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ABSTRACT

Equations describing the hoop stresses in a pipe due to water hammer
have been presented in the literature in a series of papers, and this paper
discusses the complete derivation of the pertinent equations. The
derivation considers the pipe wall response to a water hammer induced
shock wave moving along the inner wall of the pipe. Factors such as
fluid properties, pipe wall materials, pipe dimensions, and damping are
considered. These factors are combined to present a single, albeit rather
complicated, equation to describe the pipe wall vibrations and hoop
stresses as a function of time. This equation is also compared to another
theoretical prediction for hoop stresses, which is also derived herein.
Specifically, the two theories predict different maximum stresses, and
the differences between these predictions are graphically displayed.
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SYMBOLS

A area, inch?

Al —Ag arbitrary constants
ab,c,d,s constants

c circumference, inches
C damping

D flexural rigidity

Ds specific damping

DLF dynamic load factor

E elastic modulus, psi

F force, pound force

H Heaviside step function
Hz Hertz, cycle per second
D inside diameter, inches
i impact factor

g gravitational constant
K spring constant

k bulk modulus, psi

L length, inch

Ny force per unit length, pound / inch
No hoop stress resultant, pound / inch
NPS nominal pipe size

M moment, inch —pound

luid

[ON
Ca Cfa CS
Ah

As

mass, pound mass

outside diameter

radial load, psi

percent overshoot

pounds per square inch

shear force / unit length, pound / inch
single degree of freedom

radius, inches

radial coordinate, inch

static stress, psi

time, second

ambient temperature, °Rankine
thickness, inch

local axial coordinate, inch

shock wave velocity, inch / second
critical velocity, inch / second
local radial coordinate, inch

axial coordinate, inch
homogeneous solution

particular solution

local radial coordinate, inch
constant

strain, inch / inch

constant

constant

Poisson’s ratio

work ratio

fluid weight density, pound/ inch?
pipe weight density, pound/ inch®
stress, psi

free vibration stress, psi

fatigue limit, psi

precursor stress, psi

range stress, psi

step response stress, psi

velocity ratio

circumferential direction, radians
frequency, radians / second
natural frequency, radians / second
damping ratio

change in enthalpy, BTU/ pound
change in entropy, BTU/ pound °Rankine



INTRODUCTION

Hoop stresses due to shock waves in pipes have received attention
from numerous authors, but attention will be focused here on the work
of a few. In particular, T. Simkins [1] presented work related to stresses
in cannons when they were fired; Beltman, et. al. [2], presented work
related to stresses in a gas filled tube subjected to a moving internal
pressure wave; and work has also been presented to describe pipe
stresses due to water hammer (Leishear [3]). All of this work is similar
with respect to topic, in that hoop stresses, or breathing stresses, in a
tube are created by a shock wave traveling along the bore of the tube at
sonic or supersonic velocities. The fluids considered in the tubes may
vary, but the fundamental equations are the same. The way in which
these equations are handled by different authors results in different
mathematical descriptions of the phenomena. Equations for are, for the
most part, scattered throughout numerous references, and the purpose
for this paper is to compile, clarify, discuss, and compare the different
derivations in one source.

ANALYSES

The stresses in a tube, or pipe, are caused by the vibrations of the
pipe wall as the shock travels through the pipe, as shown in Fig. 1. The
shock wave travels at a velocity, V,, and a pressure increase occurs
from P to P + Py across the shock. The initial pressure in the pipe, P is
neglected in the remainder of this discussion. A precursor vibration
occurs in front of the wave, and an aftershock vibration occurs in the
wake of the shock. The strain jump is related to the median change in
diameter of the pipe. The concept of flexural resonance is one approach
to describe hoop stresses. The other approach is referred to as a step
response. Both approaches are defined and discussed herein.
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Figure 1: Pipe Wall Vibration

Flexural Resonance in a Thin Walled Tube

Simkins noted that Lame’s equation (Eq. A37) as applied to gun
barrel design was inadequate as projectile velocities increased, and he
attributed the discrepancy to flexural resonance. The Lame equations
assumed that hoop stresses could be calculated as static stresses using
the pressure behind the projectile and available equations. However,
Simkins noted that hoop stresses were a function of velocity, and that a
maximum stress due to flexural resonance occurred at a critical
velocity, V.

