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Assessment of the Potential for Hydrogen Generation During Grouting Operations
in the R- and P-Reactor Vessels

Executive Summary

The R- and P-reactor buildings were retired from service and are now being prepared for
deactivation and decommissioning (D&D). D&D activities will consist primarily of
immobilizing contaminated components and structures in a grout-like formulation.
Aluminum corrodes very rapidly when it comes in contact with the alkaline grout
materials and as a result produces hydrogen gas. To address this potential
deflagration/explosion hazard, the Materials Science and Technology Directorate
(MS&T) of the Savannah River National Laboratory (SRNL) has been requested to
review and evaluate existing experimental and analytical studies of this issue to
determine if any process constraints on the chemistry of the fill material and the fill
operation are necessary.

Various options exist for the type of grout material that may be used for D&D of the
reactor vessels. The grout formulation options include ceramicrete (pH 6-8), low pH
portland cement + silica fume grout (pH 10.4), or Portland cement grout (pH 12.5). The
assessment concluded that either ceramicrete or the silica fume grout may be used to
safely grout the P-reactor vessel. The risk of accumulation of a flammable mixture of
hydrogen between the grout-air interface and the top of the reactor is very low. Portland
cement grout, on the other hand, for the same range of process parameters does not
provide a margin of safety against the accumulation of flammable gas in the reactor
vessel during grouting operations in the P-reactor vessel. It is recommended that this
grout not be utilized for this task.

The R-reactor vessel contains significantly less aluminum based on current facility
process knowledge, surface observations, and drawings. Therefore, a Portland cement
grout may be considered for grouting operations as well as the other grout formulations.
For example, if the grout fill rate is less than 1 inch/min and the grout temperature is
maintained at 70 °C or less, the risk of hydrogen accumulation during fill operations in
the R-reactor vessel is low for the Portland cement. Alternatively, if the grout fill rate is
less than 0.5 inch/min and the grout is maintained at a temperature of 80 °C, the risk is
again low.

Although these calculations are conservative, there are some measures that may be taken
to further minimize the potential for hydrogen evolution.

1. Minimize the temperature of the grout as much as practical. Lower temperatures
will mean lower hydrogen generation rates. For P-reactor, grout temperatures less
than 100 °C should provide an adequate safety margin for the pH 8 and pH 10.4
grout formulations. For R-reactor, grout temperatures less than 70 °C or 80 °C
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will provide an adequate safety margin for the Portland cement. The other grout
formulations are also viable options for R-reactor.

2. Minimize the grout fill rate as much as practical. Lowering the fill rate takes
advantage of passivation of the aluminum components and hence lower hydrogen
generation rates. For P-reactor, fill rates that are less than 2 inches/min for the
ceramicrete and the silica fume grouts will reduce the chance of significant
hydrogen accumulation. For R-reactor, fill rates less than 1 inch/min will again
minimize the risk of hydrogen accumulation.

3. Ventilate the building as much as practical (e.g., leave doors open) to further
disperse hydrogen. The volumetric hydrogen generation rates in the P-reactor
vessel, however, are low for the pH 8 and pH 10.4 grout, (i.e., less than 0.97
ft’/min).

If further walk-down inspections of the reactor vessels suggest an increase in the actual
areal density of aluminum, the calculations should be re-visited.

Introduction

The R- and P-reactor buildings were retired from service and are now being prepared for
deactivation and decommissioning. D&D activities will consist primarily of
immobilizing contaminated components and structures in a grout-like formulation. This
report specifically addresses the grouting of the reactor vessels along with the aluminum
components that are contained with the vessel [1].

The aluminum components contained in the reactor pose a concern in that aluminum will
corrode very rapidly when it comes in contact with the very alkaline grout materials, and
as a result produce hydrogen gas. To address this potential deflagration/explosion
hazard, the Materials Science and Technology Directorate (MS&T) of the Savannah
River National Laboratory (SRNL) has been requested to review and evaluate existing
experimental and analytical studies of this issue to determine if any process constraints
on the chemistry of the fill material and the fill operation are necessary. This report does
not address hydrogen generation after the reactor has been filled with grout. Further
analysis, perhaps laboratory testing, would be needed to assess the behavior in grouts that
have cured.

