
Contract No. and Disclaimer:

This manuscript has been authored by Savannah River Nuclear 
Solutions, LLC under Contract No. DE-AC09-08SR22470 with the U.S. 
Department of Energy. The United States Government retains and the 
publisher, by accepting this article for publication, acknowledges that 
the United States Government retains a non-exclusive, paid-up, 
irrevocable, worldwide license to publish or reproduce the published 
form of this work, or allow others to do so, for United States 
Government purposes.



New Directions in Radioisotope Spectrum
Identification

Lane Owsley Greg Okopal
Applied Physics Laboratory, Univ. of Washington, Seattle, WA 98105

(206) 685-3592, lane@apl.washington.edu
Saleem Salaymeh

Savannah River National Laboratory, Aiken, SC 29808

OVERVIEW

Recent studies have found the performance of commercial handheld detectors with automatic RIID
software to be less than acceptable [14, 15]. Previously, we have explored approaches rooted in speech
processing such as cepstral features and information-theoretic measures [18]. Scientific advances
are often made when researchers identify mathematical or physical commonalities between different
fields and are able to apply mature techniques or algorithms developed in one field to another field
which shares some of the same challenges. The authors of this paper have identified similarities
between the unsolved problems faced in gamma-spectroscopy for automated radioisotope identification
and the challenges of the much larger body of research in speech processing. Our research has led
to a probabilistic framework for describing and solving radioisotope identification problems. Many
heuristic approaches to classification in current use, including for radioisotope classification, make
implicit probabilistic assumptions which are not clear to the users and, if stated explicitly, might
not be considered desirable. Our framework leads to a classification approach with demonstrable
improvements using standard feature sets on proof-of-concept simulated and field-collected data.

BACKGROUND

Radioisotope identification algorithms based on gamma-ray spectra take an unknown gamma-ray
spectrum recorded by a detector as input and attempt to determine which isotopes emitted the
observed gamma photons. Approaches can generally be divided into two broad areas. The first
focuses on specific regions of interest in the unknown spectrum where gamma photons from certain
isotopes would be expected to be seen. This approach is exemplified by peak picking, in which the
locations of peaks in the spectrum are used to identify the gamma-ray sources (see, for example
Routti and Prussin [9]). In a noisy spectrum, it can be difficult to determine the exact location of the
peaks, and many approaches to this problem have been explored [11]. Furthermore, when shielding
is present, the photons emitted at the expected peak energy may be shifted down to lower energies,
to the point where a peak is not identifiable.

In the second approach, the algorithm attempts to match the full spectrum with templates of
spectra from known isotopes. To accomplish this, some measure of similarity must be chosen; the
most common choices are correlation coefficients and error measures. For correlation measures, the



correlation coefficient is computed between an unknown spectrum and a library of reference spectra
[17].

Many authors have proposed least square error approaches. Salmon [1] and McWilliams, et al.
[2] used non-weighted least squares procedures to solve for the target strengths of isotopes in an
unknown spectrum. The former author mentions that a weighted approach would be more robust
but does not pursue the idea. Other researchers have pursued weighted least squares approaches
[3, 4, 5, 6, 7, 8, 10]. In particular, Eckhoff [10] describes a nonnegative weighted least squares algorithm,
where the weights are determined by variance estimates from the observed spectrum, the template
spectrum, and the estimator. If the template set of known spectra is constructed without shielding,
however, the usefulness of these approaches is reduced when shielding materials are present. These
approaches either assumed simple background subtraction or that the background could be described
as a combination of the template sets; no separate background contribution to the weighting was
incorporated.

Gamma photons interact with matter via several different processes: Compton scattering, the
photoelectric effect, and pair production. We will not give a detailed description of these effects here
because they are well documented in the literature (e.g., Knoll [13] or Gilmore and Hemingway [12]).
However, in general, the interaction of gamma photons with matter between the source and detector
causes the photon to be detected at a different energy than that at which it was emitted. This effect
complicates the process of radioisotope identification because the measured spectrum from a given
isotope may be significantly different from that which was expected. Therefore it is highly desirable
to develop RIID algorithms which are robust to the effects of shielding.

