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ABSTRACT 

 

We validated one year of Global Forecast System (GFS) predictions of surface 

meteorological variables (wind speed, air temperature, dewpoint temperature, air 

pressure) over the entire planet for forecasts extending from zero hours into the future (an 

analysis) to 36 hours. Approximately 12,000 surface stations world-wide were included 

in this analysis. Root-Mean-Square- Errors (RMSE) increased as the forecast period 

increased from zero to 36 hours, but the initial RMSE were almost as large as the 36 hour 

forecast RMSE for all variables. Typical RMSE were 3ºC for air temperature, 2-3mb for 

sea-level pressure, 3.5°C for dewpoint temperature and 2.5 m/s for wind speed.  

Approximately 20-40% of the GFS errors can be attributed to a lack of resolution of local 

features. 

We attribute the large initial RMSE for the zero hour forecasts to the inability of 

the GFS to resolve local terrain features that often dominate local weather conditions, 

e.g., mountain- valley circulations and sea and land breezes. Since the horizontal 

resolution of the GFS (about 1º of latitude and longitude) prevents it from simulating 

these locally-driven circulations, its performance will not improve until model resolution 

increases by a factor of 10 or more (from about 100 km to less than 10 km). Since this 

will not happen in the near future, an alternative for the near term to improve surface 

weather analyses and predictions for specific points in space and time would be 

implementation of a high-resolution, limited-area mesoscale atmospheric prediction 

model in regions of interest. 
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1. Introduction  

The Global Forecast System (GFS) is a global climate model (GCM) developed at 

the National Center for Environmental Prediction (NCEP) (NCEP, 2003). The model is 

run continuously at NCEP and the products are placed online, providing users needing 

worldwide weather forecasts with a valuable resource.  The GFS (formerly the AVN 

model) data has been used extensively (Saha et al, 2006; Hoffman and Leidner, 2005), 

and has been used to provide both forecast and analysis information for a variety of 

applications.   These include the use of the data for the interpretation of surface 

information seen by satellites.    

Given the widespread use of this data, it raises the question as to how good it is, 

and how its quality varies.  The quality of a forecast is dependent on several factors- 

topography and proximity to the ocean, time of day and season. As these are known, (or 

vary predictably), knowledge of their effect on the forecast quality can allow us to 

determine the uncertainty in the GFS data.  For example, Goff (2004) validated the GFS 

precipitation forecasts for the northeast US for the cold and warm seasons from 2 years 

and found that the quality depended on the season and the area being validated.  The 

model data is at 1º resolution, fairly fine for a GCM, but still unable to resolve many 

surface heterogeneities that can allow the meteorology to vary greatly within a small 

distance.  The necessity of resolving such surface features was also highlighted in an 

article by Medvigy et al. (2008), in which they ran the OLAM global climate model and 

determined that a high-resolution mesh over the Andes is needed to properly reproduce 

the observed effect of ENSO on Amazon precipitation. 
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The resolution of small-scale variability is particularly important since small-scale 

atmospheric eddies can interact to produce large-scale features.  Therefore, a model with 

a coarse resolution will not only miss small-scale events, but the large-scale events it can 

resolve will be in error as well.  For example, Chen et al. (1990) ran the GLA forecast 

model at a fine (2ºx2.5º) and coarser (4ºx5º) resolution.  Differences in large-scale 

stationary eddies were seen in the finer model, and these were linked to differences in the 

resolved tropical heating.   

  In order to determine the forecast quality, we apply a systematic validation 

algorithm to the GFS data to see how its quality varies throughout the year and over all 

locations.  We expect that some variables are more difficult to predict than others, and 

that, as the values of the variables themselves undergo an annual cycle, so too may the 

errors in their prediction (though not necessarily the same cycle).  Questions could also 

be asked as to how the resolution affects the consequent forecast accuracy, and how well 

the model does with respect to an unskilled forecast.  To learn more about this, we 

obtained GFS data and station data against which to compare it.  By quantifying the 

forecast quality for different times of the year, different times of the day, and different 

locations, we can determine where the forecast is weakest and what could be done to 

improve it.   