Various options exist for the type of grout material that may be used for D&D of the
reactor vessels. The grout formulation options include ceramicrete (pH 6-8), low pH
portland cement + silica fume grout (pH 10.4), or portland cement grout (pH 12.5). As
part of this task, the rate of hydrogen generation in the vessels for grouts with a pH range
from 8 to 13 will be calculated. The calculations considered such factors as temperature,
the rate at which the grout fills the vessel, the surface area of the components present, the
surface area of the reactor vessel and the void volume of the reactor vessel. The
principles utilized in calculating the hydrogen generation rate from the R- and P-reactor
disassembly basins were employed [2]. The objective of these calculations was to
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provide input as to which grout formulation is appropriate for the operations so that the
risk of hydrogen gas accumulation is minimized.

Approach

Pacific Northwest National Laboratory (PNNL) performed a similar analysis for the K
basins at the Hanford Site [3]. This analysis was reviewed and applied to the situation for
the R- and P- reactor vessels. The process is as follows:

1) Aluminum corrodes upon exposure to the grout.

2) Hydrogen is generated as a consequence of the corrosion reaction.

3) The gas rises to the surface of the grout in the form of bubbles.

4) The bubbles will burst at the grout surface releasing H, gas into the stagnant air
layer.

This process was modeled by formulating a kinetic law for hydrogen production as a
function of the grout temperature, pH, fill rate and combining it with a model for vertical
turbulent diffusion of a light fluid (H,) through a heavier miscible fluid medium (air).
Vertical turbulent diffusion is a process analogous to molecular diffusion. However, the
diffusion coefficient is several orders of magnitude larger than the molecular diffusion
coefficient for the Hy/air mixture, because vertical diffusion of the lighter gas is due to
buoyancy rather than molecular motion. This model has been confirmed experimentally
and has been shown to be effective for predicting diffusion layers that are broader than
they are tall [4].

The assumptions used in the analysis were:

- The aluminum is exposed to wet cement while the reactor vessel is being filled.
Corrosion and hydrogen generation rates associated with this condition were
assumed.

- There are openings in the reactor vessel that allow hydrogen to escape the vessel.

- Once the hydrogen reaches the top of the reactor vessel, there is sufficient
advection to disperse the hydrogen within the building superstructure.

Based on these assumptions the only place that hydrogen could potentially accumulate is
in the region between the grout layer and the top of the reactor vessel.

The first part of the model involved developing a kinetic expression for the generation of
hydrogen due to aluminum corrosion. This kinetic expression can be represented by the
following relationship:

Q=f(pH, T, h) (D
Where Q is the hydrogen generation rate in cm’/cm?/min, T is the grout temperature in

°K, and h is the level of the grout as a function of time t in inches. The derivation of this
relationship is shown in the Appendix. The final explicit relationship was:
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Q=0Q,*m*[1 —exp(-0.00385*H/m)]
0.00385 * H @)

where,
Qo = 3*10"1 * exp(2.0952*pH)*exp[-5339*(1/T-1/303)] (3)

Where Q, is the hydrogen generation rate as a function of pH and temperature, m is the
rate at which the grout fill level increases with time, and H is the fill level at a given time,
t.

Laboratory tests performed at PNNL to measure the hydrogen generation rate of a non-
corroded aluminum metal coupon immersed in either grout or saturated Ca(OH), solution
provided part of the technical basis for the parameters that go into the equation. The key
results from the tests were:

- The initial hydrogen generation rate of non-corroded aluminum metal in a grout
mixture at 25 °C is 0.3 cm®/min.

- The hydrogen generation rate of non-corroded aluminum metal in grout decreases
to approximately 0.15 cm’/min after 2 to 3 hours of exposure to the grout mixture
at 25 °C. The decrease in corrosion rate is due to the formation of a corrosion
product (principally tricalcium aluminum hydroxide and hydrocalumite) layer on
the surface of the aluminum metal.