The Multiple Isotope Material Basis Set (MIMBS) method for RIID works on the principle that
the effects of any shielding material can be approximately modeled using the effective atomic number.
MIMBS uses a small number of basis shielding materials and unshielded reference spectra and attempts
to solve, using a least squares approach, simultaneously for the composition of the shielding and the
source emitters [16].

MODEL FORMULATION

Automated detection and classification systems can take many forms. Probabilistic modeling is par-
ticularly useful from a research point of view as well as in situations where the target platform is
intended for use by nontechnical users. Probability is an intuitive concept that enables researchers
to examine systematically the effects of various features and variations, and it is also one that can
lead directly to intuitive outputs for a wide variety of users. Specifically, a probabilistic problem
formulation can give us not just an estimate of the quantity of interest but a meaningful estimate
of how likely that estimate is to be correct. Because this confidence estimate is so valuable, many
non-probabilistic formulations produce an ad hoc number that is labeled as “confidence” but does not
have a mathematical relationship to any real question that could be understood by a non-technical
user.

In the application being studied under this work, the goal is to detect the presence of one or
more radioactive isotopes in an environment where there are many possible environmental sources of
radiation as well. The data available are the counts of emissions received at different energy levels:

ku = [ku(1), ku(2), ..., ku(N)]T (1)
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collected over a time interval Tu, where N is the number of channels (energy bins) and ku(i) is the
count in bin i. For this pilot study, we also assume the availability of a reference background spectrum

kr = [kr(1), kr(2), ..., kr(N)]T (2)

which is taken in over a period Tb in a similar environment but not directed at the object being
interrogated. Given a list of possible isotopes which may be present in the unknown spectrum, we
model the unknown spectrum as

ku = kb +
Nc∑
j=1

kj (3)

where kb is the spectrum of received emissions due to the background, and kj is the spectrum due
to component j in our library of Nc components (this spectrum may be 0 if the component is not
present). The components may correspond with isotopes or with isotopes under specific conditions
(such as a particular shielding setup).

To address this probabilistically, we consider that the question we want to answer is “Given the
sampled spectrum ku, what is the most likely combination of target components present
in the interrogated envronment, and in what strengths?” We can write this as

ĉ = argmax
c

p(c|ku) (4)

where
ĉ = {ĉ1, ĉ2, ..., ĉNc} (5)

are the strengths of the Nc components which may be present in the unknown spectrum at higher
levels than in the reference background spectrum (we can assign cj = 1 to the strength of a source at
a reference distance and radioactivity, such as 10µC at 1 meter distance). According to Bayes’ rule

p(c|ku) =
P (ku|c)p(c)

P (ku)
(6)

which involves the prior probability estimates p(c) and P (ku), which may be environment- or application-
dependent. As a result, we may choose to focus on the maximum likelihood estimate [20] of c,

ĉ = argmax
c

P (ku|c), (7)

which is equivalent to asking “Which combination of component strengths would be most
likely to produce the observed channel counts given that that set of strengths were
present in the environment?” In other words, we ignore the expected (prior) probability of each
isotope in the environment. If there are significant differences in these expected probabilities for a
given scenario, we may wish to include them in the estimated quantity as in Equation 6, but for
many applications the relative probabilities of particular options given the data are so much more
differentiated than the prior probabilities that the latter do not significantly affect the classification
result.
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The channel counts are random variables which we assume to be independent given the target
strengths and the background spectrum, so we can write the probability of a given unknown spectrum
in Equation 7 as a product of the individual channel counts:

P (ku|c) =
N∏

i=1

P (ku(i)|c). (8)

We model each component j with an expected spectrum (at some reference target strength)

