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Abstract 
Developing automated methods for data collection and analysis that can facilitate nuclear 

nonproliferation assessment is an important research area with significant consequences for the 
effective global deployment of nuclear energy. Facility modeling that can integrate and interpret 
observations collected from monitored facilities in order to ascertain their functional details will 
be a critical element of these methods. Although improvements are continually sought, existing 
facility modeling tools can characterize all aspects of reactor operations and the majority of 
nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. 
Assessing nonproliferation status is challenging because observations can come from many 
sources, including local and remote sensors that monitor facility operations, as well as open 
sources that provide specific business information about the monitored facilities, and can be of 
many different types. Although many current facility models are capable of analyzing large 
amounts of information, they have not been integrated in an analyst-friendly manner. This paper 
addresses some of these facility modeling capabilities and illustrates how they could be 
integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility 
conditions based on collected observations is described, along with a proposed architecture and 
computer framework for utilizing facility modeling tools. After considering a representative 
sampling of key facility modeling capabilities, the proposed integration framework is illustrated 
with several examples. 
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Highlights: 
 We consider integration of facility modeling into a tool for proliferation analysis. 
 We describe the inverse problem of inferring the facility based on observables. 
 We propose architecture for integrating facility models into a suitable framework. 
 We illustrate the proposed integration framework with several examples. 

 
 

Acronyms 
AMUSE Argonne’s Model for Universal Solvent Extraction (chemical separations 

model) 
BI Business information 
BIGDOT “Big” (large scale) Design Optimization Tools software library 
CANDU CANada Deuterium Uranium (reactor facility) 
CEMO Continuous enrichment monitor 
COBRA Constant Boiling and Rod Arrays (thermal-hydraulic model) 
COTS Commercial off-the-shelf 
CPLEX C (programming language) simPLEX method 
CUSEP Clemson University Solvent Extraction Program 
CUSUM Cumulative sum 
DEDS Discrete event dynamical systems 
DOE U.S. Department of Energy 
DOE-EM DOE Office of Environmental Management 
DOE-NE DOE Office of Nuclear Energy 
DOE-SC DOE Office of Science 
DOT Design Optimization Tools 
DSTA Distributed source term analysis 
ENDF/B Evaluated Nuclear Data File/B 
EM Expectation maximization 
EP Evolutionary programming 
FM Facility modeling 
FORTRAN FORmula TRANslation 
GEANT GEometry ANd Tracking 
GML Geography Markup Language 
gPROMS general PROcess Modeling System 
HEU Highly enriched uranium 
HLA High Level Architecture 
IAEA International Atomic Energy Agency 
IBM International Business Machines Corporation 
ID Inventory difference 
IMSL International Mathematical Subroutines Library 
JEFF Joint Evaluated Fission and Fusion library 
JENDL Japanese Evaluated Nuclear Data Library 
LEU Low enriched uranium 
LINDO Linear, INteractive, and Discrete Optimizer 
LWR Light water reactor 
MCMC Markov Chain Monte Carlo 
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MCNP Monte Carlo Neutral Particle 
MCODE MCNP-ORIGEN DEpletion program 
MC-REBUS MCNP-REBUS (REactor BUrnup System) coupled code 
MINPACK Least squares MINimization PACKage 
MIXSET-X MIXer-SETtler-X (Roman numeral 10) 
MOCUP MCNP-ORIGEN Coupling Utility Program 
MONTEBURNS MONTE Carlo BURNup System (MCNP-ORIGEN coupled code) 
MTHM/yr Metric tons of heavy metal per year 
MW-hr Megawatt-hours 
NEA Nuclear Energy Agency 
NEWT NEW Transport algorithm 
NMA Nuclear materials accounting 
NNSA National Nuclear Security Administration 
NPT Nuclear Nonproliferation Treaty 
OECD Organization for Economic Co-operation and Development 
ORIGEN Oak Ridge Isotope GENeration and depletion code 
ORIGEN-ARP ORIGEN-Automatic Rapid Processing 
OTTO Once through then out 
PEBBED PEBble BED (reactor physics model) 
PLTEMP PLate TEMPerature code1 
PM Process monitoring 
PUREX Plutonium URanium EXtraction 
PWR Pressurized water reactor 
RTI Run-Time Infrastructure 
SALOME Simulation numérique par Architecture Logicielle en Open source et à 

MÉthodologie d’évolution2 
SAM Simulations, Algorithms, and Modeling (NNSA program office) 
SCALE Standard Computer Analysis for Licensing Evaluation 
SEPHIS Solvent Extraction Process Having Interacting Solvents 
SIMS Secondary ion mass spectrometry 
SNM Special nuclear materials 
SYNTH Spectrum SYNTHesizer 
TIMS Thermal ionization mass spectrometry 
V&V Verification and validation 
VR&D Vanderplaats Research & Development, Inc. 
WIMS Winfrith Improved Multi-group Scheme 
XML eXtensible Markup Language 
XSDRNPM X(cross)-Section Dynamics for Reactor Nucleonics – Petrie Modified3 

                                                 
1 Acronym explanation provided by Olson A.P., (2011). First created to model plate-type fuel 
assemblies in low-powered research reactors, the code capabilities have greatly expanded over 
time and it can model nested round tubes as well.  
2 Acronym explanation provided by Sandler V., (2011). English translation is "Numerical 
simulation by means of open source software architecture and evolution methodology". 
3 Acronym explanation provided by Parks C.V., (2011). Pronounced “Excedrin-PM.” 
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1. Introduction 
The specter of nuclear weapons being used to inflict catastrophic damage on a massive 

scale has been with us since the detonation of the first “atomic bomb” by the United States in 
1945. Over the following decades, at least 22 other nations have pursued the development of 
nuclear weapons to varying extents. Fourteen eventually discontinued their efforts, leaving nine 
countries that are known or are widely believed to possess nuclear weapons as of this writing (Li 
et al., 2010). 

More nations have used nuclear energy for peaceful purposes, primarily for electric 
power generation. At the beginning of 2011, 442 nuclear power reactors were operating in 30 
different countries, and another 17 countries had nuclear power plants under construction, 
planned, or proposed (–, 2011k). Of these 47 nations, all but four have agreed to abide by the 
Nuclear Nonproliferation Treaty (NPT), which bans signatories (with the exception of China, 
France, Russia, the United Kingdom, and the United States, known as the “nuclear-weapon 
States” of the NPT) from having nuclear weapons and commits the five nuclear-weapon States to 
the ultimate goal of eliminating nuclear weapons altogether (–, 2010b), (UNODA, 2011). 

Aside from some notable exceptions, non-nuclear-weapon States have developed civilian 
nuclear power programs without any direct connection to weapons development, thanks to the 
NPT and the oversight of the International Atomic Energy Agency (IAEA). Unfortunately, 
access to special nuclear materials (SNM) and the presence of nuclear scientists implicit in 
civilian nuclear energy applications makes proliferation a very real possibility. Since the 1990s 
(and earlier), when the hidden proliferation activities and enrichment facilities were discovered 
in Iraq, nuclear nonproliferation assessments include monitoring for undeclared facilities as well 
as monitoring known facilities either in full- or denied-access mode (Goldschmidt, 2004). Recent 
actions by North Korea and Iran underscore the need for better oversight of nuclear activities 
worldwide, and for the ability to detect and accurately characterize those actions that suspect 
proliferators try to conceal. The potential for nuclear proliferation will only increase as the use of 
nuclear power, and associated technologies, expands to developing countries. 

This paper addresses integration of facility modeling (FM) codes and algorithms and their 
utilization in an inverse problem framework that could ultimately enable the user to infer specific 
details (in a potential sea of uncertainties) about the nature of monitored facilities and their 
operations based on available observations and data. Such a tool would improve current 
capabilities to detect and identify proliferation activities. To avoid sensitive topics, the 
discussions to follow focus on known facilities with full access allowed (which is the venue of 
nuclear safeguards and security applications) with some mention of known but denied access 
facilities. 

 

2. Background/Motivation 
The ability to assess accurately whether proliferation activities have occurred or are 

ongoing at a monitored facility is a crucial element of a successful nuclear safeguards and 
security program. Effective nonproliferation assessments can help deter or prevent nuclear 
weapons proliferation, or detect proliferation if it occurs, thereby promoting the peaceful use of 
nuclear energy. One strategy is to design in proliferation-resistant features such as containment 
vessels having sealed and monitored access points. However, analyses are typically also 
conducted to verify nonproliferation compliance, even at monitored facilities that allow access. 
Analysis of a time series of observations from known facilities allows one to characterize the 
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background and monitor for patterns and anomalies that indicate departures from normal 
operations. This may sound rather trivial, but data based backgrounds are generally challenging 
to characterize, and observables from proliferation activities require modeling. Such observations 
could be falsified to mask facility misuse or material diversion, modified through deception, or 
simply incomplete or otherwise unreliable. One goal for the analyst is to reduce ambiguity 
regarding the nonproliferation status of monitored facilities in the presence of partial and/or 
unreliable observations. Therefore, the analyst needs a set of problem-solving capabilities that 
allow for incremental refinement in the assessment task. This incremental refinement approach 
facilitates not only the timely identification of which data and data analysis needs are important, 
but also the incremental assimilation of findings and the formulation of intermediate analyst 
conclusions. 

In short, the analyst's task is difficult and complex as illustrated in Figure 1. It must not 
only be conducted objectively, through comprehensive evaluation of the available information, 
but it must also be completed in a timely fashion so that it is useful to decision-makers. 