Critical Velocity. His derivation of the critical velocity for a thin
walled tube is presented in App. A (Eq. A56) and is expressed as
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An alternate equation (Eq. A61) for the critical velocity is
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The differences between these two equations are the assumed
boundary conditions. The first equation assumes that the ends of the
tube are free to move. The second equation assumes that both ends of
the tube are restrained. Experimental observations showed that the
predicted critical velocity needed to be corrected for applications to
thick walled tubes, and Simkins’ work [4] also provided those
approximations.

Flexural Frequency. The frequency of vibrations (App. A) was
determined at different velocities and was shown to be different before
and after the shock, but at the critical velocity, the frequency before and
after the shock equals (Eq. A58)

(©)

Dynamic Load Factor. He also determined a dynamic load
factor as shown in Fig. 2, which could be used to determine the
maximum stress. To do so, the Lame equation was simply multiplied by
the DLF to obtain the actual stress. Note that the stress is infinite at the
critical velocity.
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Figure 2: DLF’s From Flexural Resonance Approximation
(Simkms [1])

Step Response of a Thin Walled Tube to an Applied Shock

Recent work (Leishear [3] considered the problem from a different
perspective, assuming that the pressure behind the shock was suddenly
applied to a pipe wall as the shock arrived at a point on the pipe wall.
This technique provided an approximation to assess the maximum
stress due to a shock, and the derivation is presented in App. B.
Essentially, the critical velocity provided by Beltman was assumed to
be correct, but the pipe wall was assumed to vibrate at its natural
frequency, rather than at the flexural frequency. Alternatively, the step
response was considered to be independent of the critical velocity.

These assumptions are significantly different than the conclusions
reached in a flexural resonance analysis.

Natural Frequency. The natural frequency of vibration for a thin
walled tube with fixed ends was determined by Barez [5], such that
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Again, by changing the boundary condition at the pipe ends to a
fixed end condition, the frequency can be written as
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The frequency is also affected by damping as discussed in App. B.
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Dynamic Load Factor. The DLF’s predicted by the step
response solution are significantly different than those predicted using
flexural resonance equations. The DLF was determined to have a
maximum less than 4 at the critical velocity, as shown in Fig. 3.
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Figure 3: DLF’s From Step Response Approximation

Comparison of Equations to Experimental Data for a Thin
Walled Tube

Limited published data is available, and further research is certainly
warranted. However, the available research provides significant insight
into the mechanics of the problem to provide a comparison between the
two approaches. The measures for comparison are frequency and
DLF’s. The work of Beltman, et. al., provided results for a gas filled
aluminum tube subjected to a shock wave. Their testing provided
results for a 1.027 inch diameter gas filled, thin walled tube having a
wall thickness of 0.063 inch.

Comparison of Frequencies. The precursor vibration
frequencies were typically observed to be higher than the aftershock
vibration frequencies as expected from the flexural resonance equations.
However, the aftershock vibration frequency was better predicted by the
step response equations, which predict the frequency to be less by a
factor of the square root of 2. The two theories predict different
frequencies for the hoop stress. Again, further research is required to
understand the frequency response.

DLF Comparison. The DLF at the critical velocity was
experimentally observed to be a maximum of approximately 3.5, when
a DLF of infinity was predicted using the undamped flexural resonance
equations. This disparity prompted the research leading to the step
response equations. Also at velocities other than critical, the step
response approach predicts higher DLF’s than those predicted by
assuming flexural resonance. An example at a speed significantly
different than critical was considered for a thick walled tube

Comparison of Equations to Experimental Data for a Thick
Walled Tube

Empirical data is available from two sources. In one case, the step
response approach provided a reasonable estimate of the maximum
strain in a thick walled cylinder (Leishear [3]), which considered a
water hammer induced shock in a 2 NPS, schedule 40 pipe. Although
the frequency was inaccurately predicted, the DLF of 2.2 was
accurately predicted at Vi, / V., = 0.67. Using Fig. 2, flexural resonance
theory predicted the DLF ~ 1.2 from Fig. 2.