λj = [λj(1), λj(2), ..., λj(i), ..., λj(N)]T (9)

and an expected background spectrum (which in practice we will need to estimate)

λb = [λb(1), λb(2), ..., λb(i), ..., λb(N)]T (10)

Equation 3 can be viewed as a single sampling of an underlying distribution

κu = κb +
Nc∑
j=1

κj (11)

where the κs are random variables. The physics tell us that these κs are Poisson-distributed, but if
we approximate the Poisson distribution as a normal distribution we can write Equation 11 as

κu ≈ λb + n(λb) +
Nc∑
j=1

[cjλj + n(cjλj)] (12)

where n(µ, σ2) is a normally-distributed random variable with mean µ and variance σ2 and let n(σ2) =
n(0, σ2), and vector arguments to the normal function are interpreted as the diagonal values of a
covariance matrix with no non-zero off-diagonal values. We can rewrite this in matrix form as

κu ≈ Ac + λb + n(Ac + λb) (13)

where A is our library of expected spectra; for component j in bin i, A(i, j) = λj(i) for cj = 1.
However, we do not have λb itself but kr, one sample of this distribution.

For sufficiently large values of kr(i) we may model the distribution of λb given kr as

kr + n(kr), (14)

which makes the approximation that the standard deviation of a Poisson distribution with an expected
value equal the sample count is not significantly different from the deviation of a distribution with
the expected value equal the theoretical background distribution. We can then rewrite Equation 13
as

κu ≈ Ac + λb + n(ku) (15)

For small expected counts, this approximation will lead to overestimation of the target strength and
an improved model is part of our future work direction. For cases where the assumption holds, we
can now further approximate Equation 11 as

κu ≈ Ac + kr + n(ku + kr) (16)
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where we neglect the variance in the variance term. As a point of reference, note that the variance
estimate includes not just the background contribution as in anomaly-detection features such as
spectral comparison ratios [19], but also incorporates variance due to the hypothesized target isotopes.

Our goal now is to estimate c as

ĉ = argmax
c

P [ku|κu(c)] , (17)

The isoprobability curve of the multivariate normal distribution κu in this probability space is a
hyperellipsoid. By a scaling of axes, we can operate in a space where the isoprobability curve is a
hypersphere, which will enable us to solve for ĉ using linear projection. For a scaling vector s such
that

s(i) = [ku(i) + kr(i)]
1/2 (18)

we can scale all the vectors in the spectral space, resulting in

κu
′ − kr

′ ≈ A′c + n(I) (19)

where the prime indicates scaling by s: A′(i, j) = A(i, j)/s(i), etc. The linear projection of κu
′ − λb

′

onto A′ is the choice of ĉ which maximizes the probability presented in Equation 17. Thus the
maximum likelihood estimate for c is

ĉ = (A′)−1(k′u − k′r). (20)

To understand the value of the probabilistic approach, consider for comparison a linear projection
which does not incorporate such scaling, as seen for example in the MIMBS method[16]. That
approach is equivalent to the probabalistic formulation just described, if the variance is assumed to
be the same in every channel. This means, for example, that an excess of 16 counts in a particular
channel is treated as having the same likelihood whether the expected number of counts due to the
background and other isotopes were 1 or 100.

Alarms and confidence reporting

Given the variance model described above, we can estimate the pdf of observed channel counts

p(ku|kr,A
′, ĉ) =

1

(2π)N/2
∏N

i=1 s(i)
exp(f(ku,kr), ĉ) (21)

where

f(ku,kr, ĉ) = −1

2
(A′c− [k′u − k′r])

T (A′c− [k′u − k′r]) (22)

which we note is a simple function of the distance between the expected target spectrum Aĉ and the
estimated target spectrum ku−kr in the scaled space. As such, we can use this distance as a measure
of fit of the model to the data. More particularly, we have a simple measure of how likely a particular
model component is to be present in the data, since we can calculate how much the pdf increases
when we add that component to the model:

p(ku|kr,A
′, ĉ)− p(ku|kr,A

′
j, ĉj) (23)
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where A′j and ĉj are, respectively, the expected library and estimated target strengths with the isotope
in question removed.