Typical items that an analyst may consider include: 
 Type of facility, e.g. whether a nuclear reactor, enrichment plant, reprocessing plant, etc.; 
 Production levels, e.g. megawatt-hours (MW-hr), metric tons of heavy metal per year 

(MTHM/yr), etc.; 
 Facility nonproliferation operational status, e.g. within the authorized nonproliferation 

regime or engaging in facility misuse; 
 Objectives, strengths, and vulnerabilities regarding nuclear capabilities. 

To characterize the above items, the following questions may need to be answered: 
 What kind of work could be done given the current plant and resource configuration? 
 What labor, equipment, and facility resources are needed to support both the declared and 

hypothetical missions? 
 What is the impact of changing specific assumptions? 
 How does a changing resource base (personnel, equipment, facilities) affect the 

observables? 
 What types of facility operation or misuse are of nonproliferation concern, and what 

observable indicators are or potentially could be available to recognize facility misuse? The 
answer varies greatly depending on whether the task is to monitor for an undeclared or 
declared facility, with full or denied access. 

Information about a facility or network of facilities can come in many different forms, at 
different degrees of reliability and completeness. For example, while time series of high-fidelity 
data may be available, the data may often arrive as a seemingly random sequence of 
disconnected elements. In addition, while some information may be usable without processing, 
other data may require the use of physics, chemistry, social, or economic models to produce 
higher level indicators before they can be useful to analysts. Because no individual piece of 
information is likely to characterize, qualify, and quantify definitively a facility's activities, the 
various data streams must be processed and appropriately combined and utilized in a complete 
assessment that synthesizes and interprets the data. 

To facilitate data processing, the available information can be organized into five types: 
1) facts, 2) direct information, 3) indirect information, 4) direct data, and 5) indirect data. Facts 
are verified items of information, such as the confirmed inventory of SNM at a given nuclear 
site. Direct information is data that can be considered factual due to the source's high reliability 
and direct access to the information, such as the number of nuclear reactors at a monitored site 
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obtained by analysis of satellite imagery. Indirect information is data that cannot be considered 
factual due to the source's questionable reliability and lack of direct access, such as the number 
of centrifuges installed at an enrichment plant as reported in an open source like a newspaper. 
Finally, direct and indirect data are collections of organized information gleaned from 
observations and reports, respectively, used to evaluate the likelihood that a hypothesis under 
examination is factual, e.g. that a given site is producing nuclear material that could be used in a 
weapon. (Whether a given nuclear material can be forged into a weapon or used at all is not 
necessarily a clear-cut question as Bathke et al. (2009) have shown.) 

While the process of organizing raw data is essential to manage complexity, the volume 
of data that is potentially of use to an analyst is now so large that significant parts of the 
nonproliferation analysis must be automated through the use of a systematic methodology for 
autonomous intelligent information collection and processing. 

Unfortunately, the current state-of-the-art for nonproliferation analysis of monitored 
facilities is far from automated and exhibits a significant imbalance between the use of manual 
and machine-assisted methods. This makes for tedious work on the part of analysts. Even if 
considerable effort is devoted to the manual analysis of collected information, it is possible that 
proliferation activities could pass undetected due to insufficient utilization of available data and 
ineffective exploitation of resources. Quantitative methods such as algorithms, modeling, and 
simulation, can be applied to assist nonproliferation analyses. Use of analytical tools like these 
can promote higher levels of critical thinking that can significantly improve nonproliferation 
assessment of facilities for which information may be incomplete, ambiguous, or deliberately 
distorted. 

This paper proposes an analytical framework for effectively and efficiently integrating 
FM capabilities to process information collected from monitored facilities and to infer whether 
proliferation activities may be taking place. Anticipated FM capabilities include facility models 
that simulate components and processes typically found in nuclear installations, and also 
algorithms for data processing and interpretation. The proposed framework is anticipated to be 
run in two different modes, constrained and unconstrained. Performing the analysis in the 
constrained mode would enable the analyst to determine what kind and quantity of production 
could be sustained given the assumed set of resources, while the unconstrained mode would 
allow the analyst to determine what level of resources would be needed to sustain the declared or 
assumed operations. 

To the extent possible, the facility models and associated analyses should autonomously 
ingest a wide range of data streams, run component models (both time-driven as well as event-
driven analyses in conjunction), flag significant anomalies, and generate specific information 
with quantified confidence and uncertainty limits. The models will need to operate within this 
unified framework in a “plug and play” fashion, seamlessly retrieving and transmitting data in 
self-defining formats. In the near term, considerable iteration between analysts and modelers will 
be required as the computational framework matures. The analytical tool proposed in this paper 
will always require human interaction, but the focus will be on optimizing FM analysis by 
reducing the need for routine human interaction while simultaneously improving the quality of 
the analysis. Semantic data structures and domain ontology will be used to create a unified 
framework that automates communication between different components of the facility model, 
enabling analysts to focus more on overall objectives and less on the details of information 
collection, processing, and utilization. 
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This paper is organized as follows. Section 3 formulates the problem of assessing the 
proliferation status of a monitored facility. Section 4 proposes a systematic architecture for 
integrating FM capabilities for effectively conducting nonproliferation analyses. Key capabilities 
for FM integration and utilization are addressed in Section 5. To illustrate the potential benefits 
for the analyst, the proposed framework for nonproliferation analysis is then illustrated in five 
examples in Section 6. Section 7 concludes this paper with a brief description of anticipated 
challenges and future work. 

 

3. Problem formulation 
Consider an analyst interested in determining the operating conditions of a given 

monitored facility, including, for example, assessing whether proliferation activities have 
occurred. In this context, a facility is defined as one or more structures in which people use feed 
materials, production hardware and support equipment (such as heating and ventilation and 
generators) to create a product and waste material (including contaminated water, heat and 
gaseous effluents) along with process control procedures and software, and production 
documentation and communications related to that production effort. As mentioned, the facility 
(or group of facilities) might grant or deny the analyst full access. While full-access facilities can 
be monitored either remotely or by physical inspection, denied-access facilities generally must be 
monitored remotely. 

As full observability (i.e. access to all process variables) of a monitored facility is often 
not feasible, partial observability, in which only a subset of possible observations may actually 
be available, is more common. An FM-oriented strategy to address this partial observability issue 
could be for the analyst to assume a given characterization or model for the facility under study 
and determine for which conditions (i.e. values of process parameters) this model best predicts 
the available observations. The estimated conditions could subsequently be used to infer the 
actual operations at the plant, allowing assessment of its nonproliferation status. Therefore, under 
this proposed FM-assisted strategy, the analyst would need two key elements: observations (data 
or judgments) and characterizations (models) of the monitored facility. 

Required information may be of different types, including process data and expert 
judgments. For example, process data may consist of observations (e.g. temperature profiles, 
imagery time series, etc.) collected from deployed sensors (e.g. remote infrared detectors, 
satellite cameras, etc.), while expert judgments may correspond to suggestions regarding the best 
characterizations/models for describing the target facility, which will depend on the type of 
nuclear installation (nuclear reactor power plant, isotope enrichment facility, nuclear 
reprocessing facility) being considered. 

A facility model is here defined to be an algorithm or a set of coupled algorithms, along 
with their respective input parameter files, that simulates some or all of the components of a 
facility, as described above. These forward models are typically derived from empirical or first 
principles knowledge of the physical systems of interest, and they compute values for process 
outputs from process input data via mathematical relations. Thus, facility models can either be 
scaled physical models or mathematical models that use computational methods to simulate the 
facility. Facility models may also include algorithms used to collect, integrate, and interpret 
synthetic and/or actual data (i.e. working in a hybrid fashion). 

A complete facility model typically incorporates physics and chemistry-based models 
that simulate the production process and the waste streams it creates, including those that can be 
monitored either through direct sampling outside the facility or by remote sensing systems. A 
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complete facility model also must simulate the intermittent nature of production (e.g. batch 
processing), human factors, support systems, and the transport processes that disperse or 
transform the waste streams after they are discharged to the environment. These parts of the 
simulation may require the use of discrete-event models and a computational ontology that links 
together qualitative, verbal information in an archive of documents. Semantic structures that use 
keywords and precise technical definitions specific to the production process allow a user to 
search the document archive more successfully and find objects and relationships between them 
that would otherwise be difficult to identify. 

The FM strategy suggested above, which is commonly referred to as an inverse problem, 
consists of estimating the values of some model parameters (traditional model inputs) from the 
observed data (traditional model outputs). This problem can be formulated as follows: 

 parameters ModelData  , (1) 

which informally denotes that the data informs us about model parameters. For example, the 
inputs could be measurements of shielding between source nuclear material and detector, and the 
outputs could be detected gamma counts, C which are assumed to be well-modeled by a Poisson 
distribution, denoted C ~ Poisson(θ). Here, θ is a scalar function of {λ, μ} which includes a 
parameter, λ for shielding and a parameter, μ for source strength. Typically the goal is to infer 
source strength μ in the presence of shielding effects λ. 

The collected data typically consist of paired inputs and corresponding outputs. As 
mentioned, an objective of an inverse problem formulation may be to estimate some parameters 
of a forward model (linking model inputs to model outputs) based on observations, assuming that 
the model structure is provided. In some applications, an inverse problem may also require 
discovering unknown structural relationships (e.g. unknown dynamics) of the forward model. 
Furthermore, an inverse problem may require that values of model parameters be estimated first, 
assuming different model candidates Gi, and then selecting the model candidate G* that best 
explains the observed data. 