 

2.    The Global Forecast System and Integrated Surface Hourly (ISH) Station Data 

The GFS (NCEP, 2003) comprises a T254 global spectral model that also uses a 

Gaussian grid of 768x385 (~0.5 degrees).  It has 64 vertical layers, with smaller vertical 

spacing in the boundary layer (to resolve turbulent transfer) and at higher levels (to 



 5

resolve the dissipation of gravity waves).  The model solves the primitive equations for 

vorticity, divergence, logarithm of surface pressure, specific humidity, virtual 

temperature, and cloud condensate as the dependent variables.  The parameterization 

includes the determination of the momentum flux due to gravity waves at the surface, as 

well as at higher levels. The model uses a radiative transfer model with a correlated-k 

distribution (which solves for the cumulative effect of a large spectrum of absorption 

bands, saving time), and convection occurs when the cloud work function (the integrated 

buoyant instability) exceeds a certain threshold.   The model also uses a K-theory PBL 

scheme in which eddy diffusivity (K) is a cubic function of boundary layer height.  

        The model data are obtained through NOAA’s National Operational Model 

Archive and Distribution System (NOMADS) web site.  We downloaded data from 

March 1, 2005 to Feb. 28, 2006, getting the 0, 18, and 36-hour forecasts, each made at 

0Z, 6Z, 12Z and 18Z, and the data are at 1ºx1º resolution (coarser than the .5º resolution 

at which it is produced). The variables to be validated include 2 meter temperature, 2 

meter dewpoint temperature, 10 meter winds, and sea-level pressure (SLP).  

        The data used to validate the GFS model are taken from global station 

readings that have been combined into a single data source. The Integrated Surface 

Hourly (ISH) dataset1 was compiled by the National Climatic Data Center (NCDC), and 

includes data from approximately 12,464 stations.  Not every station reports the weather 

every hour, however, so for any particular time, only about 6,000 stations are used.  The 

stations report data for temperature, dewpoint, wind speed, and sea-level pressure. We 

have station data for 2005 and 2006, so these will be used to validate the GFS data.     

 
                                                 
1 http://gcmd.nasa.gov/records/GCMD_gov.noaa.ncdc.C00532.html 
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3. Validation Procedure 

        The procedure for validating the GFS is as follows. First, the forecasts are grouped 

into the 0-hour, 18-hour and 36-hour forecasts (henceforth the forecast periods). Then, 

for each forecast, an algorithm is run which loops through each model forecast time (that 

is, the time the forecast was made) – 0z, 6z, 12z, 18z, for each day of the year. When a 

particular GFS time is selected, (e.g., the 18 hour forecast made at 6z on March 1, 2005), 

a file containing the ISH station data for the corresponding validation time is opened (in 

this case, the station data file for March 2, 2005 at 0z). 

         The program then loops over all stations in the ISH file, reading in the desired 

variables (rejecting stations with missing data), and noting the latitude and longitude of 

each.  At each station, the four nearest GFS gridpoints that surround the station are 

identified, and the GFS data are converted so that they have common units with the 

station data.  The GFS data are then interpolated to the station location using a bilinear 

interpolation (Raytheon, 2004), and the difference between the station value and the 

interpolated GFS value is squared and added to a running sum.  The program then moves 

on to the next station, repeating the procedure.  After all stations have been interrogated, 

the root mean square error (RMSE) value is calculated from the total sum of squares and 

the number of stations that were included.  As each of the four forecast times for each day 

are assessed, we will have a time series that shows how the forecast quality varies 

throughout the year.  
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4. Results 

    a. Global Error Patterns 

When calculated over the whole world, the annual and diurnal cycles should 

theoretically be less defined as each time will include stations under both day and night 

conditions, as well as experiencing different seasons.  The world’s stations are not 

distributed uniformly, however, so we may expect some variability in forecast quality 

during the year.    

On a global scale, the RMSE temperature values for the 0Z forecasts show a strong 

downward trend from March to September (Fig.1), falling from 3.5K to 2.9K. The values 

remain relatively flat in September until they rise sharply in mid-November, reaching 

about 3.5K before March of the following year.  A distinct layering of values for the 

different forecast periods can be detected, with the 0-hour forecast having the lowest 

errors and the 36-hour forecast the highest.  The differences indicate the magnitude of the 

forecast ‘correction’ as we get closer to the validation time.  The ‘spikes’ seen on Sep. 1 

and Jan. 10 (and elsewhere) are due to there being only a few (~400) stations available at 

those times).   