More generally, we can apply this approach to determine the model’s confidence in a group of
components—for example, representing a particular isotope under a variety of shielding conditions
or in a group of SNMs that may be easily confused—to report confidences on a variety of alarm
conditions of value in a particular scenario.

In fact, confidence may be a more reliable measure of target presence than target strength. Our
preliminary studies indicate that low-strength targets are more easily separable from false alarms
along the confidence axis than the estimated target strength axis. As a result, our baseline detection
and identification system identifies as present all isotopes above some very nominal target strength
that meet a set of empirically-determined confidence thresholds.

RESULTS

In this section, we describe the results of two experiments conducted to evaluate the performance of
this approach. The first experiment was a preliminary in-house test involving a small set of source
isotopes. This was limited in scope to allow for a detailed analysis of the results. The second
experiment was a test administered by SRNL. The results of this second experiment will be described
here, but an in-depth analysis will be published at a later date.

The first experiment was performed using only simulated data. We created spectra by embedding
Poisson-sampled spectra corresponding with sources between 0 and 5 µC at 1 meter range in field-
collected background spectra as before, and with an available reference background collected in a
similar environment. Each spectrum contained four of the five isotopes available to us (although the
actual number of sources was neither used by nor available to the detection/classification algorithm.)
We created 100,000 spectra in this fashion in order to simulate conditions that required very low false
alarm rates. Our algorithm consisted of a simultaneous target strength estimation for all targets in
the library, as presented in Equation 17. We assumed the availability of a reference background and
included the variance effects of such a background.

To examine the effects of the probabilistic formulation on target strength accuracy estimation, we
compared performance using a straight linear projection (which minimizes the mean as in MIMBS) to
the probabalistic approach described in this report. We found a significant improvement in absolute
target strength estimation as summarized in Table 1.

A method of characterizing this system which is more relevant to a field operator’s experience is to
choose an operating point, as defined by PD and PFA (respectively the probability of detection of each
isotope and the probability of false alarms when there is no target source present), and identify the
minimum target strengths at which this operating point can be achieved. We looked at the operating
points corresponding to zero observed false alarms, which means that our operating point has a false
alarm rate of 0.005% or lower. At that level, we looked at the minimum target strengths required to
produce a capture rate of 90% or greater, and found they ranged from 1 µC for 133Ba and 60Co up to
2.5 µC for 228Th.

For the second experiment, the data was created by SRNL and it consisted of a large number
of high-quality gamma-ray spectra that included various distances, shielding and combination of
radioisotopes. The data set consisted of 446 measured and 830 simulated spectra and included 45
measured background spectra and 147 simulated background spectra. Table 2 shows the breakdown
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Target MSE min Probabilistic
60Co 0.0433 0.0195
228Th 0.0411 0.0355
133Ba 0.0190 0.0193
241Am 0.0308 0.0268
152Eu 0.0248 0.0238
Mean 0.0318 0.0250

Table 1: Mean target-strength errors for the standard linear projection (MSE mini-
mization) and the probabilistic approach. The probabilistic approach results in a 21%
improvement in target strength estimation (from 0.0318 down to 0.0250).

of data into that collected and that simulated by GADRAS, as well as breakdown into number of
actual targets present in the data.

Test Segment One Isotope Two Isotopes Three Isotopes Backgrounds Total
Simulated 443 125 115 147 830
Measured 254 105 42 45 446

Total 697 230 157 192 1276

Table 2: Breakdown of test spectra

Each test spectrum was associated with a statistically independent reference background in order
to simulate real-world measurement conditions. A collection of 34 isotopes, mostly derived from ANSI
42.34, were used as gamma-ray sources. Each isotope was categorized as Special Nuclear Material
(SNM), Medical, Industrial, or Naturally Occurring. The categorization of isotopes for this project
differed from ANSI 42.34 in that 241Am and 238U were categorized as SNM in this experiment.