The frequency for a long thick walled tube is expected to be a
function of shock wvelocity, which may provide an alternative
explanation for the differing frequencies across the shock. For a short
thick walled tube, an FEA analysis showed that an eight inch long, 8
NPS, pipe vibrated at its natural frequency when subjected to an
internal shock wave (Leishear [6]).

In the other case, Simkins [1] successfully compared detailed thick
walled flexural resonance equations to experimental data for a gun
barrel. In both cases, the frequencies were inadequately explained, and
further research is required with respect to frequency.

Prediction of the DLF Using the Step Response

The maximum and minimum DLF’s for a gas filled aluminum tube
are shown in Fig. 2, and those DLF’s depend on the critical velocity
(Eq. B33). These maximum and minimum values occur at different
points along a pipe subjected to a shock. In other words, the location of
the measurement sensors affects the measured maximum strain. The
maximum strain is also affected by end constraints of the tube.

Predicted DLF’s uncompensated for the critical velocity are also
shown in the figure (Eqs. B33 and B53). These alternative predictions
are assumed to be higher than the actual DLF since simplifying
assumptions were used with respect to frequencies in the step response
technique. The differences associated with these assumptions can, once
again, be resolved through further research. Regardless of frequency
errors, a reasonable estimate of the DLF is provided near the critical
speed, and a somewhat conservative overestimate of the DLF is
provided at other velocities. The available research indicates that the
predicted DLF’s are, in fact, quite valid. As such, the step response
should be a useful tool for the evaluation of hoop stresses on long pipes
and tubes.

CONCLUSION

Dynamic load factors are required to determine the maximum
stresses in tubes subjected to internal shocks, and the theory presented
here provides an adequate prediction of the DLF. In particular, the
derivations pertinent to this theory were presented to clarify the
assumptions and solution techniques used to derive a theoretical
approximation for the stresses. The concept of a dynamic load factor
provides a multiplier to be used with available equations to predict the
maximum stress during a dynamic event, such as the response to a
shock wave traveling in a tube.

Approximations were made to derive this solution technique, and
this technique was also compared to a previous solution, referred to as
the flexural resonance technique. That solution is referred to as an exact
technique, but it predicts the response to be infinite at the critical
velocity, whereas the technique presented here accurately predicts the
maximum strains at the critical velocity. There are still unanswered
questions about the accuracy of either solution at velocities far removed
from the critical velocity, since experimental data is unavailable at those
velocities. There is also some question with respect to the step response
solution and the data obtained by Beltman. The measured strains
provided in their research agree with the step response predictions, but



data summarized in their other graphs indicates that the flexural
resonance theory may be more accurate. End effects and the limited
number of sensors need further consideration.

APPENDIX A: DERIVATION OF FLEXURAL RESONANCE
EQUATIONS FOR A THIN WALLED TUBE

There are two derivations for the critical velocity, depending on the
assumptions with respect to the boundary conditions at the pipe ends.
One derivation assumes the pipe ends to be fixed. The other derivation
assumes one pipe ends to be unrestrained, or free.

Flexural Resonance Assuming Free Pipe Ends

The derivation for a tube with free ends was presented by Simkins,
but is rewritten here to show all of the steps used in his analysis. Further
details are available in the references, but the following derivation
presents all of the equations used in the original referenced analyses.

