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ABSTRACT 
Sonar and speech techniques have been investigated to improve functionality and enable handheld 
and other man-portable, mobile, and portal systems to positively detect and identify illicit nuclear 
materials, with minimal data and with minimal false positives and false negatives.  RadSonar 
isotope detection and identification is an algorithm development project funded by NA-22 and 
employing the resources of Savannah River National Laboratory and three University Laboratories 
(JHU-APL, UT-ARL, and UW-APL).  Algorithms have been developed that improve the 
probability of detection and decrease the number of false positives and negatives.  Two algorithms 
have been developed and tested. The first algorithm uses support vector machine (SVM) classifiers 
to determine the most prevalent nuclide(s) in a spectrum. It then uses a constrained weighted least 
squares fit to estimate and remove the contribution of these nuclide(s) to the spectrum, iterating 
classification and fitting until there is nothing of significance left. If any Special Nuclear Materials 
(SNMs) were detected in this process, a second tier of more stringent classifiers are used to make 
the final SNM alert decision.  The second algorithm is looking at identifying existing feature sets 
that would be relevant in the radioisotope identification context. The underlying philosophy here is 
to identify parallels between the physics and/or the structures present in the data for the two 
applications (speech analysis and gamma spectroscopy). The expectation is that similar approaches 
may work in both cases.  The mel-frequency cepstral representation of spectra is widely used in 
speech, particularly for two reasons: approximation of the response of the human ear, and simplicity 
of channel effect separation (in this context, a "channel" is a method of signal transport that affects 
the signal, examples being vocal tract shape, room echoes, and microphone response).  Measured 
and simulated gamma-ray spectra from a hand-held Radioisotope Identification Device were used to 
evaluate the algorithms.  This paper will present and discuss results of the Test and Evaluation 
performed on two algorithms produced from the project.  
 
INTODUCTION 
Embedded algorithms used in commercial detectors perform poorly at isotope identification in 
laboratory environments and even worse in the field.  Correct isotope identification is less than 35% 
in commercial detectors under the best conditions (Blackadar et al. (2004)
1, Pibida et al. (2004)2). 
 
The ANSI standard for NaI(Tl) detectors (ANSI Standard 42.34-20033, 42.12-19944) requires an 
80% correct identification rate for 10k count gamma-ray spectra and an 80% success of identifying 
50-50 mixtures of various isotopes with special nuclear materials (SNM). Both Los Alamos 
National Laboratory and National Institute of Standards and Technology conducted studies to 
evaluate the performance of commercial off-the-shelf (COTS) handheld NaI(Tl) detectors and both 
groups determined that the embedded algorithms in current COTS hardware perform quite poorly 
compared to the ANSI benchmark (Blackadar et al. (2004), Pibida et al. (2004)). The question arises 
if this poor performance is a limitation of the modest energy resolution of NaI or if the implemented 



algorithms are underdeveloped. In an evaluation of research-grade algorithms Nelson and Sokkappa 
(2004)5 find that common signal processing methods (template matching, maximum likelihood, 
principal component analysis) perform vastly better than COTS hardware embedded algorithms. In 
controlled environments, these research grade algorithms would likely meet the 80% identification 
rates specified by the ANSI 42.34 and 42.12 standards, however, the authors express concern about 
the “lack of adaptability to real world conditions,” where the algorithms perform much worse (at 
least 25% lower correct isotope identifications) when subjected to data taken in the field. 
 
If significant additional gains are to be made with radioisotope identification with sodium-iodide 
detectors, it will probably come from nontraditional signal processing approaches or enabled by 
new pulse processing technology. 
 
In traditional radioisotope identification signal processing, there are two general approaches that are 
taken: peak detection or full spectral template matching. Peak detection attempts to deconvolve the 
instrument resolution and the physical emission, ultimately producing a list of gamma-ray lines and 
associated intensities.  This list of lines is then compared to a database of lines, which can be 
derived from atomic physics. Full spectral template matching performs a comparison between the 
observed spectral shape and a composite of spectral shapes from a template library. The template 
library is typically composed of pure isotopes and backgrounds, and can be generated theoretically 
or experimentally. In order for either of these detection approaches to be successful with field data, 
the algorithm must address the “real world modifiers” of background, gain drift, and scattering. 
There are literally dozens of mathematical methods, pre-processing, and post-processing approaches 
that can be performed at each step of the peak detection and template matching approaches. 
 