Regardless of the specific details of the inverse problem, the initial step of the process is 
to establish a forward model or a set of forward models whose outputs for various inputs can be 
compared with corresponding collected data. Given collected data d and the forward model or 
operator G characterizing the system under consideration, the inverse problem is to find the 
model parameters θ such that 

  )(Gd  , (2) 

where G describes the relationship between θ and d, and θ is a p-dimensional vector of the 
parameters that are being adjusted. Note that G can be a linear or nonlinear operator, 
correspondingly leading to linear or nonlinear inverse problems. In general, the inverse problem 
is solved by comparing the observed data to data predicted using the forward model and a given 
set of model parameters. The set of parameters giving the minimum residual is chosen as the 
estimated model characteristics. In the above example, measurements and a model inform us 
about shielding effects λ, and the estimate of μ is chosen to give a good fit to the counts C as in 
Equation (2) (or more specifically as in Equation (4) below) with θ a scalar function of {λ, μ} 
and data d including C and shielding measurements. 

This procedure can be mathematically formulated by first introducing a loss function, 
L(θ), defined as, 
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 )()(  GdL  , (3) 

which is then minimized with respect to θ as follows, 

 )(minarg* 


Gd 


. (4) 

Often, the loss function L is squared error and denotes the average squared error. 
In the equation above, it is assumed that a unique characterization G for the monitored 

facility is considered. However, it is possible that an exact characterization for the monitored 
plant is not known but is assumed to be one Gi from a finite set G of possible characterizations 
instead. In this case, the optimization problem can be expressed as follows, 

  )(minarg:)(minarg **

G

* 
 iiii

G
GdGdG

ii




. (5) 

Note that the outcome of solving the equation above is identification of a particular 
model, Gi = G*, with its corresponding parameters, θi = θ*, that best explains the observations. 
While G* can be used to suggest which type of process(es) the monitored facility may consist of, 
θ* can be used to infer its operating conditions, including the existence of any proliferation 
activities. An iterative, inverse problem algorithm is then needed that searches for the solution 
that produces the best overall fit to the observable facility data. Model averaging is an extension 
of this strategy that might also be considered (Burr et al., 2008). In the example above, perhaps 
the shielding is known to be either iron or lead with a measured thickness, so the gamma 
attenuation correction would be applied for either iron or lead. Provided there were counts in 
multiple energy bins and the attenuation behavior of iron and lead were known as functions of 
gamma energy, either model averaging or model selection could be successful. 

As expressed above, the loss function, L(θ), can be minimized by standard optimization 
algorithms formulated in infinite dimensional spaces, although, in practice, it could also be recast 
in discrete form to address a finite number of observations and unknown parameters instead. The 
latter may lead to an ill-conditioned problem. In that case, the introduction of heuristic, 
experience-based assumptions concerning acceptable solutions may help resolve this issue. In 
addition, since facility model inputs are often incomplete and/or contain errors, the facility model 
must perform error propagation analyses to estimate the overall uncertainty of the model 
predictions such as types of material being produced and production rates. 

 

4. Overall architecture 
The nonproliferation analysis tool proposed in this paper is expected to require input data 

that describe the facility of interest, process simulation models, and methods that can predict 
observable indicators created by the facility that can be related to the type and amount of 
production. Figure 2 shows the relationships between different facility components and the 
software system that comprises the FM-based nonproliferation analysis. The software system has 
seven major components: 
 Ontology/semantic constructs that identify objects and relationships most relevant for 

addressing specific queries; 
 Input databases/process knowledge that provide information needed to identify and build 

the model and drive it toward the best estimate of expected observable indicators; 
 Process models and simulation codes, including components, processes, activities, and 

facility inputs and outputs that characterize the primary production process; 
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 FM integration environment for integrating FM components; 
 Activity indicators to be collected and estimated for determining the best model(s) and 

parameter(s) to explain the observations; 
 Anomaly detection algorithms for detecting and isolating anomalies that cause deviations 

from expected conditions; 
 Control software and optimization algorithms that solve the inverse problem, including 

statistical and sensitivity analysis methods for hypothesis assessment and uncertainty 
quantification. 

Figure 2 depicts aspects of a complete facility model. Fragments of facility models can 
also be constructed and used to simulate parts of a facility. For example, the heat dissipation 
systems of a facility, such as cooling towers or chillers, can be modeled to determine the rate at 
which waste heat is being discharged to the environment. Other models would then have to be 
applied to estimate production rates from the rate of thermal energy dissipation. A complete 
facility model gathers all available information about the facility (or facilities) and uses the 
necessary combination of codes, possibly selected following semantic, context-related 
knowledge, to simulate what may be going on in the facility, including the various external 
indicators of activity (gaseous and particulate emissions, waste heat, acoustic and RF signals, 
vibrations, movement of materials and people into and out of the facility, financial transactions, 
etc.). Given that databases for these activities exist, the complete facility model simulation will 
produce predictions of the external indicators, which can be combined into a higher confidence 
statement about what may be going on in the facility (relative to a partial simulation that uses 
only one or two indicators). If contradictory information is contained in the input databases, the 
complete facility model will not be able to produce high-confidence predictions but rather many 
low probability solutions that are far from unique. A complete facility model can also assist in 
isolating potential conflicting data. 

In summary, a complete facility model simulates aspects of the facility operations that 
produce some measurable indicator of activity. If there is no measurable indicator, then that 
aspect of facility operations does not need to be modeled unless it is necessary for continuity of 
the simulation, e.g. step B is modeled because it is necessary to predict the indicator associated 
with step C. 

 

5. Facility modeling system components 
As shown above in Figure 2, seven key capabilities are needed for successful FM 

integration, utilization, and interpretation. Brief descriptions of each capability are provided in 
the subsections that follow. 

 
5.1. Ontology/semantic constructs 

The proposed analytical tool will utilize a semantic module to identify efficiently those 
models, methods, and observations that are expected to be best for answering analysts’ queries, 
in addition to their interrelationships. As illustrated in Figure 3, these relationships identify how 
these objects should be interconnected and used for consistent data exchange, execution, and 
exploitation. In particular, an ontology is defined to be “a formal specification of a 
conceptualization” (Gruber, 1993). Furthermore, an ontology is “a common vocabulary for 
researchers who need to share information in a domain,” including “machine-interpretable 
definitions of basic concepts in the domain and relations among them,” which is important for 
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integrating various computational components, especially when they are remotely coupled across 
the Internet. 

An important concept for modern data representation is Extensible Markup Language, 
which is a set of rules for encoding documents (or data) in machine-readable form (Wikipedia, 
2010). XML is commonly used on the Web to facilitate document display. It is also widely used 
to represent arbitrary data structures for computational codes, both stand-alone and those 
connected via the Internet. Associated with an XML document is a schema, which defines the 
structure of the document. An XML schema is a “means for defining constraints on well formed 
XML documents. It provides basic vocabulary and predefined structuring mechanisms for 
providing information” in the XML document (Klein et al., 2001). XML has become the 
dominant standard for exchanging information on the Web, and is widely used in computational 
codes which require interoperability with other codes for consistent data exchange. 

Computational systems utilize ontologies in a multitude of ways, but the following is a 
common approach for integrated modeling (Klein et al., 2001), (Quix et al., 2007). First is a 
forward process that creates an XML schema of a particular type from the ontology and other 
data; for example, if one is doing structures on the surface of the earth, one might choose 
Geography Markup Language (GML). Once this schema is created to one's liking, the reverse 
process is used to construct “data” in the form of the XML schema (based on GML in this case), 
for input into facilities modeling codes. This reverse process uses the ontology to provide 
“annotations” to query the geodatabases (and other data sources) for data of importance to the 
specific model one is working with. The items found are then encoded into GML to produce a 
“data” structure that is usable by the modeling codes. This approach is quite general and used 
across a number of different fields. The ontology becomes the terminology standard by which all 
software conforms, either by using the “standard” terms or by using mappings to the “standard” 
terms. This allows for maximum conformity for software interoperability across multiple 
applications. The use of XML-based schema allows for operational ease within the programming 
languages, most of which will have XML-parsers. In this manner, a high degree of 
interoperability can be created across multiple programming paradigms for support of integrated 
facilities modeling. 

 
5.2. Database/process knowledge 

A database of information/knowledge describing the processes that are pertinent to 
potential proliferation activities will be an essential component of a facility model that is 
intended for use by an analyst. The data residing in the database will come from a variety of 
sources including existing databases, written archives, sensors, satellites, other agencies, 
computer models, news media resources, as well as experiments. The data will be in many 
different formats ranging from text and written information, to numerical data, to image data (of 
various formats not restricted to visual), and others. Personnel or intelligent systems building and 
utilizing facility models will need to access the data in order to construct models, design 
experiments, analyze results, form relationships, make decisions, and expand the database. Many 
results may be obtained simply by visualizing the data, comparing values to each other, 
considering various data streams together, or comparing data values to know constraints. An 
extensive database may become as useful as a model to a nonproliferation analyst. 

