(33) 

 
The value of I reaches a minimum as the pressure drops.  At 

this minimum, the expansion ceases, since any further decrease 
in the pressure would increase the dynamic energy of the slurry.  
Thus, the minimum slurry pressure is determined by the 
condition 
 

0
P

I



  (34) 

 
Eqs. (33) and (34) may be solved by using a Newton 

iteration.  Let 
 

P

P
y s  (35) 

 
 
 
 
 
 
 
 
 
 



  SRNL-STI-2012-00196 

 
 
 7

In terms of y, the solution for I becomes 
 

  
 

 
 
 

  t
Dt
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1

1

y12
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ylny
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I
ssgss

ss
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22
s

ss
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


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



























 

(36) 

 
with 
 

0
dy

dI
  (37) 

 
Eq. (36) is a transcendental equation, so the solution to Eqs. 

(36) and (37) must be recursive.  The following Newton iteration 
is used to obtain a converging recursive solution. 
 

2

2

dy

Id

dy

dI

yy   (38) 

 
The solution in terms of pressures is given by 
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
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


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
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
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P
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P

P
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P

P

P

P

P

P
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2
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2
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s
2

2
s2
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2
s2

ss

s2
ss

2
ss
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(39) 

 
This solution relates the minimum actual pressure to the 

stagnation pressure.  The desired solution is a relation between 
this pressure and the pressure at the start of the transient.  From 
Eqs. (23) and (27), it is apparent that 
 

P

P

P

P s

0

  (40) 

 
Eqs. (25), (39), and (40) combine to yield the recursive 

relation 
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0
2
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2
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P
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P
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P
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(41) 

 
According to the preceding analysis, after the rupture disk 

bursts, the slurry undergoes an initial period of expansion during 
which the actual and stagnation pressures increase as specified 
by Eqs. (23) and (27).  This initial expansion ceases when the 
actual pressure reaches the value defined by Eq. (41).  
Subsequently, the rates of expansion and pressure change are 
governed by the vent flow rate calculated from the no-slip, 
frozen flow venting model. 

The minimum ratio for the pressure increase after the 
rupture disk bursts is 1.5, if the vapor volume fraction 
approaches zero.  The theoretical maximum pressure ratio, 
which would occur if the vapor volume fraction approached one, 
is exp(1), or 2.718.  It should be noted that high vapor volume 
fractions, i.e., volume fractions above 0.25, may result in 
disengagement of the vapor flow from the solid flow, based on 
observations for bubbly two-phase flows.5  Any disengagement 
would invalidate the underlying assumption that the flow 
through the vent is uniform. 

Using results from the preceding analyses, the rate constant 
G given by Eq. 1 also can be evaluated from the data taken after 
disk rupture.  During venting, the rate constant is given by 

 

v0 dt

dP

P

2
G 






 (42) 

 
where the subscript v denotes venting.  To calculate G, linear 
least square regression analyses were performed using data from 
Tests 14 and 15 (see Fig. 5).  The regression of the Test 14 data 
gives a value for G of 63.6 1/s, and the regression of the Test 15 
data gives 64.1 1/s.  These values are in approximate agreement 
with the estimate of 71.3 1/s, obtained from the regression of the 
data prior to venting.  Much of the difference between the rates 
before and after venting might be due to uncertainties in the 
starting time for the reaction excursion, which would affect the 
calculations prior to venting.  The value of 64.1 1/s from the 
regression of the Test 15 data is considered to be the best 
estimate of the true rate and is therefore used in simulations of 
the venting pressure transients. 
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FIG. 5  CORRELATION OF PRESSURE TRANSIENTS FOR 
RESIN VENT TESTS 14 AND 15 AFTER DISK RUPTURE 

 
RESULTS AND DISCUSSION 

The results for Tests 14 and 15 are compared with computer 
simulations of venting pressure transients.  In the computer 
simulation, the mass balance for the test chamber is integrated 
with respect to time, with the frozen flow, no-ship choking 
criterion applied at each time step.  Two sets of calculations 
were performed, one that neglects the effect of the runaway 
reaction on the initial rate of expansion following the rupture 
disk burst and a second that includes this effect.  The computer 
model considers only flow out the bottom vent.  Slurry 
expansion inside the test apparatus and venting of vapor out the 
top vent are neglected. 