Several well established groups stand out as having produced intriguing concepts and high 
functioning full spectral radioisotope identification algorithms. R. Estep and B. Sapp at LLNL have 
been developing the multiple isotope material basis set, MIMBS, for a decade (Estep et al. 19986, 
Estep & Sapp 2008a7). The MIMBS method simultaneously solves for the isotope producing the 
radiation and the intervening shielding, addressing the attenuation effect in gamma-ray spectrum 
analysis. In a similar manner, the MIMBS method has also been applied to the problem of gain drift 
(Estep & Sapp 2008b). R. Runkle and D. Pfund at PNNL have recently demonstrated the benefits of 
their algorithm, the nuisance-rejection spectral comparison ratio anomaly detection, N-SCRAD 
(Pfund et al. 20078, Runkle et al. 20089). The N-SCRAD algorithm was developed to work on a 
time series of data and employs a thought-out data binning approach coupled with an optimized 
ROI selection. The ROI selection is designed to maximize SNM detection while minimizing 
nuisance alarms. D. Stromswold, J. Ely and R. Kouzes and others at PNNL have looked at signal 
processing in RPMs (both with PVT and NaI(tl)) (Stromswold et al. 200410, Ely et al. 200411, Ely 
et al. 200612). They show significant gains in SNM versus NORM discrimination via the use of 
energy windowing. Energy windowing is the subdividing the spectral content into pieces and 
making comparisons between the ratios of these energy “windows”. Finally, T. Gosnell at LLNL 
and separately K. Nelson and P. Sokkappa at LLNL have investigated and shown the promise of 
principle component analysis, PCA (Gosnell et al. 199713, Nelson & Sokkappa 200314). Principal 
component analysis is an analysis method that constructs a set of orthogonal vectors that transform 
a dataset into basis of maximum variance. Gosnell et al. (1997) setup the framework for PCA 
radioisotope identification and Nelson and Sokkappa (2003) implemented a PCA “toy model,” that 
worked well in identifying mixtures from a library of synthetic spectra. 



 
This paper discusses the methodology used to develop and test algorithms that accurately identify 
and classify radioisotopes in areas of higher than normal background and when these nuclear 
materials may be shielded or masked by attenuation material or other isotopes. Three universities 
were initially involved with the project, whose goal was to bring successful techniques and features 
from other areas of signal processing expertise into the field of radioisotope identification using 
gamma-ray spectroscopy. The primary goal of this project is to develop real time, frequency and 
statistical analysis algorithms using detection and classification techniques to provide high 
confidence gamma spectrum analysis for shielded and masked SNM/RDD materials. The Savannah 
River National Laboratory (SRNL) initially collaborated with three universities in the first phase of 
the project. After the first year, the University of Texas was down-selected and the two remaining 
institutions, the University of Washington and Johns Hopkins University, continued algorithm 
development. A Test and Evaluation (T&E) was conducted with the remaining two universities in 
year two of the project on April 5-9, 2010. A discussion of the T&E plan and the results of the test 
will be presented in this report. 
 
SRNL is the lead Principle Investigator, providing support in the areas of nuclear physics, 
modeling, experimental and field data, algorithm test & evaluation, project management and 
reporting.   
 
 
METHODOLOGY 
The Savannah River National Laboratory brought the expertise of the passive sonar community to 
bear upon the more difficult radiation detection and isotope identification tasks encountered in 
monitoring for SNM/RDD materials in transit.  In particular, it is to develop real time, frequency 
analysis and statistical analysis algorithms based upon established sonar techniques and apply them 
to gamma spectrum analysis, primarily from data collected by common field instruments at low 
resolution.  The constraints imposed upon the detection and identification of SNM/RDD materials 
in transit parallel those encountered in passive sonar anomaly detection.  Those constraints are as 
follows:  (1) passive data collection with no active interrogation; (2) poor signal-to-noise ratio; (3) 
abundant interference from legitimate sources; and (4) constantly varying background.  The 
objective is to apply algorithms to accomplish two distinct tasks, detection and identification.  
Detection will minimize both false positives and false negatives. 
 
The objectives in the first year are to identify the algorithms that show the most promise, 
demonstrate their performance against spectra taken with common field and laboratory instruments, 
and benchmark their performance against existing methods and commercial instrument 
performance.  The three laboratories in collaboration with SRNL worked on developing three 
different algorithms.  After the first year one of the labs was down-selected.  During the second year 
the remaining two labs continued to improve their algorithms.  A comprehensive algorithm test and 
evaluation plan was developed by the team to down-select the remaining laboratories.   
 