The information that may be important to an analyst will encompass all aspects of nuclear 
weapons production. This would include the broad categories of product data, resource data, and 
process data. Product data would include information on part and components for all types and 
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forms of potential nuclear devices. Product data would also include materials data, and 
descriptions of possible assemblies and subassemblies including assembly directions, 
instructions, or relationships if known. Resource data would include all of the resources that 
might be associated with production of nuclear weapons. Resources should include personnel, 
for example security, scientific, labor, administrative, and support staff and could be highly 
detailed covering skills, training capability, pay rate, age and retirement/attrition information, 
shift, schedule, and attendance knowledge, and cross training/job sharing capabilities. Complete 
data at this level of detail is unlikely; however, partial information at any level needs to be 
included in the data sets because it may still be useful to an analyst. Resource data would also 
include equipment information. Equipment is needed for manufacturing, for example, 
machining, shaping, forming, etc., for chemical processing, for metallurgical processes, and 
certainly for computing systems not limited to scientific computing alone but including 
administrative and other support information processing. Equipment data may be highly detailed 
as well, covering equipment type, capability, capacity, and even possibly maintenance 
information. Resource data encompasses a broad set of ancillary resources that could be critical 
to the determination of a facility’s actual use. These resource data might include financial data, 
descriptions of transportation methods including equipment, paths, and timing, facility 
infrastructure such as buildings, and utilities (electrical, water, process gases, etc). They might 
also include descriptions of less tangible resources such as communications with vendors, 
consultants, or decision makers. Process data would cover traditional manufacturing knowledge 
such as assembly steps, supply chains, and waste streams as well as weapon specific processes 
such as enrichment and special materials processing. 

Data visualization coupled with the process knowledge resident in the database may be 
very useful for analysis and identification of candidate proliferation sites. Consider an analyst 
trying to make a decision about which of many sites deserve closer attention given data from 
numerous sources (sensors, observation, news media, model runs, etc.). Perhaps visualizing the 
data in a parallel coordinates format (Inselberg, 1985) and through a filtered plot that shows only 
those sites that meet specific criteria determined from the database would enable the analyst to 
quickly (and visually) select possible sites. See Figure 4 for an illustration of this approach. 

In this example, there are four sites each with information from ten data sources. The 
example shows the data visualized in parallel coordinates and also illustrates the application of 
the process knowledge filter. Using parallel coordinates for exploratory data analysis was first 
suggested by Wegman (1990). In the example, we are looking for sites with the value from data 
stream 5 to be greater than 0.95. Only site 2 meets this criterion; therefore it is highlighted in the 
visualization. This is a simplified example made to illustrate the approach. In an actual 
application, multiple criteria can be applied and multiple sites can meet the criteria. Parallel 
coordinates is one simple example of data visualization with multiple criteria. There are many 
other types of visualizations and many more ways in which to analyze the data. Data and 
information visualization is a very active research area and has many potential applications 
besides nonproliferation analysis. See, for example, Tufte (1997), Spence (2007), Pabian (2008), 
and (2010a). 

Because of the richness of the data and the numerous ways to view, analyze, and utilize 
the data, the database itself will be a principal tool for the proliferation analyst. Just as fragments 
of models may be developed and used to simulate portions of a facility, fragments of the 
database will be used to model and analyze smaller portions of a facility or complex. 
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Finally, a fully populated database will not only provide data for input into models and 
for comparison with collected data but it will also hold data, both real and synthetic, that will be 
used for facility model verification and validation (V&V). V&V data will allow analysts to 
construct new models, simplified models, meta models, trends, and other analytical comparisons 
to use in proliferation analysis. 

 
5.3. Process models/simulation codes 

A wide variety of process models and codes is available, with some having overlapping 
purposes. For example, in full-access facilities, nuclear material accounting (NMA) requires 
accountability measurements, each having a σS (standard deviation of the “systematic error,” 
which is the standard deviation of the instrument bias) and σR (standard deviation of the random 
error), and commensurate detector design. Therefore, detector and source models are available 
and are continually being improved. Models of material flows and related measurements are 
becoming even more important with process monitoring (Burr et al., 2003; Burr et al., 2011) 
being included as a safeguards component to complement NMA. In denied access facility 
modeling, models of production processes and corresponding effluents that might provide 
observable indicators for illicit SNM production include physics-based first principles models 
having varying model fidelity (Heasler et al., 2006). These models could be used, for example, to 
infer recovery of weapons-grade plutonium from spent fuel based on burn-up indicators (Burr et 
al., 2005). 

Component/process models can be classified as either steady-state or dynamic depending 
on their temporal characteristics. Steady-state process models provide material and energy 
balance information, which can be used to estimate parameters such as material flow and waste 
heat discharge rates, equipment size, and capital and operating costs. Those process parameters 
that have observables that can be remotely detected (e.g. mass and energy flows and equipment 
size) should then be considered when conducting nonproliferation analyses. On the other hand, 
dynamic models can predict the response of the process to changes in operating conditions and 
the impact of upsets such as equipment failure. This type of capability is needed to investigate 
possible indicators of temporary facility misuse, perhaps misdirecting SNM into waste streams 
for later recovery. However, they typically require more effort and specialized skill to construct, 
and the additional information they provide may not be worthwhile from the standpoint of 
observable indicator interpretation or correlation. One obvious exception would be catastrophic 
equipment failure or other observable dynamic event for which a dynamic model would be 
needed to correlate an observable for that event. 

Component/process models can also be grouped according to their general purpose. For 
nonproliferation analyses, model classifications by purpose would primarily include fission 
reactor models, chemical process models (for facilities such as isotope enrichment and aqueous 
reprocessing plants), and detector response models. Instances within each classification are 
briefly discussed next to illustrate their possible integration and utilization within the proposed 
analytical framework. 

 
5.3.1. Reactor models 

Reactor physics simulation codes can be further divided between two different code 
classifications, based on methodology: deterministic and Monte Carlo. Both types require input 
data from evaluated nuclear data libraries, and the first step in the performance of any reactor 
simulation is the processing of such data into a form that can be used in the reactor physics code. 



Integration of facility modeling capabilities page 14 of 36 

As an example of input nuclear data, the ENDF/B library contains recommended data on cross-
sections, spectra, angular distributions, fission product yields, thermal neutron scattering, photo-
atomic and other nuclear phenomena, with an emphasis on neutron induced reactions. ENDF/B-
VII.0 (Chadwick et al., 2006) is the latest version of the ENDF/B library. The JEFF Nuclear Data 
Library series contains different versions of the Joint Evaluated Fission and Fusion Library. The 
most recent version is JEFF-3.1-1 (Santamarina et al., 2009) , which contains evaluated neutron 
reaction, incident proton, radioactive decay, activation, fission yield, and thermal neutron 
scattering data. The JEFF series is maintained by the Nuclear Energy Agency (NEA) of the 
Organization for Economic Co-operation and Development (OECD). Similar nuclear data are 
provided by the Japanese Evaluated Nuclear Data Library (JENDL) (Shibata et al., 2011). 

Among deterministic methods, material temperatures can be calculated with a thermal 
hydraulics code like COBRA (Rowe, 1973) or PLTEMP (Olson and Kalimullah, 2010). COBRA 
is a subchannel code for calculating heat transfer in Light Water Reactor (LWR) cores in rod 
bundle geometries and PLTEMP is a code for steady-state heat transfer calculations in cores 
having plate or tube type fuel elements (e.g. research and plutonium production reactors). For 
point depletion simulations, the code ORIGEN (Gauld et al., 2002) is widely used. ORIGEN 
computes the time-dependent concentrations and source terms (radiation, heat) for over 1600 
nuclides that are simultaneously generated or depleted through interactions of materials with 
neutrons and radioactive decay. ORIGEN has been subjected to numerous verification checks 
through intercode comparisons and validation tests by comparing code predictions with 
measured radionuclide concentrations in irradiated LWR and CANDU (CANada Deuterium 
Uranium) fuel (Tait et al., 1989), (Hermann et al., 1981), (Tait et al., 1995). Similarly, one- and 
two-dimensional depletion simulations can be performed with SCALE (–, 2009). SCALE 6 is a 
system of coupled codes which includes the basic physics codes XSDRNPM (one-dimensional 
discrete ordinates), NEWT (two-dimensional arbitrary geometry discrete ordinates), and 
ORIGEN-S (point depletion and decay). SCALE 6 includes continuous energy and multigroup 
transport cross-section libraries based on ENDF/B-VII data. A number of studies have been 
performed to validate SCALE for Pressurized Water Reactor (PWR) fuel (Hermann et al., 1995), 
(Hermann, 2000), (Ilas and Gauld, 2009). As reported in (Ilas and Gauld, 2009), the maximum 
relative discrepancy between code predictions and measurements for the major isotopes is: 239Pu 
- 9%, 240Pu - 4%, 241Pu - 4%, 235U - 2.5%, and 238U - 1%. The average relative discrepancies are 
smaller. For example, for 239Pu the mean relative discrepancy is 5%, and for 235U it is 0.5%. 

A number of codes have also been developed for particle transport and Monte Carlo 
depletion simulation. For example, MCNP (Brown et al., 2002) is a general purpose Monte Carlo 
neutral particle code that can be used for neutron, photon, electron, or coupled 
neutron/photon/electron transport. It treats an arbitrary three-dimensional system geometry, 
using continuous energy nuclear and atomic data, so there is no need to generate multigroup 
cross sections. MCNP accounts for all neutron reactions given in cross-section evaluation data 
libraries (e.g. ENDF/B-VI). Other Monte Carlo based depletion codes include MOCUP (Moore 
et al., 1995), Monteburns (Poston and Trellue, 1999), MCODE (Xu and Hejzlar, 2008), MC-
REBUS (Hanan et al., 1998) and VESTA4 (Haeck, 2009). These provide a coupling of MCNP 
with a version of the depletion code ORIGEN, or with the depletion code REBUS (MC-

                                                 
4 VESTA is not an acronym, but a reference to the Roman goddess of the hearth and her sacred 
fire instead, considered by its developers to be appropriate for a depletion code used to “burn” 
materials under irradiation (per Haeck W., (2011)). 
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REBUS). In this coupling, MCNP provides the neutron flux and the cross-sections and the 
depletion code performs the depletion calculation. The Monte Carlo method allows accurate 
modeling of complex heterogeneous geometries and detailed simulation of the energy 
dependence of the nuclear data (no need for energy and spatial homogenization of neutron cross 
sections). Although MCNP provides high accuracy to these depletion codes, it is also responsible 
for their very long computation times. 

