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ABSTRACT 

This paper presents an experimental study of natural 
convection heat transfer for an Ionic Liquid.  The 
experiments were performed for 1-butyl-2, 3-
dimethylimidazolium bis(trifluoromethylsulfonyl)imide, 
([C4mmim][NTf2]) at a Raleigh number range of 1.26x107 to 

8.3x107. In addition to determining the convective heat 
transfer coefficients, this study also included experimental 
determination of thermophysical properties of 
[C4mmim][NTf2] such as, density, viscosity, heat capacity, 
and thermal conductivity. The results show that the density 
of [C4mmim][NTf2] varies from 1.437-1.396 g/cm3 within 
the temperature range of 10-50oC, the thermal conductivity 
varies from 0.105- 0.116 W/m.K between a temperature of 
10 to 60oC, the heat capacity varies from 1.015 J/g.K - 1.760 
J/g.K within temperature range of 25-340oC and the 
viscosity varies from 18cp – 243cp within temperature 
range 10-75oC. The results for density, thermal 
conductivity, heat capacity, and viscosity were in close 
agreement with the values in the literature.. Measured 
dimensionless Nusselt number was observed to be higher 
for the ionic liquid than that of DI water.  This is expected 
as Nusselt number is the ratio of heat transfer by convection 
to conduction and the ionic liquid has lower thermal 
conductivity (approximately 18%) than DI water.  
Keywords: Ionic Liquid; Density; Viscosity; Heat 
Capacity; Thermal Conductivity; Convective Heat Transfer 
Coefficient.  

1. INTRODUCTION 

Environmental concern [1] and quick depletion [2] and 
soaring price [3] of conventional carbon based fuel pushes 
energy researchers to find reliable and economically viable 
alternate source of energy. Solar energy has already been 
proven to be a reliable and economically viable alternative 
source of energy [4]. Solar energy can be harvested either 
by direct conversion of solar energy into electric energy by 

photo voltaic solar cell [5] or it can be collected and 
transferred by means of a fluid known as solar collector. 
Solar cell faces the problem of lower efficiency [6] and cost 
effective ratio is very high [7] whereas solar collector posses 
superior performance than the solar cell [8]. In solar 
collector heat transfer fluid plays a very important role. 
High temperature stability and high heat storage capability 
are the critical factors for those heat transfer liquids. 
Currently used heat storage liquid has the low 
decomposition temperature and high melting point which 
results in high operating cost [9]. To meet the above 
requirements ionic liquids has great potential for 
replacement of the heat storage medium [10-11] of the solar 
collector.  
 
Ionic liquids (IL) are the group of salts which are liquid at 
ambient temperature (less than 100oC) [12] and consists of 
ionic species. Typically IL contains large organic cations, 
such as imidazolium, pyrazolium, triazolium, thiazolium, 
oxazdium, pyridinium, pyridazinium, pyrimidinium, 
pyrazinium cations, and halogen, fluorinated or organic 
anions.  These Room Temperature Ionic Liquids (RTILs) 
has the excellent physical and chemical properties including 
high thermal stability, exposure to air and moisture stability, 
low melting point, negligible vapor pressure [13-15]. For 
those excellent properties, ionic liquids become very useful 
for material processing [16], as a catalyst for synthesis of 
inorganic nano-materials [17], as lubricants [18], and in 
solar cell [10-11]. 
 
A bulk of studies already have been done for synthesis and 
basic physical properties such as density, viscosity, heat 
capacity, thermal conductivity, and surface tension study of 
ionic Liquids [19-21]. Most of the previous studies were 
focused on determining thermo-physical properties [22] and 
no study has been so far reported for natural convection 
which is the very fundamental heat transfer study of any 
liquid. This motivates the  authors to study natural 
convection heat transfer of ionic liquids.  
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In the present work natural convection heat transfer 
experiments have been carried out for 1-butyl-2, 3-
dimethylimidazolium bis(trifluoromethylsulfonyl)imide,   
([C4mmim][NTf2]) ionic liquid and the study was performed 
in a rectangular enclosure heated form below and cooled 
from top. By measuring the top and bottom wall 
temperature and the applied power, the heat transfer 
coefficient was calculated. For greater fidelity of the 
reported results, thermal properties such as density, 
viscosity, heat capacity, and thermal conductivity of the 
Ionic Liquids were also measured and reported.   
 