- The hydrogen generation rate for aluminum metal in grout was performed at 27
°C. Extrapolation of this result to hydrogen generation rates for higher grout
temperatures was made using the test results from aluminum exposed to Ca(OH),
solution (i.e., similar to the pore solution in the grout). However, the five-fold
increase in hydrogen generation rate with a 30 °C increase in the Ca(OH),
solution temperature is consistent with literature values for hydrogen generation
in grout. Matsuo et al. observed a 3 fold increase in hydrogen generation rate
with a 30 °C increase in an inhibited grout mixture [S].

- Literature data was also used to obtain the corrosion rate as a function of pH [6,
7]. The corrosion rate was then converted to a hydrogen generation rate assuming
that 1.5 moles of hydrogen are generated for every one mole of aluminum that
corrodes.

The following conservatisms and uncertainties were considered when applying the data
to the R- and P- reactor vessel situation.

- The experimentally measured hydrogen generation rate was determined on clean
or non-corroded aluminum metal. The surface of the aluminum metal in the
reactor vessels is corroded. The aluminum metal in the reactors has been there for
many years and the surface is protected by an oxide film. In either case, the rate
of hydrogen generation from corrosion would be lower than that measured for the
non-corroded aluminum metal coupons in the laboratory tests.
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- The hydrogen generation rate due to aluminum metal corroding in grout is based
on only one relevant gas generation test. However, four tests were conducted in a
Ca(OH), solution and the results were consistent based on chemical engineering
fundamentals (i.e., mass transfer conditions in the grout are poorer than those in
the Ca(OH), solution). Additionally, the hydrogen gas generation rate for the
aluminum in grout was also comparable to other values in the literature. Matsuo
et al. measured a rate of 0.105 cm’/min for aluminum exposed to Portland cement
at room temperature {8, 9].

- There are no additional species present in the Portland cement grout or in the
lower pH grouts, that significantly accelerate the corrosion reaction.

While the first two bullets do indicate that there is uncertainty in the experimental data
due to the few number of laboratory tests, it is unlikely that this is significant relative to
other conservatisms in the analysis.

The second part of the model involves the mass transport of the hydrogen gas from the
surface of the grout to the top of the reactor. The derivation of the mass transport
equation is also shown in the Appendix. The analysis does not account for dissipation of
hydrogen between the surface of the grout and the top of the reactor due to advection.
Accounting for this phenomenon would minimize the accumulation of hydrogen in this
region.

The flux of hydrogen away from the surface is related to the superficial velocity, u,. The
superficial velocity may be expressed as:

w=P%* [g* Ho * (1 - Mu/Mai))* Xrr’]" )

where P is a proportionality constant, g is the acceleration of gravity, H, is the distance
between the grout-air interface and the top of the reactor, M is the molecular weight of
either hydrogen or air, and X is the volume % of hydrogen in air at the lower
flammability limit (LFL). In the case of hydrogen the LFL is 4% by volume.

The incipient flammability condition occurs when the gas generation rate due to
corrosion equals the flux of hydrogen through air. The boundary condition at the
interface between the grout and air is that the hydrogen gas concentration is at the LFL.
For safety class operations, with radioactive materials stored within a vessel, a criterion
of 60% LFL is utilized for the evaluation [10]. The equation that describes this
condition is:

Q*Aa =u * A, (%)
where A, is the surface area of aluminum in contact with grout and A, is the void cross-

sectional area of the reactor vessel. Equation 5 can be re-arranged to give the critical
areal density ratio.

[AavAale = uy/Q (6)
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For the analysis, a plot of [Aa/A,]c vs. H is prepared. Examples of this plot are shown in
Figures 1 through 13. If the critical area density is greater than the actual areal density,
there is a low probability of a flammable condition. On the other hand if it is less than
the actual areal density, there is a possibility of a flammable condition developing.

Thermal Analysis

Calorimetry experiments are being conducted to estimate the temperature rise that will
occur in the grout during these operations [11]. Maximum temperatures observed during
these tests for the different grout formulations may be used for final calculations. For this
assessment, case studies will be performed for grout temperatures between 50 and 100 °C to
understand the effect of temperature on the hydrogen generation rate for the various grout
formulations.