 
5.3.2. Chemical process models 

Chemical process unit operation (component) or process (facility) models can be 
simulated using a variety of open-source and commercial off-the-shelf (COTS) tools. For 
example, Aspen Plus® (Aspen Technology, Inc., Burlington, MA) (–, 2011b) is arguably one of 
the most widely used COTS tool for modeling chemical processes. This tool includes rigorous 
models for numerous unit operations and provisions for creating custom Fortran- or Microsoft 
Excel-based models of those that are not included. A broad range of sophisticated activity 
coefficient- and equation-of-state-based physical property models is provided, along with pure 
component and interaction parameters for most common systems. Custom properties models and 
property parameter databanks can also be easily set up. Data regression capability allows the 
fitting of custom physical property parameters to pure component and mixture data. Property 
parameter estimation methods are also available in the absence of data. Time-dependent, semi-
batch, or cyclic operations can also be modeled using time-averaging. Steady-state Aspen Plus® 
models can be converted into time-dependent dynamic models using Aspen Dynamics® (–, 
2011b) and customized using Aspen Custom Modeler® (–, 2011c). Other process simulators 
include, but are not limited to, CHEMCAD (Chemstations, Inc., Houston, TX), (–, 2011a), 
ProSimPlus (ProSim SA, France) (–, 2011d), PRO/II™ (Invensys/SimSci-Esscor) (–, 2011h), 
Plano, TX), and gPROMS (Process Systems Enterprise Ltd., London, UK) (–, 2011g). 

Several of the unit operations typically found in reprocessing plants have been modeled 
independently. Krebs et al. (2010) recently reviewed models for both the dissolver and solvent 
extraction unit operations. They found that several sets of differential equations have been 
developed by various authors to describe the dissolution rates of unirradiated UO2 pellets and 
powders. Far fewer such models have been developed specifically for the dissolution of actual 
spent fuel. Only a few dissolver models have been implemented using common computer 
languages like FORTRAN. 

Over six decades of research have gone into the development of various models for the 
three primary types of solvent extraction units: mixer-settlers, centrifugal contactors, and pulse 
columns. The Krebs review noted over thirty models and codes that have resulted from this 
work. Of these, SEPHIS (U.S.), AMUSE (U.S.), and MIXSET-X (Japan) have seen more 
continuous use. All three codes were developed for mixer-settlers; AMUSE is also regularly used 
for centrifugal contactors. The AMUSE and MIXSET-X codes have separation factor (D-value) 
models for a number of the fission products and TRU elements and have been kept current. For 
pulse column models, the most notable codes are CUSEP, developed by Beyerlein and Geldard 
at Clemson University, and PULCO from Japan. Both of these pulse column models track 
UO2

2+, Pu4+, and Pu3+ with no evidence that they have been kept current. 
Independent models for post-solvent extraction unit operations are harder to find. Models 

for evaporation, denitration, and calcination unit operations specific to spent fuel reprocessing 
are rare in the open literature. 
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5.3.3. Detector response models 
Detector response modeling is typically used during planning stages to evaluate the 

potential for exploiting candidate misuse indicators. Because the effects of facility misuse are 
often superimposed onto synthetic or real background (no misuse) facility data to create hybrid 
data, detector response modeling is also crucial for generating realistic hybrid data suitable for 
comparing misuse detection algorithms. MCNP is used for gamma and neutron detector models, 
as are GEANT and others (LaFleur et al., 2010). 

 
5.4. Facility modeling integration environments 

Implementation of the concept illustrated in Figure 2 will require integration of multiple 
codes and databases, which will probably reside on different platforms. An adequate and 
complete facility model could probably be constructed for some purposes, largely from pieces of 
software that already exist in other large integrated models. The challenging aspect of a complete 
facility model will be the different types of sub-models that may have to be linked together and 
possibly synchronized in time. These sub-models will include, for example, not only physics and 
chemistry-based models but also discrete event models for simulating the start-and-stop aspects 
of process control, including human factors such as work day length, shift schedules and 24-7 
work schedules versus schedules where facilities only run part of the time. Other discrete event 
model inputs include material delivery schedules, types of transport to facility (rail, truck) and 
waste tank storage capacity. 

COTS software packages exist that may have some applicability to the problem of 
creating a facility model that integrates many sub-models and databases. For example, SALOME 
(–, 2011j) has been used in the nuclear power industry for design and simulation of coupled 
reactor physics, waste processing, waste storage and waste disposal steps in the nuclear cycle. 
SALOME could serve as a starting point for constructing the physics and chemistry based 
components of a nuclear facility model. Likewise, ModelCenter® 9.0 (–, 2011j) by Phoenix 
Integration is a graphical environment for process integration that allows quick creation of 
engineering processes. Processes can involve diverse modeling and simulation tools that were 
not necessarily designed to communicate with each other, which make them particularly difficult 
to automate. Integration of models is performed using a visual environment, without involving 
tedious programming. Once created, these integrated processes can be used to answer what-if 
questions and standardize and share common processes across models and organizations. This 
tool allows users to perform detailed optimization and validation studies efficiently and 
effectively, including parametric studies, design of experiments, response surface modeling, and 
gradient and non-gradient based optimization. However, the Phoenix Integration tool is not 
suited for time-synchronized integration of disparate models. At the other end of the spectrum of 
potential integration solutions, SAS® Enterprise BI Server (–, 2011f) by SAS Institute, Inc. is an 
enterprise business information (BI) software product consisting of a suite of applications that 
facilitate the integration of data from across an enterprise. This product can be used for 
understanding the past, monitoring the present, predicting outcomes, and reporting conclusions. 
Its relevance for FM integration, as well as for other BI products, is for metadata management 
from a repository, where metadata from multiple sources (e.g. models) can be accessed, 
integrated, combined, managed, and shared across the enterprise. 

Simulation standards and languages also exist that have been specifically developed for 
integrating simulation codes. For example, High Level Architecture (HLA) is a general-purpose 
architecture for distributed computer simulation systems (Kuhl et al., 1999). Using HLA, 
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multiple computer simulations can communicate with each other regardless of the computing 
platforms they may reside on. Communication between simulations is managed by a Run-Time 
Infrastructure (RTI). Two key terms are federate and federation. A federate is an HLA-compliant 
simulation. On the other hand, a federation is a collection of multiple simulations or federates 
connected via the RTI. Using HLA, facility models developed and running on different platforms 
can be integrated and closely synchronized in time. 

 
5.5. Indicators of facility activity 

As illustrated in Figure 2, indicators of facility activity are not only collected from 
observations, but also estimated as part of the process through which facility models and 
parameters are matched to the observations. To this end, the goal of monitoring capabilities is to 
collect and make use of data for decision making. For nuclear nonproliferation, decision making 
could imply declaring the existence of proliferation activities at a monitored facility. 
Consequently, data on the monitored facility are needed, (e.g. indicators or observations.) These 
data may come not only from physical, cyber, and business observations (i.e. actual data) but 
also from estimations derived from predictive models (i.e. synthetic data) characterizing aspects 
of the monitored facility. Regardless whether the data is real or synthetic, data generation 
capabilities or sensors are deployed and utilized. Sensors, which receive and react to stimulus, 
may thus come in all forms. For example, a physical sensor may measure a physical quantity 
(e.g. temperature, pressure, light, motion, sound, radiation, electric field, magnetic field, etc.) and 
convert it into a signal for further processing. On the other hand, an electronic sensor may collect 
electronic communications occurring over networks. A sensor may also be biological (a 
biosensor) or even a human individual collecting information about the monitored facility. 
Sensor types typically used for nuclear nonproliferation purposes include process monitoring 
(e.g. temperature, pressure, flow, volume, density, material concentration, etc.), spectroscopy, 
passive/active interrogation (e.g. alpha/gamma/neutron detectors), geospatial, and surveillance 
and containment (e.g. cameras and seal/portal indicators). 

Regardless of the data processing methods being considered, finding an optimized sensor 
configuration for a particular application is computationally difficult unless the problem is 
structured in a way to allow practical solutions. Stochastic search and optimization techniques 
(e.g. gradient-based algorithms, simulated annealing, genetic algorithms, etc.), along with the 
incorporation of heuristics, may be used to help solve the sensor selection problem. 