Moment in a Differential Element. The response of a thin
walled tube may be developed by first considering the bending of a
differential element of the tube wall as shown in Fig. Al, where oy is
the axial stress, z is measured from the center of a tube wall of
thickness, t, dz is the width of a differential element, and M is the
resultant moment due to bending of the tube wall.
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Figure A1: Differential Axial Element in the Tube Wall

The moment was determined as follows (Timoshenko and
Woinowski-Krieger [7]). Using Hooke’s Law for free end conditions

_Sx _Nsgq
ey = —- Al
x =g v (A1)

eq:%.mzo (A2)

E
where the local coordinate system in terms of u and w is shown in Fig.
1; & ,€0, 0, and oy, are the axial and hoop strains and stresses; E is the
modulus of elasticity; and v is Poisson’s ratio. The curvature of the tube
deflection equals

—d’w / dx* (A3)
The unit elongation then equals
gu=—z- d’w/dx’ (A4)

where u and w are the axial and radial displacements respectively. On

substitution,
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The bending moment is then calculated using the differential element.
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and M, is expressed as
2
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where D is the flexural rigidity, such that
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Membrane Forces in a Cylindrical Shell. Once the moment is
determined for a differential element of the shell, the forces due to a
statically applied pressure, P, can be determined using Fig. A2, where
Qx is a shear force per unit length, and Ny is a normal force per unit
length, M is the moment per unit length in the x-direction, My is the
moment per unit length in the tangential direction, Ny is the
circumferential force per unit length, df is the differential length of the
element along the circumference, R is the radius, and dx is the
differential length of the element in the x-direction.

Figure A3: Differential Shell Element



In the absence of axial loads (Timoshenko and Woinowski-Krieger
[7]), the equilibrium equations for a shell are expressed as

d(?—x><R>dx>dq+Nq xdx xdg + P >R xdx xdqg=0 (A10)
X

dl;/[x><R>dx>dq-R>QX>dx>dq:O (A1l)
X
These two equations are further reduced to
dQx ,Ng,p-y (A12)
dx R
My o9, =0 (A13)
dx
Assume that the strains equal
e, = U (Al14)
dx
-w
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The normal force is then equal to
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On substitution, the hoop stress resultant equals
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The circumferential force is found to be
Ng :_'E;XW (A19)

Axial Displacement in a Cylindrical Shell. The hoop stress
resultant is used to determine the axial displacement of shell.
Eliminating o,, from Eqs. A12 and A13 yields

2
dﬂ +NJ. +P=0
dx2 R
Substitution of Eqs. A8 and Al19 into A20describes the axial
displacement of a shell subjected to a pressure, P, such that
4

(A20)

Dxd—‘:+Ext2Xw:P (A21)
dx R

Equation of Motion for a Cylindrical Shell. The equation of
motion for a cylinder can be determined with the aid of Eq. A12, which
describes the radial forces on the shell. The radial forces per unit length
on the shell element must equal the mass per unit length (p-t) times the
radial acceleration of the shell wall (d*w/dx?), such that

_'"(Qx)+M+p:V>¢>L W (A22)
fix R g
On substitution of Egs. A8, A13 and A19, Eq. A22 yields
2
4 V x4 2w
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where T is the time; Vj is the velocity of the coordinate system, or
shock wave in this case; and H is the Heaviside step function expressing
the pressure as a function of time. By a change of variables Eq. A23 is

referenced to a moving coordinate system using the chain rule for
differential equations, such that

2
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Simplifying,
d4w 24 >dzw
S W I = P(l- H(x - Vo XT) (A25)
dx dx
where g=4--2 (A26)
R2D
X= g>(x - Vo >T) (A27)
2
R
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Evaluation of Flexural Resonance. Equation A25 is the basis
of the following evaluation of flexural resonance provided by Simkins
[1]. This equation was the beginning of his analysis. The equation is
rewritten in terms of displacements before and after the shock wave.

4 (1 2.1 2
dw()+w(1)+2>4>dw()=P0><R (A29)
ax* ax2 Ex
4 (2 2. (2
W@ o), 20w (A30)

ot dx?
where the subscripts (2) and (1) indicate the displacements before and
after the shock respectively.