The T & E consisted of a large number of high-quality gamma-ray spectra that included various 
levels of background, distances, shielding and combination of radioisotopes.  The data set consisted 
of 446 measured and 829 simulated spectra.  The team developed a scoring convention to 
quantitatively access each of the algorithms and compare the results. The scoring method consisted 



Trial Result Score Assigned 
True Positive 10 

First False Positive -5 
Each Additional False Positive -2 

True Positive SNM Present 3 
False Positive SNM Present -3 

   Table 1: Scoring Criteria 

of assigning each trial a score based on how accurately the isotope in question was identified.  The 
score was based on the category and the number of isotopes in the spectrum.  Table 1 shows the 
scoring categories and values assigned to each one.  
A true positive received a score of 10.  When more 
than one result was reported each result was scored.  
If a result was incorrect, a negative value was 
assigned to it.  The first false positive received a 
value of -5 and each additional false positive will 
receive a value of -2.  A true positive was defined as 
detecting an isotope when it was present in the 
sample and a false positive was detecting an isotope 
when it was not present in the sample.  Also, if a 
result indicated “SNM Present” when the sample did contain SNM, a score of 3 was assigned.  
However, when an incorrect result indicated there was SNM present when there was not, then the 
trial received a -3.  The SRNL Principal Investigator was responsible for tabulating the scores and 
presenting the results.   Two scoring examples are described below. 
 
Scoring Example 1: 
Suppose the gamma-ray spectrum was from 60Co only. If the algorithm gave the correct answer of 
60Co, 10 points was assigned. If the algorithm also reported 137Cs and 133Ba, then -5 and -2 points 
was also assigned for the first and second false positive results.  The final score for this trial was 10-
5-2 or a total of 3.     
 
Scoring Example 2: 
Suppose a test spectrum was from 60Co and 239Pu.  If the algorithm gave the correct answers of 60Co 
and 239Pu, 10 points was assigned for each true positive (20 points total).  If the algorithm also 
reports 137Cs and 133Ba, then -5 and -2 points would also be assigned for the first and second false 
positive result.  If the report correctly reported the presence of SNM, then 3 points was added to the 
score. If it reported no SNM present, then -3 points was assigned.  If the SNM was reported as 
being present, the final score for this trial would be 10+10-5-2+3 or a total of 16. 
 
The two algorithms that were subjected to the T & E are described bellow: 
The first algorithm was developed in collaboration between SRNL and JHU-APL. It uses support 
vector machine (SVM) classifiers to determine the most prevalent nuclide(s) in a spectrum. It then 
uses a constrained weighted least squares fit to estimate and remove the contribution of these 
nuclide(s) to the spectrum, iterating classification and fitting until there is nothing of significance 
left. If any Special Nuclear Materials (SNMs) were detected in this process, a second tier of more 
stringent classifiers are used to make the final SNM alert decision.   
 
The second algorithm was developed in collaboration between SRNL and APL-UW.  This 
algorithm uses a maximum likelihood probabilities classifier. It is looking at identifying existing 
feature sets that would be relevant in the radioisotope identification context. The underlying 
philosophy here is to identify parallels between the physics and/or the structures present in the data 
for the two applications (speech analysis and gamma spectroscopy). 
 
 



T&E RESULTS AND DISCUSSION 
The trials were broken down into six segments or 
spreadsheets because the application limited the number 
of columns, and therefore spectra, to no more than 256.  
Table 2 shows a summary of the number and type of 
spectra in each segment. Segments 1, 2, 4, and 6 contain 
spectra simulated by GADRAS.  Segments 3 and 5 
contain spectra experimentally measured using an 
Identifinder NGH.  The spectra in segments 2, 3, and 6 
were generated using only one radioisotope.  While 
segments 1, 4, and 5 spectra could contain up to three 
isotopes.  Each university was charged with identifying the 
isotopes present in the given spectra using their respective 
algorithms.  Their reported results were then scored 
using the scoring convention discussed in the 
methods section.  The scores for each university for 
each segment are shown in Table 3. 