Fig. 6 compares the model calculations with the test 
measurements for venting without any allowance for the effect 
of the resin reaction.  Since the initial vapor volume fraction was 
not known, calculations were performed for a series of four 
initial values for this parameter:  0  = 0.05, 0.10, 0.15, and 

0.20; results for all four vapor volume fractions are shown.  (The 
initial time for the disk rupture was estimated by interpolating 
the test data, so the initial data point does not represent an actual 
measurement.)  As Fig. 6 shows, the model predicts that the 
bottom orifice was sufficiently large to vent both tests.  
However, the model fails to account for the observed initial 
increase in the pressure subsequent to the rupture disk burst. 

Fig. 7 compares model calculations with test results when 
the effect of the runaway reaction is incorporated.  With the 
addition of this effect, the predictions of the model agree closely 
with the test data during the measurement period with respect to 
the magnitude of the pressure increase following the rupture disk 
burst.  At later times, the model predicts that the pressure should 
decrease relatively rapidly to atmospheric pressure as the test 
chamber vents. 

The model predicts that the vessel pressure should decrease 
more rapidly to ambient conditions for the higher pressure test 

(Test 14) than for the lower pressure test (Test 15).  The 
difference in the relative rates of pressure change can be 
attributed to the higher venting velocity for Test 14, which 
implies that the vessel should vent its contents sooner than for 
Test 15.  The model demonstrates that changes in the assumed 
initial vapor volume fraction primarily affect the magnitude of 
the pressure overshoot shown by Fig. 7.  The results in Figs. 6 
and 7 indicate that, once free venting begins, the venting rate is 
insensitive to the assumed initial vapor volume fraction. 

 

 
FIG. 6  COMPARISON OF MEASURED AND PREDICTED 

PRESSURE TRANSIENTS FOR RESIN VENT TESTS 14 AND 
15, WITHOUT RUNAWAY REACTION EFFECT 

 

 
FIG. 7  COMPARISON OF MEASURED AND PREDICTED 

PRESSURE TRANSIENTS FOR RESIN VENT TESTS 14 AND 
15, WITH RUNAWAY REACTION EFFECT 

 
 
 



  SRNL-STI-2012-00196 

 
 
 9

SUMMARY AND CONCLUSION 

In 1986, resin venting tests were conducted to address 
safety issues for operation of the Purex process anion exchange 
columns at SRS.  The tests measured the ability of a rupture disk 
to protect a column from overpressurization due to the 
generation of noncondensable gases by a runaway resin/nitric 
acid reaction.  The test results showed that the test vessel 
pressure continued to increase after the disks ruptures. 

This report presents an analysis that demonstrates that this 
pressure overshoot is a transient phenomenon associated with 
simultaneous pressurization and venting.  The analysis predicts 
that the rate of pressure increase after venting is half the rate of 
increase prior to venting.  The analysis also predicts that, for a 
rapidly expanding flow, the pressure should increase to a 
minimum of 1.5 times the pressure at the time of rupture; the 
pressure overshoot increases as the initial vapor volume fraction 
increases.  Measured pressure increases after the disk rupture 
were to a minimum of 1.50 and 1.59 times the rupture disk set 
pressure, in good agreement with the prediction.  A venting 
analysis showed that the rupture disk should have been able to 
relieve the vessel pressure in the absence of these transient 
effects.  The venting calculations assumed choked two-phase 
flow with no slip velocity and no gas generation during flow 
through the vent.  This study demonstrates the need to account 
for transient pressure overshoot when designing pressure relief 
systems for similar applications. 
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