To further consider the displacement, assume that Eq. A29 has a
solution of the form

2 Pax " .
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where w” = A-¢*%. For the homogeneous solution, let
a%- 24 al+1=0 (A32)
aZ=1y12-1 (A33)

Then the four roots of Eq. A32 are
iV1- 1 £41+
a=t ! I\/__ 1+ =tctdx (A34)
2

where d=+1-1 (A35)
c=41+1 (A36)

By inspection , the particular solution, w;, for Eqs. A29 is expressed as
Lame’s equation for a cylinder, such that
_Po xR 2 (A37)
YPT TEx

Similarly, the roots of the homogeneous solution to Eq. A30 are the
same as those listed in Eq. A34, and the particular solution is
w, =0 (A38)
The general solutions to Eqs. A29 and A30 can then be written as
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The boundary conditions to solve these equations assume continuity at

the shock, where & = 0, and are stated as

Displacement continuity, wh - w@ =¢ (A41)
ey ©)

Rotational continuity, dw” S 0 (A42)
dx dx
2,0 42,2

Moment continuity, sz d W2 =0 (A43)
dx dx
3w 3@

Shear continuity, dL3 - dL3 =0 (A44)
dx dx

Velocities dictate three different solutions to these equations. Below
the critical velocity, A < 1; at the critical velocity, A = 1; and above the
critical velocity A > 1To reduce the number of equations, the boundary
condition at the ends of the pipe were considered.

Below the critical velocity as x—=o0, &—+o0, the exponents in Egs.
A39 and A40 must be negative to have bounded solutions. Therefore
when A <1, A; = A;=As=A0 and

wl) = g pelictdpx oo lierd)x +wp (A45)

w® =45 )e(iw-d)»(JrAS)e(-im-d)»( (Ad6)
Substituting the boundary conditions of Eqs. A41 —A44 into Eqs. A39

and A40 yields
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Solving A45 - A47,
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for & >0 in front of the shock.
At the critical velocity A = 0, d = 0 and a solution similar to Eq. A47
is nonexistent since
|coef| =0 (A50)
Above the critical velocity A > 1, and Simkins solved the pertinent
equations to show that
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Equations A48 — A52 describe the tube wall motion.

(A52)

Dynamic Load factor. Figure 1 was drawn by defining the DLF
as

DLF=—% (A55)
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Critical velocity. Once all of the equations were developed, the
critical velocity and frequency were determined. The critical velocity
occurs at A = 0, and Eq. A28 yields

(A56)

Breathing Mode Frequency. Inspection of Eq. A27 shows that
the frequency seen by a stationary observer equals
w=V>g (AS57)
At the critical velocity, Eqs. A56 and A57 yield

w= Z@;g (A58)
r xR

Simkins noted that the critical velocity and frequencies were
significantly different for thick walled tubes, and the reader is referred
to his work for further details. For the purposes of this paper, this thin
wall solution was compared to the step response solution.

Flexural Resonance Assuming Fixed Pipe Ends
The analysis for a pipe with fixed ends is identical to that for free

ends, except that the initial boundary conditions are different.
Experimentally, the axial and hoop strains were shown to be (Leishear
[8]) equal, such that

& =€ (AS59)
Reconsidering Eqs. Al and A2, the axial and hoop stresses must also be
equal, such that

Sx =Sq (A60)
By substitution into Eqs. A3 — A56, the critical velocity for a fixed end

pipe equals
Extxg
Ver = |——= (A61)
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Essentially, the v term is dropped from all of the equations. For typical
structural materials, where v = 0.3, the difference in the critical velocity
due to end restraints of the tube is approximately only 5 percent.
Frequencies are the same for either end constraint, as shown by
substitution of the appropriate terms into Eq. A57.