Determination of Areal Density Ratios

Actual areal density ratios are being calculated based on current facility process
knowledge, surface observations, and drawings of the R- and P-reactor vessels [12]. The
predominant aluminum components present in the reactor vessels are the universal sleeve
housing (USH) and thimble tubes. It will be assumed that the inner and outer surfaces of
these components will be exposed to the grout. The aluminum surface area, Aay, as a
function of the fill level, H, was calculated from the following relationship:

Aar (h) =Nysu * © *(Dust_ o + Dusu ;) *H+ N1 * n *(Dr o + D1 3) *H @)

where D is the diameter, subscript USH is for the USH tubes, subscript T is for the
thimble tubes, subscript o represents the exterior surface, subscript i represents the
interior surface, and N is the quantity of USH or thimble tubes. The calculation did not
include the surface area of the ends of the tubes.

The cross-sectional area of the vessel, A,, was calculated by subtracting the cross-
sectional area of the USHs, thimble tubes, septifoils and spargers from the total tank
cross-sectional area. This is represented by the following equation:

A.=n * DZ/4 — Nusp*n*(Dush_o-Dusn_2)/4 — Nr* n#*(Dr_o>-Dr 2)/4 — Ng* n*Di /4 (8)

where subscript a is for the cross-sectional area, subscript t is for the tank, and subscript
ss is for the septifoils and the spargers. In P-reactor it is estimated that there are 432
USH tubes, 61 septifoils, and 66 thimble tubes and 6 spargers [13]. The USH tubes have
outer and inner diameters, 4.25 inches and 4.00 inches, respectively. The outer and inner
diameters for the thimble tubes are 1.5 inches and 1.0 inches, respectively. The septifoils
and spargers were modeled as a cylinder with a diameter of 3.5 inches. Calculations of
these areas are exhibited in the Appendix. In R-reactor, it was determined that there are
no USH tubes present (i.e., only septifoils, thimbles and spargers are present). The lack
of USH tubes means that A,;, and hence the areal density ratio, for R-reactor is less than
that of P-reactor by a factor of approximately 25 (see Figures 1-13).
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Determination of Volumetric Flow Rate of Hydrogen

The maximum volumetric flow rate of hydrogen generated during the grouting operations
was also estimated. Knowledge of this value will assist in the evaluation of whether or
not there is adequate ventilation to effectively disperse the hydrogen. The volumetric
flow rate, Qror is calculated from the following equation:

Qror = Q* Aal ®)
A calculation of this flow rate is exhibited in the Appendix.
Results

The case studies that were performed are summarized in Table 1 and the results are
shown in Figures 1 through 13. Some of the key trends were:

- An increase in temperature resulted in a lower critical areal density and therefore
greater risk of developing a flammable condition (e.g., compare Figures 1 and 2).

- Anincrease in pH resulted in a lower critical areal density and therefore a greater
risk of developing a flammable condition (e.g., examine any figure).

- Anincrease in the fill rate resulted in a lower critical areal density, although the
effect was not as great as temperature or pH (see Figure 11).

- The 60% LFL criterion provides a significant margin on the risk of developing a
flammable condition (e.g., compare figures 2 and 13).

- Anincrease in the actual areal density ratio results in a greater risk of developing
a flammable condition. Thus, as shown in the figures, there is a greater risk of
developing a flammable condition in the P-reactor vessel than there is in the R-
reactor vessel.

The results of the case studies for the P-reactor vessel demonstrate that two of the grout
formulations, the ceramicrete and the silica fume, should not result in a flammable
condition during reactor vessel grouting operations as long as they are within the
parameters of the case studies. Even at 60% LFL the critical areal density ratio for the
silica fume grout is at least 1 to 2 orders of magnitude greater than the actual areal
density ratio, while the ratio for the ceramicrete is 3 to 4 orders of magnitude greater. At
100% LFL these margins increase further to 2 to 3 orders of magnitude for the silica
fume grout and 4 to 5 orders of magnitude for the ceramicrete. The portland cement
grout is not a viable option for the P-reactor vessel as it exceeds the 60% LFL criterion
for each case that was examined.