2. EXPERIMENTAL PROCEDURE 
 
2.1 Ionic Liquid 
 
99% pure 1-butyl-2,3-dimethylimidazolium 
bis(trifluoromethylsulfonyl)imide, ([C4mmim][NTf2]) Ionic 
Liquid was purchased from IoLiTec Company (Germany) . 
Molecular weight of [C4mmim][NTf2] is  433.39 g/mol. The 
chemical structure of the anion and cation and the molecular 
formula of the ionic liquid are as follows: 

 
Cation 

 
(CF2SO2)2N

- 
Anion 

 
Molecular formula: C11H17F6N3O4S2 

 
2.2 Measurement of viscosity 
 
The viscosity of the ionic liquid was measured by using a 
cone and plate type rotary viscometer (LVDV-II+ProCP, 
from Brookfield Engineering Co.). The sample size of the 
cone and plate arrangement is 1mL. The cone and plate 
arrangement has a thermal jacket to maintain a constant 
sample temperature and it has the temperature accuracy 
within ±0.1oC. For temperature control a thermal bath 
(Thermo NESLAB) was used with temperature accuracy 
within ±0.01K. The viscometer  was calibrated by using 
company standard liquid. T each temperature three 
measurements were taken and the measurement uncertainty 
was calculated to be 1.6%.   
 
2.3 Measurement of heat capacity 
 
The heat capacity of ionic liquid was measured by using 
Differential Scanning Calorimetry (DSC Q200 from TA 
instruments Inc.). The ionic liquid sample was placed in a 
standard Tzero hermetic pan and the average sample size 

was 32.45 mg. The initial temperature was 25oC and ramp 
up a rate of 20oC/min up to 350oC. The ionic liquid was run 
four times and uncertainty has been calculated to be ±1.5%.  
 
 
2.4 Measurement of thermal conductivity 
 
Thermal conductivity was measured by using the KD2 Pro 
thermal property analyzer (Decagon Device, USA). The 
measurements principle is based on the transient hot wire 
method. The meter has a probe with 60 mm length and 1.3 
mm diameter with a heating element and a thermoresistor 
which is inserted vertically into the test sample. The probe is 
connected with a microcontroller for controlling and 
conducting the measurements. Before using for ionic liquid 
the meter was calibrated with distilled water and company 
supplied standard glycerin. A thermal bath (Thermo 
NESLAB) was used to maintain a constant temperature of 
the measuring sample. The temperature accuracy of the bath 
is within ±0.01 K. For each measurement at least five 
readings were taken for each temperature and the 
uncertainty of the measurement has been calculated as ±3%.  
 
2.5 Measurement of density and volume expansion 
coefficient 
 
The density of ionic liquid has been measured using a 1 mL 
Pycnometer from Thomas Scientific. The pycnometer and 
the samples were placed in a thermal bath (Thermo 
NESLAB) to maintain a uniform temperature. The weight of 
the sample was measured by using METTLER TOLEDO 
balance which has a precision of 0.01 mg. Before using for 
Ionic Liquid the pycnometer was calibrated with water and 
was found to be accurate to within 0.5%. At each 
temperature the density measurements were repeated at least 
five times and the uncertainty of the measurement was ±2%. 
The volume expansion coefficient was calculated by using 
equation 




 )(
1

T





 