In the global mean (Fig. 2a), the stations are on average hotter from 12Z (~7pm in 

Europe) to 18Z (~12pm in North America). The model biases are generally too cool (Fig. 

2b) except for the 6Z forecast from June to March.  We also see from this that the annual 

cycle of the errors differs for forecasts initialized at different times of the day, with the 

values in April through October (the warmer time of the year in the global mean, which is 

dominated by stations in the Northern Hemisphere) highest at 18z (Fig. 2b).  The model 
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biases for 18Z are too cool (Fig. 2b), so the model seems to be having difficulty reaching 

the warmer daytime maximum temperatures. 

When the errors are averaged for the 3-month periods, we can compare the values 

for the different seasons as well as the different forecast periods. The temperature errors 

(Table 1a) show a clear (but small) increase as the forecast period increases, but also 

show a clear annual cycle, with larger values in DJF and smaller values in SON.  The 

differences between the 36- and 0-hour forecasts are also larger for DJF (.29K) relative to 

SON (.18K). 

The RMSE values of wind speed also show a strong annual cycle, and are generally 

lower in the warmer part of the year. Similar to temperature, the errors in 10m wind 

speed start at relatively high values (2.7m/s) in March and fall to about 2.3m/s in early 

June (Fig. 3).  They are fairly steady until September and then rise until December, and 

remain high (2.6m/s) until March.  This cycle is driven by the annual cycle in global 

mean wind speed (Fig. 4a) – speeds fall from March to June, then rise until the following 

March.  We again see that the 0-hour analysis is superior to the 18 and 36-hour forecasts, 

but also that the differences are small (~0.2m/s).  The model bias has an annual cycle that 

leads the annual cycle in wind speed (Fig. 4b), and is lowest at 12-18Z and greatest at 0-

6Z.   

When averaged over the entire period, the forecast errors (Table 2) reveal that the 

model does best in JJA and worst in DJF, in accordance with Fig. 3. We again see how 

the increasing forecast period degrades the forecast quality, with the largest increase in 

RMSE for MAM.   
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The SLP (Fig. 5) has a tendency towards larger errors during both the warm and 

cold seasons.  They start from about 2-3mb in March, fall until May, rise in July, fall 

again until September, and rise as March approaches. Values are mostly below 3mb 

(Table 3).  The annual cycle of SLP falls to a low in the NH summer and has its 

maximum in winter (Fig. 6a), and the bias has an opposite cycle (Fig. 6b) – the SLP 

values are too high during the minimum and too low during the maximum.  This implies 

that the annual cycle of interhemispheric movement of air is too weak in the GFS.    

Table 3 shows that the maximum error is during DJF for the 0-hour forecast, while the 

greatest degradation (increase in RMSE) is during MAM (~0.78mb).  

The dewpoint error cycle (Fig. 7) resembles that for temperature (Fig. 1), but starts 

with high values (4.2K), which fall in March to 3.8K.  They rise to 4.2K in April and fall 

again to 3.4K by June 1. They hold steady at that value until November, when they rise to 

about 4.3K in January before falling and rising again in February.  The annual cycle (Fig. 

8a) has a maximum in JJA, and the model does worst during the drier part of the cycle 

(DJF).  Similarly to the SLP, the model bias (Fig. 8b) is out of phase with (and, in this 

case, lags) the annual cycle – the model is too wet during the dry season and vice versa.  

This indicates that either the model precipitation/evaporation cycle is not responding to 

the annual forcing, the interhemispheric transport of moisture is inadequate or numerical 

diffusion is creating unphysical changes in water vapor, and this is resulting in an 

inadequate spread in dewpoint values.  Also note that, as with temperature, the errors in 

the warmer months become greater as the forecast time shifts from 0-6z to 12-18z.  Table 

4 shows how the errors increase with forecast period, and tend to be largest in DJF 

(during which we see the greatest degradation). 
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Fig. 9 shows the distribution of all stations, with the stations with the largest RMSE 

values (averaged throughout the year) for the 0Z forecast highlighted (the maps for 12Z 

look similar).  We see that the temperature errors (Fig. 9a) are greatest in mountain 

regions- the Rockies, the Alps, the Andes, and the Himalayas are all clearly visible in the 

plot. Mountain regions appear to create difficulties for the model when predicting SLP 

(Fig. 9c) and dewpoint (Fig. 9d) as well.  For the speed errors (Fig. 9b), however, coastal 

regions seem to dominate, suggesting that resolution of the sea-breeze or the poor 

resolution of the surface roughness discontinuity could be the problem. 