 
5.6. Algorithms for anomaly detection and indicator generation 

Given raw, unprocessed observations, data processing algorithms can be used to collect, 
integrate, and interpret actual and synthetic data to generate high-level indicators characterizing 
facility activities. Observations and indicators may then both be used to solve the inverse 
problem and thus infer the operating conditions at the monitored facility. In doing so, data are 
translated, at different levels of abstraction, into information and then into knowledge for 
decision making through the use of integration, analysis, and interpretation capabilities. These 
data-driven methods may be loosely grouped into three broad categories: reasoning-without-
time, reasoning-over-time, and hybrid methods. Figure 5 illustrates the differences between 
these broad categories. Overall, however, all three methods seek to understand past data, 
interpret present observations, and then predict future outcomes. Useful methods have been 
developed by various technical communities, including physical scientists, computer scientists, 
statisticians, and mathematicians. 
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Reasoning-without-time methods interpret data without the explicit incorporation of time. 
If there is a natural division of the data into “responses” and “predictors,” then many 
“regression” methods have been developed to relate the response, y, to predictors, x, via a fitted 
function, y = f(x) + error. 

Methods differ according to what is assumed or known about f, whether x has appreciable 
or negligible error, whether all components of x are continuous-valued or some components are 
categorical, and the possible values for y. If y is discrete-valued (such as “proliferation is 
occurring” or “proliferation is not occurring”) then “regression” is referred to as classification, 
pattern recognition, or supervised learning, for which there are many analysis options (Hastie et 
al., 2009). The distribution of the predictors, x, will change as the value of y changes, so the 
inverse problem can be addressed. If y is continuous-valued, then parametric fitting options 
include ordinary linear least squares and variations thereof, and nonparametric fitting options 
include kernel regression. 

Semi-parametric options include both parametric and nonparametric components. In the 
context of the d = G(θ) model in Section 2, x could be the observed data, and θ could include 
both the y value and other model parameters. The function G could be learned from archived 
data or based on FM predictions, or a combination of both. 

Reasoning-over-time methods interpret data with explicit incorporation of time and 
include capabilities such as discrete event dynamical systems (DEDS)-based methods (e.g. 
discrete stochastic models/automata, Petri nets, etc.), Markov models and hypothesis testing 
methods (e.g. CUSUM, sequential likelihood testing, dynamic belief networks, Kalman filters, 
etc.), statistical learning methods (e.g. reinforcement learning, learning automata, etc.), temporal 
methods, and multi agent-based methods (including game theory-based methods). 

Finally, hybrid methods can be loosely characterized as exhibiting features from both 
previous categories. A hybrid method may thus integrate, for example, dynamic knowledge 
derived from physical modeling with measured input-output characterizations derived from data-
driven techniques, such as neural processing, to produce an acceptable and often accurate model 
of the dynamical process being observed. 

Although the various technical communities tend to favor certain methods, all invoke 
some type of statistical reasoning (even if only at the most rudimentary level of division into 
training and testing data and estimating performance). Methods that have already been used in 
FM applications include: CUSUM, parametric regression, kernel-regression, Gaussian process 
modeling, data mining (clustering is a key tool), nonparametric analysis, belief networks, 
Bayesian networks, support vector machines for pattern recognition and regression, statistical 
expectation-maximization (EM) algorithms, adaptive dynamic programming, expert systems, 
Markov models, and many signal processing tools including filters, smoothers, and spectral 
analysis, typically via Fourier or wavelet transforms. 

Many COTS software systems are available to support development of anomaly detection 
and indicator generation algorithms. For example, general packages such as R (–, 2011i) and 
Matlab (–, 2011e) can be used to prototype, develop, and possibly implement these methods. 
These software packages are routinely used to develop models of complex industrial facilities. 
They typically include libraries of code implementing standard statistical tests as well as the 
capability to build customized tests to monitor specialized activities. If implementation requires 
fast computer run times, then compiled executables in C, Java, or C++ are common. 
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5.7. Algorithms for solving inverse problems 
Many algorithms can be used to solve the minimization problem formulated in Section 3 

once the corresponding forward models have been constructed and the available observations 
collected. These are typically classified as either gradient-based or gradient-free algorithms. 
Examples include simplex, steepest descent, Newton-Raphson search, evolutionary computation 
(e.g. genetic algorithms), reinforcement learning, numerical Bayesian via Markov Chain Monte 
Carlo (MCMC), and annealing-type algorithms. For instance, the Nelder–Mead gradient-free 
simplex method can be used wherever a simplex defined by p + 1 vertices in p-dimensional 
space defines a convex hull or volume in search space, with p equal to the number of parameters 
being estimated. The loss function is evaluated at each of these points, one is replaced, and the 
process repeated until a local minimum is contained within a small simplex volume. It is 
customary to make the initial simplex large enough to encompass all reasonable values of the 
model parameters. 

To find a solution, it is important that the inverse problem be well-posed, even though it 
may likely be ill-posed as initially formulated. Well-posed problems exhibit three desirable 
characteristics: existence, uniqueness, and stability of the solution. While ill-posed inverse 
problems can arise from a loss of dimensionality, their typical fallout is violation of the stability 
condition. The effects of ill-posedness may be mitigated by the inclusion of any prior knowledge 
of constraints on the parameter statistic. Alternatively, additional observations may allow the 
estimation of incomplete but meaningful statistical metrics. 

Given the richness of available stochastic search and optimization methods, a large 
number of software packages are available for solving the inverse problem. The following list of 
techniques and software packages covers capabilities that may be relevant for the proposed 
analytical tool. 

Techniques – Newton's, steepest descent, conjugate gradient, stochastic gradient-based, 
least-mean-squares, recursive-least-squares, finite-difference, interior point, hill climbing, 
sample path, simulation-based and MCMC, particle swarm optimization, ant colony 
optimization, simulated annealing, Robbins-Monro stochastic approximation, Kiefer-Wolfowitz 
stochastic approximation, simultaneous perturbation stochastic approximation, direct search, 
Tabu search, and nonlinear dynamic reconstruction methods; linear (e.g. simplex), quadratic, and 
nonlinear programming (e.g. Nelder-Mead and trust-region), firefly, and genetic algorithms. 

Packages – Mathematica/Optimization, Knitro, IBM CPLEX, IMSL numerical libraries, 
Matlab/Optimization and Global optimization toolboxes, MINPACK, LINDO 
Systems/Optimization, VR&D/Design Optimization Tools (DOT), and Large Scale Optimization 
Software Library (BIGDOT) 

The list of stochastic search and optimization techniques above is too extensive for 
individual detailed descriptions. However for the purpose of illustration and completeness, more 
detailed descriptions are given below of the MCMC and evolutionary programming (EP) 
methods for solving general inverse problems. 

The MCMC method begins with an educated “guess” posed as the solution to a difficult 
inverse problem. A forward model of the process is then run to predict the output data. The 
algorithm compares the predicted data (e.g. activity indicator estimates) against actual data (e.g. 
activity indicator observations) to decide whether to accept the current proposal as a better 
approximation, or to back up to the most recently accepted model and guess again. Rather than a 
single “best” structure, the MCMC engine generates a range of plausible structures and the 
corresponding probabilities that they are correct, which is known as the Bayesian “posterior” 
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distribution. This facilitates decision analysis and needs-based experimental planning. As an 
important aside, if the forward model is expensive or slow to run, then code emulation (Conlin et 
al., 2011) provides an effective shortcut that substitutes model approximations via the emulator 
for actual code runs inside the MCMC loop. 

The Stochastic Engine (Aines et al., 2004) is an efficient implementation of MCMC 
methodology. In particular, it allows the analyst to construct a reasonable estimate of the state of 
nature that is consistent with observed data and modeling assumptions. The key engine output is 
an estimate of the posterior distribution, which is the conditional probability distribution of the 
state of nature, given the data. In applications, the state of nature may refer to a complicated, 
multi-attributed feature like the lithology map of a volume of earth, or to a particular related 
parameter of interest, e.g. the centroid of the largest contiguous sub-region of specified lithology 
type. The posterior distribution can be thought of as the best stochastic description of the state of 
nature that incorporates all pertinent physical and theoretical models as well as observed data. 
Characterization of the posterior distribution is the primary goal in the Bayesian statistical 
paradigm. In applications of the Stochastic Engine, however, analytical calculation of the 
posterior distribution is typically precluded, and only a sample drawn from the distribution is 
feasible. The engine’s MCMC technique, which employs the Metropolis-Hastings algorithm, 
provides a sample in the form of a sequence (chain) of possible states of nature. The sequencing 
is motivated by consideration of comparative likelihoods of the data. Multiple chains are often 
generated, to demonstrate convergence. 

On the other hand, EP is attractive because it can be applied to highly non-linear forward 
models with discontinuous functions. EP is based on biological evolution, in which many 
offspring are created by randomizing guesses at input variables, which are then used to produce 
model predictions of facility indicators. The most successful offspring are defined to be those 
that produce the best agreement with facility indicators according to some skill or fitness score. 
Those offspring are re-randomized to produce another generation, from which the most 
successful offspring are re-randomized. This process continues until the skill score does not get 
sufficiently smaller with successive generations. 

 

6. Illustrative examples 
To illustrate how FM capabilities could be integrated and utilized under the proposed 

framework for nonproliferation analysis, five facility examples are discussed next. Although still 
of practical value, these examples have been deliberately formulated so as to remove any 
possibility of revealing sensitive information. The examples include enrichment, fuel fabrication, 
nuclear power generation, and fuel reprocessing. For brevity, we consider only declared facilities 
with full access allowed. All five facility examples describe: (1) proliferation concern(s); (2) 
available data; (3) forward model(s) used in the inverse problem(s); (4) the inverse problem(s), 
and (5) how estimated model parameters can be used by the analyst. 