 
2.6 Measurement of heat transfer coefficient 
 
2.6.1. Experimental System 
 
Figure 1(a) shows the rectangular cavity used as 
experimental test section, Figure 1(b) is the schematic of 
experimental setup. The experimental test section is a 
rectangular enclosure, made with clear polycarbonate Lexan 
sheet.  It’s length x width x height hasdimensions are 50mm 
x 50mm x 75 mm and 50mm x 50mm x 50mm at two 
different aspect ratios of the test section..
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Figure 1(a): Experimental enclosure  
 

 

Figure 1(b): Schematic of experimental setup 
 
 
The two ends of the test section enclosure are made with 
conductive copper sheets of thickness 3 mm, which are 
made to perform as hot and cold surfaces. There are two 
openings in the top copper sheet these are used as liquid 
filling ports. One hole is used for filling and the other is 
used for remove air bubbles from the enclosure. The top 
copper sheet is maintained at a uniform temperature by 
flowing cold water through a secondary enclosure of 25 mm 
height situated on top of the copper sheet. A flexible 
silicone rubber fiberglass insulated heater (20W, from 
OMEGA) is closely attached to the lower copper surface.  
The heating power is supplied from a DC power supply 
(120W, from MPJA Inc., 9312 PS). The heating and cooling 
surface temperatures are measured by using K-type 
thermocouples of 0.13 mm diameter (4 at hot and 4 at cold 
surface). There are two other thermocouples which are 
connected to the cold water inlet and outlet lines to measure 

the inlet and outlet temperatures of the cold water. All of the 
thermocouples are connected to a National Instrument (NI) 
data acquisition system cDAQ 9178 via a temperature cards 
NI 9211 which was interfaced with a computer and, 
Labview software was used for collecting and recording the 
data. The input voltage and current were measured from the 
display of the power supply. The whole system was 
insulated with the fiber glass to reduce the heat loss to the 
environment. 
 
2.6.2. Data reduction 
 
During the experiment the hot and cold surface temperatures 
were monitored and recorded until a steady state was 
reached. Fig. 2 shows the typical hot and cold surface 
temperature profile. In the experiment different Rayleigh 
number has been achieve by changing the heat flux. 
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Figure 2: Initial transient hot and cold surface temperature 
 

 Heat flux,
"q  was calculated from the input power of the 

heater divided by the surface area of the copper plate. 

A

VI
q "  

Where, V  is the input voltage, I  is the input current, A  is 
the surface area of the heater, which is same as the hot 
surface area. The inside of the hot surface hfT and the cold 

surface cfT   temperature have been calculated from the 

thermocouple readings using 1D steady state heat 
conduction equation 
 

)(
"

x
k

q
TT

c
hhf              )(

"

x
k

q
TT

c
ccf 

 
where hT  and cT  are the hot and cold surface temperature 

respectively, x is the thickness of copper plate, and ck is the 

thermal conductivity of copper. Finally the heat transfer 
coefficient, h, was calculated by  

)(

"

cfhf TT

q
h




 
2.7. Uncertainty and error analysis 

 
The measurements uncertainty of thermocouples, voltage, 
and current are ±0.2oC, ±0.1V, and ±0.001A. A systematic 
uncertainty analysis was performed using standard Kline 
and McClintock method [23].   

 













n

i
p i

i

W w
a

p
1

2

 

  where Wp is the total uncertainty of calculated parameter, 

P, and ai variables of functional dependence, and wi is the 

uncertainty of the independent variables. Input power 

uncertainty was calculated ±1.65%, heat transfer coefficient 

has an uncertainty of ±1.85%. Since the dimensionless 

numbers are the functions of numerous measured quantities 

and physical properties, therefore the uncertainty will 

propagate. The uncertainties associated with the Nusselt 

number and Rayleigh number were deermined to be  

±2.29% and ±9.78% respectively.  

 

3. RESULTS AND DISCUSSION  

 

3.1. Viscosity of Ionic Liquid 

Fig.3 shows the shear rate as a function of shear stress of 

[C4mmim][NTf2]  ionic liquid at 25oC. The linear behavior 

of shear stress and shear rate proves the Newtonian behavior 

of ionic liquid. 