 

    b. Comparison to Persistence 

Quantitative forecast validations are usually expressed as the relative improvement 

over an unskilled reference forecast – usually a ‘forecast’ that involves the assumption 

that the past climate represents the future climate.  One such forecast is persistence – the 

assumption that the tomorrow’s weather will simply be a repeat of today’s.  Mittenmaier 

(2008) showed that persistence represents a sterner reference for testing forecast accuracy 

than a simple random forecast.   

Using the station data, we can create a persistence forecast – the meteorological 

values for any time will be the same as the most recent validated time. For example, the 

18Z temperature tomorrow will be the same as today’s 18Z temperature, and the 18Z 

temperature two days from now will also be assigned today’s 18Z temperature. 

Can this forecast method do as well as the GFS, indicating that the latter has no 

skill? We can compare the 18-hr forecast to the 24-hour persistence, and the 36-hr 

forecast to the 48-hour persistence by calculating the RMSE values for the persistence 
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forecast and comparing them to the GFS forecast RMSE values.  A measure of forecast 

skill that makes use of both RMSE values and a reference forecast is the skill score SS 

(Murphy and Epstein, 1989): 

ref

fcst

MSE
MSE

SS −= 1  

where MSEfcst is the mean square error (the RMSE squared) of the actual forecast, and 

MSEref is that of the reference.  An SS value of 1 indicates perfect model skill, while 

values of 0 (or below) indicate no forecast skill. Murphy and Epstein (1989) used 

climatology as the reference, but Mittenmaier (2008) suggested substituting persistence.  

Doing this, we can calculate the SS score for the 18hr and 36hr model forecasts and 

determine how skillful they are.     

For temperature (Table 1), the model SS is highest in DJF and lowest in JJA, and 

we see that the 36 hour forecast is more skillful than the 18 hour forecast – though the 

RMSE values are larger, persistence is a worse forecast for this longer forecast period, 

making the SS value larger.  The skill of the speed forecasts (Table 2) is about the same 

all year round, and changes little for longer forecast periods.  The SLP SS values (Table 

3) are generally higher than for the other variables, and have an annual cycle similar to 

that for temperature.  They also increase for the longer period forecast.  For dewpoint 

temperature (Table 4), the SS values are slightly lower than those for temperature, 

suggestive of the greater difficulty in forecasting this variable. 
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c. Effect of Resolution 

The data on the model grid will tend to have a characteristic length-scale, which can 

vary among the model variables but never fall below the model grid spacing. The fact 

that station data varies on scales shorter than this is responsible for at least part of the 

model error.  This can be seen in the fact that forecasts of fields dominated by small-scale 

spatial variability (e.g., temperature) are generally less accurate than those dominated by 

large-scale variability (e.g., SLP).   

If the station data were fit to a grid identical to that of the forecast field, the 

resulting length scale would then be closer to that of the model, and the elimination of 

small-scale variability from the observed field should therefore yield lower errors when 

the model and observations are compared.  The resulting change in forecast quality (with 

respect to that done by interpolating the model to the station locations) could then give us 

an idea as to how much the forecast errors are due to resolution issues, and how much are 

due to other problems.    

We will repeat the 0-hr validation, but now fitting the station data to the same grid 

used by the forecast fields.  To do the fitting, we elect to use a one-pass Cressman 

analysis scheme (Cressman, 1959).  In this scheme, an initial guess field is assumed, and 

the errors between this first guess and the station values (which requires interpolation of 

the first guess to the stations) are calculated.  The correction to each grid point is then 

calculated as a weighted average of the station errors within a given distance (D) from 

that gridpoint.  The weighting is calculated as: 

          22

22

j

j
j dD

dD
w

+

−
=     (1) 
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where dj is the distance from the gridpoint to the station.  Each gridpoint value is 

corrected, and the resulting grid field is then used as the guess field for the next pass. 

With each new pass, the reference distance is reduced. 