APPENDIX B: DERIVATION OF THE STEP RESPONSE
EQUATIONS

Similar to the flexural resonance derivation, the equations
describing the step response derivation are scattered throughout
numerous references. Again, the intent here is to provide the requisite
equations to provide an adequate review of the analysis technique. All
of the referenced equations have been published, and further details are
available in the applicable references. Figure 1 shows the problem to be
addressed. Essentially, the step response technique assumes that the
response of a shell can be calculated for a suddenly applied load, and
that this dynamic load is continually applied to the tube wall at the
velocity of the shock wave, V. To start the discussion, a suddenly
applied load at V = 0 is considered, using Figs. B1 and B2. Through
wall radial stresses are excluded from this discussion.

The stresses due to expansion of the tube, or breathing stresses, are
the focus of this discussion. An isotropic tube is assumed to act as a
single degree of freedom (SDOF) oscillator subjected to a suddenly
applied step increase in pressure as shown in Fig. Bl. § evaluate the
dynamic stresses, the static stress is first required followed by the
equation of motion. Once these equations are presented the dynamics of
the step pressure moving at a sonic velocity are discussed below.
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Figure B2: SDOF Pipe Model

Static Stress

The static Lame stress is determined by assuming a unit length
subjected to a pressure, Py, with opposing hoop stresses equal to 2 - .
This thin wall approximation stress is expressed as

sq :POX% (B1)

A more informative form of the hoop stress is the thick wall
approximation, which can be found as follows (Lubliner [9]).
_ d(Req) _SR - N>

dR E

eR (B2)
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On substitution,
d((l- n)>eq - nR) _SR - Sq
= (B4)
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By symmetry,
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Substituting Eq. B4 into B5 yields
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which can be solved by assuming two constants A; and A, such that
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which simplifies to
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Therefore, the maximum stress occurs at the inside diameter, such that
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where St is the static hoop stress, and oy is considered to be the dynamic
hoop stress for the remainder of this paper. The use of St is provided to
prevent some confusion between the static and dynamic expressions for
the hoop stress. Having established the static hoop stress for the
cylinder, this stress needed to be related to the equation of motion.

Equation of Motion for a SDOF Oscillator

The equation of motion for a cylinder may be derived from the
general equation of motion for a SDOF system as shown in Fig. B1,and

can be expressed as

2

d*(mxx) , d(Cx)
de dT
The response of a SDOF oscillator shown in Fig. Bl is available
(Thomson [10]) and is derived as follows. When F(T) = F = a constant,

+K xx = F(T)

(B12)
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where the frequency and damping ratio equal
w=. X (B14)
m
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Homogeneous Solution to the Equation of Motion. The
homogeneous solution to Eq. B13 is

2
amm), dOx) Ly - (B16)
dr? dt
Assuming x =¥ (B17)
where s is a constant substituting Eq. B17 into Eq. B16 yields
g‘?m2+c>s+1<g>es>T =0 (BI8)
which has two roots equal to
& 0
127 22 Vz2 - 19w (B19)
%)

When the motion is oscillatory, { < 1, the general solution to Eq. Bé is
expressed as

Xp = A >€SI>T+A2 )e-szﬂ‘
2 . 20
ZM)‘EAI%IM 1-z +A2>e'1M 1-z _
2}
- & 0
SV wingy1- 22 WX + As 2 (B20)
/]

Particular Solution to the Equation of MotionThe particular
solution is found, using the method of undetermined coefficients.
Assuming a solution of the form

xp = A5 sin(wxT) + A6 xcos(wxT) (B21)

and substituting X, (Eq. B21) into Eq B13and differentiating yields

-Ag w? >tsin(w><r)- Ag "w? mos(wxr)
2>z >W>(W>A5 >cos(W>T)- W>Ag >sin(WT))

Xp:

W (A5 sin (W + Ag scos(wxT)+ A7) =+ (B22)
m
Using the boundary conditions,
d
atT=0,x=0and — =0 (B23)
dT
like coefficients of Eq. B22 can be determined such that
F F
A7 = =— (B24)
mw? K
As5=Ag=0 (B25)
F
Then Xp =— B26
= (B26)