The Fig.4 shows the shear viscosity as a function of 

temperature which indicates the strong temperature effect on 

the ionic liquid and the viscosity result can be represented 

by the following equation: 





 

T

1000
964.3517.8exp

 

The temperature dependent viscosity results correlates well 

with the literature [23], which measured the viscosity to be 

127.18cP at 19.5oC. 
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Figure 3: Shear rate as function of shear stress of 

[C4mmim][NTf2]  at 25oC 

 

 
Figure 4: Viscosity of [C4mmim][NTf2] as a function of 

temperature 
 
3.2. Heat capacity of Ionic Liquid 
 
Fig. 5 shows the heat capacity of [C4mmim][NTf2] as a 
function of temperature. The heat capacity increases with 
temperature. Initially there is a sharp increment and after 
that the increments are linear. There is no clear explanation 
of the sharp rise in heat capacity. The linear temperature 
relation well correlates with the literature [19].  
 

 
 

Figure 5: Heat capacity of [C4mmim] [NTf2] as a function 
of temperature 

 
3.3. Thermal conductivity of Ionic Liquid 
  
The Fig. 6 shows the thermal conductivity of [C4mmim] 
[NTf2] as a function of temperature within the temperature 
range of 10-60oC. Within this temperature limit the thermal 
conductivity varied  from 0.105- 0.116 W/m.K which 
indicates that [C4mmim] [NTf2] has a relatively lower 
thermal conductivity and has thermal conductivity of 
approximately 18% of that of DI water at room temperature. 
From Fig. 6 it it is apparent that that within the temperature 
limit studied the thermal conductivity of [C4mmim] [NTf2] 
is not a strong function of temperature. It was noticed that 
Haisheng Chen et al., Rile Ge et al., and C. A. Nieto de 
Castro et al. [22, 24, and 25] used the same method and 
same device for different Imidazolium and Pyrrolidinium 
based Ionic Liquids. Haisheng Chen et al., [22] reported 
measured thermal conductivity for 1-butyl-3-
dimethylimidazolium bis (trifluoromethylsulfonyl)imide, 
([C4mim][NTf2]) and found its thermal conductivity to be 
0.13 W/m.K up to a temperature of 40oC which matches 
well with the present value.  
 

 
Figure 6: Thermal conductivity of [C4mmim][NTf2] 

  
3.4. Density and volume expansion coefficient of Ionic 
Liquid 
 
The fig. 7 and fig. 8 show the density and volume expansion 
coefficient of [C4mmim] [NTf2] as a function of 
temperature. The density decreases and volume expansion 
coefficient increases slightly with temperature increases. 
Here the density was measured within 10-50 oC and the 
density correlation with temperature 

was 6561.1000809.0  T , where temperature is in 
Kelvin and density is in g/cm3. I comparison Shoichi 
Katsuta et al. [23] reported the results for [C4mmim] [NTf2] 
Ionic Liquid with their correlation 
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of 002.0658.1000812.0  T , clearly the 
experimental result correlates well the literature.              

 
Figure 7: Temperature dependent density of 

[C4mmim][NTf2] 

 
Figure 8: Temperature dependent volume expansion 

coefficient of [C4mmim] [NTf2] 
 
3.5. Heat transfer behavior of Ionic Liquid 
 
Before performing any experiment the test enclosure was 
rinsed thoroughly with DI water and dried. The liquid is 
poured into the test enclosure with care to avoid entrapment 
of any air bubbles into the enclosure. At first the experiment 
has been carried out for DI water and the results have been 
compared with the other published results [27-29] to ensure 
the credibility of our experimental setup and procedure. 