We will apply the scheme without the successive corrections – we assume a first 

guess field of zero, then apply the Cressman scheme once to fit the station data to the 

forecast grid.  Once the analysis is done, we compare the forecast and the station analysis, 

looping over all gridpoints and calculating the RMSE values as before. By doing this 

repeatedly with different values of the reference distance, we can see which D value 

gives us the most improvement in the forecast.  To maintain a fair comparison between 

error scores calculated at the largest value of D (300km) and scores calculated with the 

smallest value (50km), the number of validated gridpoints should be the same (in our 

analysis, only gridpoints with at least 2 stations within the distance D are counted in the 

error calculation). To control for the fact that, at lower values of D, fewer gridpoints will 

‘qualify’ as having the minimum number of stations within the required distance, only 

gridpoints that qualify at D=50km will be included in the analysis for larger values of D, 

so the same gridpoints will be validated for all values of D.   

As D is increased, the analysis at the gridpoints will be influenced by stations 

further and further away.  If D is too large, stations that are uncorrelated with nearby 

stations will be included in and degrade the analysis.  If D is too small, the analysis is 

susceptible to the influence of only a few stations and will fail to smooth out the small-

scale variability that the GFS cannot capture.  Both of these will result in a poorer RMSE 

score.  If D is close to the scale at which the model data varies, however, the match 

between model and observed length scales will result in a better RMSE score. 
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For example, Fig. 10a shows that we get the lowest temperature errors if we create 

an observational analysis by averaging the station data within a 100-150km radius of 

each grid point, and this holds true for all seasons.  This implies a characteristic length 

scale over which the GFS temperature forecast varies, since the model comparison is best 

by averaging the observed data to that same scale.  Because the 1º GFS model is of 

roughly 100km resolution, this is about the minimum we could expect, so the model 

temperature field is at its maximum spatial variability. These values are about 15-20% 

smaller than the values in Table 1, which can represent the fraction of the error due to 

inadequate resolution.  The greatest improvement (both in a relative and an absolute 

sense) is in SON (when the RMSE values are smallest), with smaller improvements in 

DJF (when the RMSE values are largest), suggesting that resolution is more of an issue in 

SON.  

For the wind speed (Fig. 10b), the lowest errors come with D=200km, implying that 

the GFS speed field varies at larger scales than temperature, even though the model can 

resolve finer scales.  This is especially true given that we get little increase in error when 

we average at 300km, suggesting that the model wind speeds vary little over the latter 

scale.  These values represent an approximately 20-30% improvement in score, pointing 

even more to a model resolution problem.  Notice once again that large improvements 

come when the errors are generally lowest (JJA), and the weakest improvements happen 

during the period when errors are highest (DJF), implying the effect of model resolution 

can vary during the year.   

The SLP (Fig. 10c), which is coupled to wind speed on large scales, also sees the 

most improvement for D=250-300km for all seasons, and the values improve the forecast 



 15

by up to 45% for SON.  Given the fact that this variable varies on large spatial scales and 

is therefore better resolved by the GCM, this implies that the model dynamical errors are 

smaller as well, making resolution errors a larger fraction of the total.  Note however, that 

the annual cycle is different than the other variables - the greatest improvement happens 

during the period with the worst RMSE scores (DJF, see Table 1), and the lowest 

improvement occurs when RMSE scores are smallest (MAM).  This implies that the 

resolution is the largest problem in DJF for SLP.    

For Td (Fig. 10d), we see the lowest errors at 150-200km, and also shows little 

degradation at larger scales (again implying lower-than-expected spatial variability in this 

simulated variable).  We see the largest improvements (~27%) for the NH summer 

months JJA and SON (when the forecast is best) at D=150km (similar to temperature).   

Of course, the model forecast has not gotten any better, only the RMSE values.  

This highlights the importance of selecting a proper forecast metric - the Cressman 

scheme is useful for validating a model when it is the intent to forecast features at coarser 

resolution.  Also, the use of this scheme demonstrates how much of the model error is 

due to resolution (in this case, between 15-45%), and how much is due to errors in the 

actual forecasting or in the data assimilation (both of which are used to create the 0 hour 

analysis).  The use of a Cressman-type analysis is likely the best indicator of the true 

“model skill”, that is, what the model can predict. 