 
6.1. Example 1: LEU enrichment facility misuse 

The concerns are overproduction of low enriched uranium (LEU) or illicit production of 
highly enriched uranium (HEU) (Carchon et al., 2011). Overproduction of LEU could suggest 
intent to enrich to HEU at another facility/state. Because of IAEA inspection resource 
limitations, the desired “continuity of knowledge” regarding facility operations contains gaps. 
For example, some UF6 cylinders could be loaded into the plant and never declared. 
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Available data include both traditional NMA and process monitoring (PM). Gaps in data 
to support NMA are described in Carchon et al. (2011). To address these gaps, PM is being 
explored, for example, by monitoring load cells which probably cannot be bypassed during 
cylinder loading (Carchon et al., 2011). Such load cell monitoring could provide continuity of 
knowledge regarding facility operation. PM is also used to detect illicit production of HEU 
including both periodic environmental sampling and the continuous enrichment monitor 
(CEMO) using a gamma detector to detect high 235U enrichments. 

Forward models always include mass balances used in NMA, and models of detector 
quality as summarized by σS and σR (Section 5.3). This allows the inventory difference (ID), also 
known as the material balance, to be evaluated statistically using an estimate of the standard 
deviation of the ID, σID, for agreement with the null hypothesis, that no SNM has been lost 
during the balance period. Forward models for PM include material balances for the load cells 
and modeling of associated facility misuse behavior. Gamma detectors can monitor header pipes 
outside the inaccessible cascade hall that houses gas centrifuges. The CEMO outputs a go/no-go 
signal intended to detect HEU. However, various measurement challenges exist, including 
deposits on the pipe walls, very low pipe pressures, and heterogeneous hold-up in the pipes. 
These challenges add noise to the signal and hinder the ability of CEMO to detect HEU in the 
pipes. Forward models for CEMO include the source terms, transport through the 
pipes/containers, and the detector response. Appropriate forward models include MCNP 
applications which can be used to evaluate these measurement challenges and develop noise 
mitigation strategies. A complementary approach (Dixon et al., 2007) to detect HEU involves 
neutron monitoring of a vacuum system cold trap that is also accessible and outside the cascade. 
Again, MCNP can predict the impact of resident 235U in the trap at the time HEU production 
begins, thereby facilitating the ability of neutron monitoring (of neutrons produced by 234U) 
which provides an indirect measurement of 235U. 

The inverse problem for NMA is to use the measured ID to estimate the true SNM loss, 
or to test the hypothesis that the true loss is 0 (except for nominal process losses). For continuous 
load cell monitoring, the inverse problem is to infer whether the facility is operated as declared 
(or whether, for example, undeclared feed material was introduced). For CEMO, MCNP is the 
main forward model in conjunction with measured gamma counts at various energies to infer 
whether HEU is present in the pipes. Carchon et al. (2011) describe another role for forward 
modeling to address the inverse problem of whether the cascade hall is being improperly used as 
follows. Inspector access to the centrifuge cascade halls is extremely limited or denied. However, 
improper operation of the cascade hall could lead to excess LEU or HEU production. A physical 
model of the centrifuge cascade hall (Delbeke, 2009) can be used in conjunction with frequent 
measurements of the feed, product, and tails cylinders to help assess whether the facility is 
operating as declared. A cascade hall model can help confirm whether unusual cylinder 
measurements, particularly of tails cylinder enrichments, are indicators of a possible diversion 
scenario.  

Estimated parameter values include the estimated true ID (using the measured ID and 
forward models of the assay methods’ capabilities to estimate σID), the true material enrichment 
at various facility locations (using a gamma-based CEMO or neutron-based cold trap monitoring, 
which is the key source term in MCNP for CEMO or for the neutron-based detector), and the 
true material throughput as estimated using continuous load cell monitoring and periodic 
enrichment measurements. All these model parameter values are estimated periodically and 
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provide the analyst a data- and model-driven basis for assessing whether the facility is operating 
as declared. 

 
6.2. Example 2: LEU and/or mixed oxide fuel fabrication facility misuse 

The material form is LEU and the major concerns are overproduction or removal of LEU 
for use in producing Pu in a hidden reactor. Because there should be no capability to produce 
HEU and because Pu production requires a hidden reactor, LEU fuel fabrication is not 
considered a high proliferation threat activity; nevertheless, illicit misdirection of LEU is 
possible, so verification and inspection are required. At a mixed oxide facility, both LEU and Pu 
are present so diversion of Pu and/or U is a concern. 

Available data include traditional NMA and PM, with PM being particularly important in 
estimating the Pu held up in processing glove boxes. Estimates of the amount of Pu held up in 
glove boxes can be used to support NMA and to monitor for SNM diversion from the glove 
boxes. 

Forward models always include mass balances used in NMA, and models of detector 
quality as summarized by σS and σR (Section 5.3) so that the ID can be statistically evaluated 
using an estimate of σID for agreement with the null hypothesis that no SNM has been lost during 
the balance period. In one example of PM used to support NMA (Shimizu et al., 2006), a method 
is described using MCNP to relate Pu distributed in complicated geometries in a glove box to 
neutrons detected in surrounding detectors. This forward model involves an application of 
MCNP that simulates generation, transport, and detection of neutrons. The observed neutron 
counts can then be used with the forward model to inject Pu amounts in small volume elements 
(“voxels”) contained within the glove box. In a second example, extensions to multiple glove 
boxes and/or other large volume elements is described (Nahamura et al., 2010), again using an 
application of MCNP as the forward model to simulate generation, transport, and detection of 
neutrons. The corresponding distributed source term analysis (DSTA) approach is an interesting 
application of “errors in variables,” in which errors in the forward model play the role of errors 
in predictors. In both examples, the forward model is used to interpret detected neutron count 
rates so that Pu inventory within each voxel can be inferred. 

As in any facility that uses NMA, the inverse problem for NMA is to use the measured 
ID to estimate the true SNM loss, or to test the hypothesis that the true loss is 0 (except for 
innocent process losses). 

Estimated parameter values include the estimated true ID (using the measured ID and 
forward models of the assay methods’ capabilities to estimate σID). The ID is estimated 
periodically and provides the analyst a data- and model-driven basis for assessing whether the 
facility is operating as declared. The neutron-based glove box monitoring also provides a direct 
capability to detect undeclared removals of Pu from glove boxes, which could be beneath the 
lower limit of Pu loss detection capability of the NMA system. 

 
6.3. Examples 3 and 4: Power production reactor misuse 

Two different power production reactor misuse examples are considered below. One, 
motivated by Heasler et al. (2006), involves graphite moderated reactors, while the other, 
motivated by Ougouag et al. (2002a), Ougouag and Gougar (2001), and Ougouag et al. (2002b), 
entails reactors with on-line refueling capability (e.g. pebble bed modular reactors). 
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6.3.1. Graphite-moderated reactor example 
The concern is overproduction of Pu or verification of declared total Pu produced at a 

given reactor. Because Pu is controlled under non-proliferation agreements, an estimate of total 
Pu production is often required and declaration of total Pu may need to be verified. 

Available data include samples extracted from the graphite moderator of the reactor 
under consideration, and reactor information. Isotopic ratios of trace elements from the extracted 
samples are measured with mass spectrometry – thermal ionization mass spectrometry (TIMS) 
for U or Pu isotopic ratio determinations, and secondary ion mass spectrometry (SIMS) for boron 
isotopic ratios. Thus, at a given location, the TIMS mass spectrograph provides isotopic ratios of 
key U and Pu isotopes. Reactor information, on the other hand, may include reactor core 
dimensions, fuel rod specifications, and operating history. The availability and accuracy of 
reactor information generally determines the number of samples that need to be extracted and the 
uncertainty of the resulting Pu production estimate. 

Two forward models are used sequentially to estimate the total Pu production from 
isotopic ratio measurements. The first step is a statistical analysis, in which local Pu fluence is 
estimated from isotopic ratios measured in the extracted samples by mass spectrometry, using a 
lattice physics code such as Winfrith Improved Multi-group Scheme (WIMS) (Newton et al., 
2008). The second step is also a statistical analysis in which a global three-dimensional (3-D) 
linear regression model is used to fit a 3-D Pu fluence field for the entire reactor to the local Pu 
fluence estimates. A 3-D stochastic reactor physics code like KENO5 (Bowman, 2008) is used to 
compute the basis functions utilized by the 3-D regression model. 

The inverse problem in the first step is to use the measured isotopic ratios to estimate the 
Pu fluence value. Isotopic ratio curves generated by WIMS for specific Pu fluence values are 
related to the ratios measured with mass spectrometry. Solution of the first inverse problem finds 
the Pu fluence value that minimizes a quadratic loss function based on the sum of the squared 
errors calculated by subtracting measured isotopic ratios from the estimated isotopic curves. Pu 
fluence estimates provide the local Pu production rate at each sample location. In the second 
step, the inverse problem is to use the local Pu fluence values determined in the first step to 
estimate a set of unknown parameters that determine the shape of the global fluence field. The 
unknown parameters in the fluence field model, which is formulated using basis functions 
calculated by a 3-D reactor physics code like KENO, are fitted to the local Pu fluence estimates 
from the first step using a global linear weighted regression model. Thus, solution of the second 
inverse problem finds values of the shaping field parameters that result in a fluence field as close 
as possible to the local fluence estimates. The adequacy of this global linear regression model 
depends upon the set of basis functions or reactor fluence profiles selected, which are computed 
using 3-D reactor physics models and reactor operating history. 