The results of the case studies for the R-reactor vessel suggest that all three grout
formulations may be viable. For example, at the Case 3 conditions (i.e., 70 °C, fill rate of
1 inch/min, 60% LFL, see Figure 3) the critical areal density ratio is a factor of 5.5
greater than the actual areal density ratio for the Portland cement, while the ratio for the
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silica fume grout is 2 to 3 orders of magnitude greater and 4 to 5 orders of magnitude
greater for the ceramicrete grout. Although not shown, similar margins would be
obtained at a temperature of 80 °C with a fill rate of 0.5 inch/min.

The factor of 5.5 difference between the critical areal density ratio and the actual areal
density was examined further to assess the risk associated with utilizing Portland cement
grout for R-reactor. The surface area of the aluminum thimbles was approximately
96,400 square inches. A total aluminum surface area of approximately 530,300 square
inches could be contained in the R-reactor vessel before the 60% LFL criterion would be
exceeded (i.e., there would need to be and additional 433,900 square inches of aluminum
in the reactor vessel). This surface area is roughly equivalent to 90 USH’s. Thus, if the
facility is confident in the information provided by current facility process knowledge
and drawings, the risk of approaching the LFL is low.

Although these results are encouraging, due to the potential consequences, taking
precautions that reduce the likelihood of a flammable condition are recommended. These
measures include ensuring that the building has adequate ventilation during the grouting
process, minimizing the grout temperature, and operating at a slower fill rate. In order to
evaluate the ventilation needs, the volumetric flow rate of hydrogen was calculated for
each case for the P and R-reactor vessels. The results are summarized in Tables 2 and 3.

For the P-reactor vessel, the hydrogen flow rates for the pH 8 and pH 10.4 grout are very
small, less than 0.97 f’/min (see Table 2). The flow rates for the pH 12.5 grout are
higher than those for the lower pH grouts, ranging between 5.5 and 79 ft’/min, however,
the rates could be manageable with proper ventilation. For the R-reactor vessel (see
Table 3), the flow rates are a factor of approximately 25 less than the P-reactor vessel
(i.e., proportional to the change in aluminum surface area).

Table 1. Summary of Case Studies

Case Temperature Fill Rate pH LFL Level

(°C) (inches/minute) (%)
1 50 1 8,10.4, and 12.5 60
2 100 1 8,104, and 12.5 60
3 70 1 8,104, and 12.5 60
4 80 1 8,10.4, and 12.5 60
5 50 0.5 8,10.4, and 12.5 60
6 60 0.5 8,104, and 12.5 60
7 70 0.5 8,10.4,and 12.5 60
8 50 2 8,10.4, and 12.5 60
9 60 2 8,10.4,and 12.5 60
10 70 2 8,10.4, and 12.5 60
11 70 2,8,and 16 10.4 60
12 100 2 8,10.4, and 12.5 60
13 100 1 8,10.4,and 12.5 100
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Case Studies.
pH 10.4 pH 8 pH 12.5
Fill Rate Qtot Qtot Qtot
Case |Temperature (°C)] (inches/min) (cu.ft./min) | (cu.ft./min) | (cu.ft./min)
1 50 1 9.00E-02 5.90E-04 | 7.50E+00
2 100 1 8.25E-01 5.40E-03 | 6.72E+01
3 70 1 2.36E-01 1.50E-03 | 1.92E+01
4 80 1 3.66E-01 2.40E-03 | 2.98E+01
5 50 0.5 6.80E-02 4.40E-04 | 5.50E+00
6 60 0.5 1.11E-01 7.30E-04 | 9.03E+00
7 70 0.5 1.76E-01 1.16E-03 | 1.44E+01
8 50 2 1.05E-01 6.90E-04 | 8.58E+00
9 60 2 1.73E-01 1.10E-02 | 1.41E+01
10 70 2 2.76E-01 1.80E-03 | 2.25E+01
11 70 2 2.80E-01 NA NA
11 70 8 3.10E-01 NA NA
11 70 16 3.20E-01 NA NA
12 100 2 9.66E-01 6.30E-03 | 7.87E+01
13 100 1 8.25E-01 5.40E-03 | 6.72E+01