Many of the isotopes included in this experiment produce daughter isotopes in their natural decay
processes, so the algorithm was modified in the following way to take advantage of that fact. First,
target strengths were estimated for a template set that included the target isotopes as well as their
daughters. Then a modified template set was created that eliminated all of the daughters whose
parent isotopes did not alarm. In this way, the daughter templates were used to provide a better fit
when their parents were present.

Various levels of shielding could exist between the gamma-ray source and the detector, the shield
materials used were aluminum, iron, and lead, and they could be up to a maximum thickness of one
inch. The reference library contained expected spectra for a variety of shielding scenarios, and the
estimated target strengths for a particular isotope were created by combining the estimates from all
shielding scenarios.

The algorithm received the test spectra, associated reference backgrounds, and calibration in-
formation as input. As output, the algorithm reported a maximum of three detected isotopes, a
confidence score for each, and a flag indicating if an SNM was present or not. The output was scored
according to the following procedure. A true positive was worth 10 points, the first false positive
was worth -5 points, and additional false positive were worth -2 points. A true positive SNM flag
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was worth 3 points while a false positive SNM flag was worth -3 points. Note that in this test, the
definition of a false alarm is slightly different as the operations scenario assumed a previous detection
phase and thus it is assumed there is some target present and therefore a much higher false alarm
rate is acceptable. The scoring system is summarized in Table 3. The reported confidence was not
used in the quantitative scoring.

Trial Result Score Assigned
True Positive 10

First False Positive -5
Additional False Positives -2

True Positive SNM Present 3
False Positive -3

Table 3: Summary of the scoring methodology

The results as described by the points scored are presented in Table 4. The results are broken
down into simulated and measured data because different thresholds were used for each. According to
the scoring system, the algorithm had nearly the same performance on the simulated and measured
data.

Data Type Score Possible % Correct
Simulated 4297 6062 71%
Measured 7958 10894 73%

Total 12255 16956 72%

Table 4: Points scored

A common way to evaluate the performance of a classification algorithm is by examining its capture
rate and false alarm rate. The capture rate is defined as the percentage of the isotopes present that
were correctly identified. The false alarm rate is defined as the percentage of trials in which the
algorithm reported an isotope that was not actually present. The capture and false alarm rates for
this test are shown in Table 5. We note that the capture rates for the simulated and measured
data are similar while the false alarm rate for the measured data is significantly higher than for the
simulated data. Preliminary analysis indicates strong correlations between the particular isotopes
present and the isotopes that false alarmed; these correlations are due to specific mismatches between
the simulated spectra and the received spectra and we see obvious directions for significant near-term
improvement. We consider the overall capture rate of 75% to be good performance, considering that
some of the isotopes in this test were under heavy shielding.

NEXT STEPS

The work presented in this document describes approaches to radioisotope detection and identification
which have found success in other areas. The probabilistic problem formulation was successful in our
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Data Type Capture Rate False Alarm Rate
Simulated 72% 1.0%
Measured 76% 12%

Total 75% 4.7%

Table 5: Capture and false alarm rates

limited tests, and has the most straightforward implementation in an environment when multiple
sources are potentially present. We introduced a means of using this formulation to provide an
intuitively meaningful measure of result confidence. We noted but tabled several opportunities for
improvement in the preliminary study which we intend to return to, in particular taking advantage of
the correlation between adjacent energy bins and the divergence of low-count bin distributions from
the normal distribution.

Also of primary interest for future work is further study of and response to the physics underlying
the variation among spectra that nominally have the same source isotopes present. We observed
great divergence between simulated and observed spectra, and we are pursuing further understanding
of this difference with a goal of incorporation into the search space over which we are optimizing,
thus creating a more robust algorithm. We also intend to address differences due to the physics of
nonstationary backgrounds.
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