Estimated parameter values include an estimate of the total Pu production determined by 
integrating the fitted 3-D Pu fluence field for the reactor over all of the fuel channels. This total 
Pu production estimate gives the analyst a data- and model-driven basis for assessing whether the 
reactor under consideration was operated as declared. Other estimated parameters include the 
shaping field parameters for the global Pu fluence field as well as the local Pu fluence values. 

 

                                                 
5 KENO is not an acronym, but a reference to the well-known game of chance (per Parks C.V., 
(2011)). 
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6.3.2. On-line refueled reactor example 
The concern is clandestine dual use of a power reactor to produce Pu. In particular, the 

online defueling and refueling capabilities of certain reactor designs (e.g. pebble bed reactors) 
facilitate their potential use as production facilities for weapons materials. One possible covert 
dual use scenario would involve illicitly feeding natural U-graphite target pebbles, optimized to 
minimize the decrease in reactivity, into the inner reactor reflector. It could include deliberately 
keeping the feed rate sufficiently small to minimize the impact on reactor neutronics and power 
plant operations.  In addition, the target natural U pebbles could be circulated once and then 
removed in a “once through then out” (OTTO) operation for optimum plutonium isotopic 
quality. This scenario implies the retrieval and extraction of targets from the reactor prior to their 
detection by monitoring systems. 

Available data may include measurements of power production, rate of fresh fuel usage, 
refueling needs, and discharge burn-up and isotopics. Power production and periodic fuel needs 
are usually highly predictable. Consequently, Pu production can be estimated from these 
measurements. In particular, introduction of U targets for Pu production will result in a reduction 
in core reactivity as well as energy production, and in an increase in the fresh fuel requirement to 
maintain criticality and reactivity. Lower burn-up at discharge is likewise expected.  Departures 
from anticipated patterns for these parameters could be viewed as suspicious and possibly 
indicative of attempts at fuel diversion for dual use. An effective monitoring system would keep 
track of these parameters for the purpose of detecting illicit operations with dual use intent. 

Forward models include reactor physics codes tailored for specific reactor designs, such 
as PEBBED (Terry et al., 2002), which is intended for use with pebble bed reactors. These codes 
include empirical data and typically can compute with high accuracy a variety of operating 
parameters, including power production, refueling needs, and the spatial distribution of burn-up 
and principal nuclides throughout the reactor core and in the discharged fuels. 

One conceivable inverse problem is to estimate the total Pu production in the reactor by 
calculating the number of targets containing natural uranium that might have been illicitly 
inserted into the core for Pu production based on the measured energy production rate. The 
number of targets that need to be inserted into a reactor can be related to the measured power 
production with a forward model. Thus, the inverse problem finds the total number of inserted 
targets that minimizes a loss function that depends on the difference between the measured 
energy production rate and the rate estimated by assuming the given number of targets. Similar 
inverse problem approaches can be envisioned using, and possibly combining other measurable 
parameters, e.g. the rate of fresh fuel consumption, fuel needs, and discharge burn-up and 
isotopics. This total Pu production estimate then gives the analyst a basis for assessing whether 
the target reactor is being operated as declared or illicit production may be in progress. 

Estimated parameter values include the number of targets containing natural uranium that 
were inserted into the core for illicit Pu production as well as an estimate of the total Pu 
production rate. 

 
6.4. Example 5: Fuel reprocessing facility misuse 

The principal concern with fuel reprocessing is the potential for separation and diversion 
of SNM, specifically Pu, for weaponization. This is what drove the decision to stop reprocessing 
in the United States in the 1970s (Andrews, 2008). Making detection of covert diversion easier 
and more definitive would help overcome the single biggest obstacle to closing the fuel cycle 
and minimizing the volume of high level wastes that need to be isolated and stored in waste 
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repositories. The example considered here is from a recent paper by Orton et al. (2011), which 
focuses on the monitoring of process variables solely within a declared facility. Not considered 
here is the more challenging problem of assessing the processing intent of hidden or denied 
facilities based on limited, discontinuous external observations or indicators. However, in 
principle, the approach would be identical. 

Fuel reprocessing facilities separate dissolved irradiated fuel elements into separate U 
and Pu product streams, along with fission product waste stream(s). Widely used and accepted 
reprocessing methods like PUREX rely on solvent extraction between two immiscible phases 
(aqueous and organic) to achieve separation between the elemental constituents of the dissolved 
spent fuel elements (Godfrey et al., 2000). In the situation described by Orton et al. (2011), the 
available data include, in addition to traditional NMA and PM, gamma emission spectra of the 
aqueous and organic phases in the reprocessing plant as well. Of particular importance in the 
NMA is the history of the spent fuel inventory. In addition to current, real-time measurements, a 
historical database of archived measurements is also required. 

The forward models should allow the analyst to predict the U and Pu product streams 
given the feed stream and the process operating conditions. A gamma spectrum would then be 
available for each process stream. Forward models include point depletion codes like ORIGEN-
ARP, chemical process models like AMUSE , and detector models like SYNTH (Hensley et al., 
1995). ORIGEN-ARP would be used to compute detailed isotopic feed stream compositions 
based on the available spent fuel history. Given a range of process scenarios, U and Pu product 
streams could be predicted using AMUSE. The range considered should include both nominal 
and off-nominal conditions. Finally, synthetic gamma spectra for each process stream prediction 
could be computed using SYNTH. 

The inverse problem would be: estimating whether normal or off-normal operation is 
indicated, given process stream gamma spectra (and traditional NMA and PM data). Variations 
in stream composition can be expected during normal and off-normal operations. Furthermore, 
on-line gamma ray monitors will have limited resolution and inherent measurement uncertainty 
and noise. An approach can be envisioned combining gamma spectra data with other NMA or 
PM measurements such as waste stream flow or indicators of off-normal container or material 
movement. There generally will not be a unique solution to the inverse problem, but through 
statistical analysis the most probable scenario should be discernible. 

Estimated parameter values would include the probability whether a given event is 
normal or off-normal. Furthermore, a material balance would be provided that could be used to 
determine the likelihood that an off-normal event is either an unintended process upset or an 
undeclared diversion. 

 

7. Summary, challenges, and future work 
The problem of modeling facilities engaged in some aspect of nuclear weapons 

production is a subset of the more general problem of modeling any facility that produces 
something of interest but which cannot be directly accessed. Information about such a facility 
may be disparate, intermittent, erroneous, deliberately misleading, and may have hard-to-
estimate uncertainties associated with it. Indicators of facility activity can be used to identify and 
quantify facility production via models, which may combine physics-based, empirical/statistical, 
economic, cultural/human factor, event-driven (discrete event), and time-driven (continuous) 
components. An essential component of a facility model is the method used to estimate 
uncertainties in the input data and in the model itself, and to track those uncertainties through the 
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model calculations to determine their cumulative impact on the reliability and accuracy of the 
model predictions. 

The software and other analytical methods described in this paper cover many aspects of 
FM. For illustrative purposes, this paper discussed only a few specific codes and data that can be 
applied to nuclear proliferation analysis, as well as more general algorithms and analytical 
methods that can be applied to other types of facilities. The problems required general purpose 
techniques, such as inverse problem methods and integrated modeling. 

A basic conclusion is that the analytical tools needed to build a comprehensive model of 
a facility possibly engaged in some aspect of nuclear proliferation already exist. However, the 
effort to combine existing integrated modeling software with nuclear proliferation-specific codes 
would be a significant undertaking. For decades, the main quantitative figure of merit for 
inspected facilities has been σID. The proposed integration of multiple data sources from process 
monitoring and materials accounting extends the system figure of merit to system alarm 
probabilities for a range of misuse or diversion scenarios. Such an approach requires 
comprehensive modeling of the effects of diversion scenarios and multivariate data analyses to 
combine data from various subsystems. Despite the associated technical challenges, we 
anticipate moving in the direction of using more data streams, modeling, and analyses, 
particularly when safety and safeguards concerns are considered simultaneously. Two benefits 
from such an effort would be: 

The combination of disparate, uncorrelated information sources should produce higher-
confidence model predictions, provided that appropriate statistical methods are used to quantify 
the combined impact of the different uncertainties. 

Construction of a comprehensive facility model for nuclear proliferation will require 
application of advanced methods to search through, assimilate, evaluate and visualize the often 
large amounts of data that must be examined to create inputs for the model. Representative 
examples of these methods are described in this paper. Newer, relatively untested methods which 
have been applied to related problems, such as detection of terrorist networks, should also be 
considered. 

This paper does not address the particular problems posed by data sources that are largely 
classified. Combination of a wide variety of data sources may entail acquisition of classified data 
from multiple government organizations. Although some development work could be done in an 
unclassified environment, much of it would have to be done in secure areas. 

Finally, although most, if not all, of the software needed to construct a comprehensive 
nuclear proliferation facility model exists, there would be opportunities to conduct some basic 
research. The following passage is from a recent Science article: “Drawing on approaches from 
artificial intelligence, computer programs increasingly are able to integrate published knowledge 
with experimental data, search for patterns and logical relations, and enable new hypotheses to 
emerge with little human intervention” (Evans and Rzhetsky, 2010). If actually feasible, 
automated hypothesis generation would be an important tool for the busy analyst who has to try 
to track and understand activities at many (possibly denied) sites at the same time. 
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Figure 1  The task of the nonproliferation assessment analyst 
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Figure 2  Schematic of complete facility model that relates different components of facility 
information to simulation code structure 
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Figure 3  Semantic network relating queries to methods, models, and data 
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Figure 4  Parallel coordinates example for data visualization 
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Figure 5  Differences among data-driven methods 

 