 

6. Conclusions 

This process has shown the magnitude of errors expected when the GFS forecast 

system is used to analyze or predict the surface meteorology.  We have seen that the 
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global and local errors vary throughout the year.  It is not clear why the forecasts vary the 

way they do, particularly with regards to the annual variability.  For example, why do the 

global temperature errors reach a minimum in one season (SON) and a maximum the 

following season (DJF)? And why does the minimum occur in SON and not MAM, 

which should have similar weather?   

Ultimately, the value of any forecast is in its contribution to the decision-making 

process.  At a 1º resolution, the GFS forecasts are adequate for forecasting large-scale 

weather systems, but will necessarily have problems when used to predict smaller-scale 

features, such as the meteorological values at individual stations where local terrain 

variability, e.g., a river valley, significantly affect surface wind speed and direction, and 

temperature to a lesser degree. Since the GFS cannot resolve these local terrain features, 

it cannot simulate their effects on surface weather. The results of the error analyses 

presented in this report make it clear that local variability is extremely important at the 

majority of the stations analyzed around the world, because in almost all cases the RMS 

error for the 36 hour forecast was only a little larger than the 00 hour forecast.  

The method often used to evaluate forecast model skill validates model predictions 

at individual nodes by combining the measured surface variables, e.g., temperature, via a 

distance weighted average for all stations within the area represented by the individual 

model node. This procedure averages out the local terrain effects at individual stations 

and thus produces a validation data set that is appropriate for assessment of model 

predictions, which are necessarily space and time averaged. As computer power 

increases, model resolution will continue to improve, so the accuracy of these types of 

large-scale model predictions should continue to get more accurate.  
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1

Figure 1 Global RMSE Temperature error (K), for the 2005/2006.  
Forecast periods are 0 hours (blue), 18 hours (pink), and 36 hours 
(green).
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2
Fig. 2   a) Temperature station mean b) 0hr 
forecast bias (K).
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Figure 3 Global RMSE Speed Error (m/s), for 2005/2006.  Forecast 
periods are 0 hours (blue), 18 hours (pink), and 36 hours (green).
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4Fig. 4   a) Station mean speed b) 0hr wind 
speed forecast bias (m/s).
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Figure 5 Global RMSE SLP error (mb), for the a) 0Z, b) 6Z, c) 12Z, and 
d) 18Z forecast.  Forecast periods are 0 hours (blue), 18 hours (pink), 
and 36 hours (green).
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6
Fig. 6   a) Station mean SLP b) 0hr SLP 
forecast bias (mb).
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7

Figure 7 Global RMSE dewpoint errors (K), for the a) 0Z, b) 6Z, c) 12Z, 
and d) 18Z forecast.  Forecast periods are 0 hours (blue), 18 hours 
(pink), and 36 hours (green).
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8
Fig. 8  a) Station mean Td, b) 0hr Td forecast bias (K).
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Fig. 9 Map of worst 10% of stations as determined by the 
mean RMSE 0hr 0Z values for a) temperature, b) speed, c) 
SLP, and d) dewpoint.
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11

Fig. 10 RMSE values of a) temperature b) wind speed c) slp and d) dewpoint for 
the 0-hr forecast calculated by averaging station values to the GFS gridpoints.
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Fig. 10 continued
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Table 1 Temperature Error (K), and SS 
scores (boldface).

3.04
.84

2.97
.76

2.86SON

3.5
.86

3.45
.77

3.26DJF

3.15
.76

3.07
.66

2.95JJA

3.37
.82

3.26
.74

3.18MAM

36 hour18 hour0 hour



2.48
.87

2.42
.86

2.35SON

2.66
.87

2.6
.86

2.51DJF

2.32
.86

2.27
.85

2.20JJA

2.62
.86

2.52
.85

2.38MAM

36 hour18 hour0 hour

Table 2 Wind Speed Error (m/s), and SS 
scores (boldface).



2.09
.93

1.86
.91

1.61SON

2.65
.93

2.38
.89

2.05DJF

2.06
.87

1.90
.79

1.70JJA

2.30
.92

1.91
.89

1.52MAM

36 hour18 hour0 hour

Table 3 SLP Error (mb), and SS 
scores (boldface).



3.49
.83

3.39
.76

3.31SON

4.24
.84

4.13
.75

3.99DJF

3.49
.72

3.41
.61

3.35JJA

3.95
.81

3.86
.72

3.85MAM

36 hour18 hour0 hour

Table 4 Dewpoint Error (K), and SS 
scores (boldface).