Nusselt number ( Nu ) as a function of Rayleigh number 

( Ra ) for DI water is plotted and compared with that of the 
published result in Fig.9. The Nusselt and the Rayleigh 
number are computed with the following equations:  

fk

hL
Nu 

     
 fPr

    
2

3

f

TLg
Gr





       

Pr.GrRa   
 

Where, L  is the height of the enclosure, fk  is the thermal 

conductivity, Pr  is the Prandtl number, f  is the 

kinematic viscosity,  (=
p

f

C

k


) is the thermal diffusivity, 

Gr
 
is the Grashof number,   is the volume expansion 

coefficient,   is the density, pC is the heat capacity of 

fluid, T  is the temperature difference between hot and 
cold surface, g  is the gravitational acceleration, All the 

fluid properties were evaluated at the average of the hot and 
the cold surface temperature. The natural convection 

correlation can be represent as,   ncRaNu    
where c and n are the empirical constants. The fig. 9 shows 
that the experimental result and reference result has the 
same trend, there appears to be difference in the value of 
empirical constants. Those constants depend on the 
geometry of the enclosure, and heating condition.     
 

 
Figure 9: Comparison of experimental and published result 

for natural convection of water 
 

The heat transfer coefficient of ionic liquid as a function of 
input power is presented in fig. 10. The fig. 10 shows that 
the heat transfer coefficient of ionic liquid is lower 
(approximately 16%) than DI water and heat transfer 
coefficient increases with increases input power. The lower 
heat transfer coefficient of ionic liquid indicates that the 
ionic liquid molecules moves slowly with density variation 
due to temperature difference, these may happened because 
of the higher viscosity of ionic liquid. It may also happen 
due to lower thermal conductivity of ionic liquid which 
influences on the thermal diffusivity of ionic liquid. At same 
temperature ionic liquid has 2.5 times lower thermal 
diffusivity than DI water.  It is also clear at higher power the 
temperature of the hot surface become high and the ionic 
liquid viscosity goes down, which gives the higher heat 
transfer coefficient.     
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Figure 10: Heat transfer coefficient as a function of input 

power 
 
The Nusselt number as a function of input power is 
presented in fig. 11 and it can be noticed that the Nusselt 
number of ionic liquid is higher than DI water, which is 
expected because thermal conductivity ratio of water to 
ionic liquid is approximately 5.68 (0.613/0.108) and the 
heat transfer coefficient ratio of water to ionic liquid is 
approximately 4. That means by the Nusselt number of the 
ionic liquid should be approximately 1.42 (5.68/4) times 
higher than DI water. 
 

 
 Figure 11: Nusselt number as a function of input power 
 
Fig. 12 shows the Nusselt number as a function of Raleigh 
number, it can be noticed that at the same Raleigh number 
ionic liquid has the higher Nusselt number. The higher 
Nusselt number indicates that the convection to conduction 
heat transfer ratio is higher. From fig. 10 it is clear that ionic 
liquid has lower convective heat transfer coefficient which 
implies that the higher Nusselt number was obtained from 
the much lower thermal conductivity of ionic liquid.   
 

 
Figure 12: Nusselt number as a function of Raleigh number 
 
4. CONCLUSIONS 
 
Natural convection study of [C4mmim][NTf2] ionic liquid 
has been performed for the first time and at the same time 
the properties of [C4mmim][NTf2] was also measured. The 
following conclusions  can be drawn: 

 The thermal conductivity of [C4mmim][NTf2] ionic 
liquid varies from 0.105- 0.116 W/m.K over the 
temperature (10-60oC) range studied, which is 
approximately 18% thermal conductivity of DI 
water.  

 Heat capacity of [C4mmim][NTf2] ionic liquid 
varies from 1.015 J/g.K - 1.760 J/g.K within 
temperature range of 25-340oC. 

 The ionic liquid [C4mmim][NTf2] shows a 
Newtonian fluid behavior and high temperature 
dependency where viscosity decreases with 
increasing temperature. 

 The convective heat transfer coefficient of ionic 
liquid is lower than DI water at same heat input.  

 The dimensionless Nusselt number and Raleigh 
number relation has the same trends for water and 
ionic liquid.   

 The dimensionless Nusselt number of ionic liquid 
is higher than DI water at same experimental 
condition.  
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