Table 3. Summary of Volumetric Flow Rates of Hydrogen for the R- Reactor Vessel

Case Studies.
T pH 10.4 pH 8 pH 12.5
Fill Rate Qtot Qtot Qtot
Case |Temperature (°C)] (inches/min) (cu.ft./min) { (cu.ft./min) | (cu.ft./min)
1 50 1 3.98E-03 2.61E-05 | 3.24E-01
2 100 1 3.60E-02 2.40E-04 | 2.97E+00
3 70 1 1.00E-02 6.83E-05 | 8.50E-01
4 80 1 1.62E-02 1.06E-04 | 1.32E+00
5 50 0.5 2.99E-03 1.95E-05 | 2.43E-01
6 60 0.5 4.90E-03 3.21E-05 | 4.00E-01
7 70 0.5 7.83E-03 5.12E-05 | 6.37E-01
8 50 2 4.66E-03 3.05E-05 | 3.80E-01
9 60 2 7.70E-03 5.02E-05 | 6.24E-01
10 70 2 1.22E-02 8.00E-05 | 9.95E-01
11 70 2 1.20E-02 NA NA
11 70 8 1.40E-02 NA NA
11 70 16 1.40E-02 NA NA
12 100 2 4.30E-02 2.80E-04 | 3.48E+0Q0
13 100 1 3.60E-02 2.40E-04 | 2.97E+00
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Conclusions and Recommendations

An assessment of the potential for hydrogen generation during grouting operations in the
R- and P- Reactor vessels was performed. The assessment concluded that either
ceramicrete or the silica fume grout may be used to safely grout the P-reactor vessel
because neither grout will generate enough hydrogen to exceed 60% LFL. The risk of
accumulation of a flammable mixture of hydrogen between the grout-air interface and the
top of the reactor is very low. Portland cement grout, on the other hand, for the same
range of process parameters does not provide a significant margin of safety against the
accumulation of flammable gas in the reactor vessel during grouting operations in the P-
reactor vessel. This accumulation of flammable gas exceeds 60% LFL. Itis
recommended that this grout not be utilized for this task.

Based on current facility process knowledge, drawings and surface observations, the R-
reactor vessel contains significantly less aluminum than P-reactor. Thus a Portland
cement grout may be considered as well. For example, if the grout fill rate is less than 1
inch/min and the grout temperature is maintained at 70 °C or less, the risk of hydrogen
accumulation in the R-reactor vessel is low for the Portland cement. Alternatively, if the
grout fill rate is less than 0.5 inch/min and the grout is maintained at a temperature of 80
°C, the risk is again low. In either case, accumulation of flammable gas does not exceed
60% LFL.

Although these calculations are conservative, there are some measures that may be taken
to further minimize the potential for hydrogen evolution.

1. Minimize the temperature of the grout as much as practical. Lower temperatures
will mean lower hydrogen generation rates. For P-reactor, grout temperatures less
than 100 °C should provide an adequate safety margin for the pH 8 and pH 10.4
grout formulations. For R-reactor, grout temperatures less than 70 °C or 80 °C
will provide an adequate safety margin for the Portland cement. The other grout
formulations are also viable options for R-reactor.

2. Minimize the grout fill rate as much as practical. Lowering the fill rate takes
advantage of passivation of the aluminum components and hence lower hydrogen
generation rates. For P-reactor, fill rates that are less than 2 inches/min for the
ceramicrete and the silica fume grouts will reduce the chance of significant
hydrogen accumulation. For R-reactor, fill rates less than 1 inch/min will again
minimize the risk of hydrogen accumulation.

3. Ventilate the building as much as practical (e.g., leave doors open) to further
disperse hydrogen. The volumetric hydrogen generation rates in the P-reactor
vessel, however, are low for the pH 8 and pH 10.4 grout, i.e., less than 0.97
£t’/min.

If further walk-down inspections of the reactor vessels suggest an increase in the actual

areal density of aluminum, the calculations for the potential for hydrogen evolution
should be re-visited.
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