Test Bkgd
Segment one two three Spectra Total

1 90 100 38 228
2 182 41 223
3 185 26 211
4 105 35 15 31 186
5 69 105 42 19 235
6 156 36 192

Simulated 443 125 115 146 829
Measured 254 105 42 45 446

Total 697 230 157 191 1275

Isotopes in Spectrum

Table 2: Summary of Spectra for T&E

University Segment Score 
Total 

Possible
% 

1 4175 4980 83.84
2 1260 1886 66.81
3 1136 1946 58.38
4 1572 2442 64.37
5 2026 4116 49.22
6 1060 1560 67.95U
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Total 11229 16930 66.33
1 4181 4980 83.96
2 1148 1886 60.87
3 784 1946 40.29
4 1624 2442 66.50
5 1735 4116 42.15
6 1060 1560 67.95Jo
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Total 10532 16930 62.21

 
From Table 3 it can be seen that both algorithms 
performed better when given the spectra generated 
from GADRAS (segments 1, 2, 4, and 6).  When 
given experimentally obtained data (segments 3 
and 5) however, the algorithms scored on average 
over 20% lower than when given spectra simulated 
by GADRAS. 
 
 
 
 
 
 
 Table 3: University Score By Segment 
 
 
 
 
 
 
 
 
 
 
 
 



The accurate detection of special nuclear materials is a necessary attribute of radioactive materials 
identifiers.  Table 4 shows the number of accurately detected SNM cases, the number of SNM cases 
missed and the number of false SNM alarms.  
It should be noted that the algorithm 
employed by the University of 
Washington did not have an SNM 
alarm coordinated with the detection 
of 241Am and 238U.  If the university 
signaled an SNM alarm when it 
identified these two isotopes, the 
number of SNM detected correctly 
would increase from 59 to 127, while 
the number of false alarms would 
increase from 12 to 31.  

University Segment 
SNM 

Detected 
Correctly 

SNM 
Missed 

SNM 
False 
Alarm 

Total 
SNM 

Present 
1 15 45 0 60 
2 0 22 0 22 
3 0 32 5 32 
4 42 43 0 75 
5 2 20 7 22 
6 0 0 0 0 U
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Total 59 162 12 211 
1 39 21 0 60 
2 5 17 1 22 
3 6 26 4 32 
4 48 37 0 75 
5 1 21 3 22 
6 0 0 0 0 Jo
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Total 99 122 8 211 

 
The functionality of each algorithm 
was tested against both shielded and 
unshielded isotopes.  The figures in 
Figure 1 show the comparison 
between the universities using various 
subsets of data.   

Table 4: SNM Detection 
 

Percent of SNM Score by Segment
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Percent of Possible Score By Segment
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Percent of Shielded SNM Cases Score By Segment
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Percent of Shielded Non SNM Cases Score by Sement
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Figure 1 shows the percent score of each university by segment and the total for various subsets of 
data.  The University of Washington is blue and Johns Hopkins University is red. Figure A shows the 
total score for all types of spectra. Figure B shows the score for all SNM containing spectra. Figure C 
shows the score for all shielded SNM containing spectra. Figure D shows the score for all shielded non-
SNM containing spectra. 



 
For this study, the number of isotopes present in the spectra varied between 1, 2, and 3 isotopes.  
This data is displayed in Table 5 and Figure 2 below.  In the table, the first row in each category is 
total number of spectra containing 1, 2, or 3 isotopes. The second row is the number that none of the 
isotopes were correctly identified. The third row is 1 correct, fourth row (pertaining to groups 2 and 
3) is two correct and the fifth row (pertaining to group 3) is all three correct.  The figure shows the 
score by percent for each university based on the different number of isotopes present in the spectra. 

 
  University UW JHU 

Number of Cases 697 697
Zero Correct 188 214O
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One Correct 509 483
Number of Cases 230 230
Zero Correct 8 1
One Correct 104 101T
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Two Correct 118 128
Number of Cases 157 157
Zero Correct 11 12
One Correct 23 16
Two Correct 25 41T
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Three Correct 98 88

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Number of Isotopes Correctly Identified 
 
 
 

Number of Isotopes Present vs Percent of Possible Score
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Figure 2: Score Comparison for Different Numbers of Isotopes Present 

The University of Washington is in blue and Johns Hopkins University is in red. 



 
 

CONCLUSIONS 
This project resulted in the development of two analysis algorithms for SNM detection and 
identification. A comprehensive test and evaluation plan and scoring method was developed and a 
down-select process to one analysis algorithm was completed based on the results of the T & E.  
The T and E also resulted in a list of improvements that will enhance the robustness of the 
remaining analysis algorithm. Initial results show an enhanced PD and lower PFA as compared to 
what is being used now. 
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