General Solution to the Equation of Motion for a Step
Response. The general solution is found by adding the homogeneous
and particular solutions (Eq. B20 + Eq. B26), and substituting the
boundary conditions (B23) to find the constants A4 and As. The general
solution for the response to a suddenly applied force is then expressed

as
éﬁ e ZXVA T+
X(T) = — 1 - >©0sael" wql1- z C—= B2
¢ =
e

F
K

Equation of Motion for a Cylinder Subjected to a Sudden
Internal Pressure
Having defined the step response for a SDOF oscillator, a cylinder
needed to be described in terms of this response. Returning to Fig. B2,
the variable, oy, can be expressed in terms of x by a change of variables.
To change the variables, the circumference of the pipe is compared
to the SDOF system using Hooke’s Law such that,

F,=KxDx =KL, (B28)
where L is the length of the spring, and & = Ax / L. Similarly, the
circumference, c, increases by a length equal to Dc when it expands.
The static circumferential force expands the pipe wall with a force equal
to

Fgq= KxDc = Kxc-gg= Kxc'St/E (B29)
where g9 = Ac / ¢. From the basic definition of a static stress
Fq=StxA, (B30)

Assuming a unit area, substituting Eqs. B11, and B30 into B29, and
using Hooke’s Law, and equating F =P, /A

9 - ZXNXT
s(T) =Stxl- e—%osgaT wxl- z g- a tang
2 '] s
g 1-z ,h -
(B31)
?Dz IDZO %e C')
sg(T) =Py B HeT - =
p2-m2% & Vou
]
-ZM
>@1- mosgal"wvx\[ - atang —(B32)
yi-z 1“_

where H is the Heaviside step function, used to describe the response as
the shock arrives at a point at time x / V. This equation describes the
stresses in the pipe when the entire inner pipe wall is subjected to a
suddenly applied pressure, and is appropriate to predict the maximum
response for short pipes (Leishear [6]). However, the response of a long
pipe is much more complex due to the moving pressure discontinuity at
the shock wave, which induces the pipe stresses.

Pipe Stresses Due to a Shock Wave

Referring to Fig. 1, the response of the pipe wall is assumed to
consist of a precursor vibration and an aftershock vibration.
Furthermore, the aftershock vibration is assumed to consist of two
separate vibrations. Consequently, three vibrations need consideration.

First of all, one vibration is due to the step response after the shock.
Stresses, os, are assumed to act in accordance with Eq. B32 as the shock
moves at a sonic, or supersonic, velocity in the tube. The pipe is
assumed to vibrate at its damped natural frequency in response to an
excitation force.

Second, a precursor free vibration stress, op, due to the step
response is assumed. If the wall vibrates behind the shock, the wall in
front of the shock must also vibrate in response to the applied step
pressure to maintain continuity. However, the vibration must be a free
vibration since an applied load on the pipe wall in front of the shock is
nonexistent.

Third, a free vibration stress, o,, is also assumed to exist as part of
the aftershock vibration. This vibration is assumed to exist due to the
motion of the shock. If a discontinuous step pressure is applied to the
pipe wall and the shock is not moving (V = 0), both the step response
and precursor vibration exist. However, the shock is moving, and as
such an observer at the shock experiences an additional effect. As he
moves into the precursor vibration, the wall is already vibrating, and



this additional vibration needs to be added to the other two vibration
induced stresses, such that the total vibration is described as

S(T)=sp+ss+sa (B33)

The stress due to the step response is presented in Eq. B32, but the other
two stresses require further discussion.

Precursor Stresses
The precursor stresses are better visualized if damping is excluded
from the equations of motion. For example Eq. B33 is simplified to

s(T)=st>(1- cos(w>T)) (B34)
PCI
T=0 T==z/V0

Figure B3: Free Vibration Model

Consider Fig. B3 to evaluate precursor free vibrations due to a step
response. One vibration occurs at an arbitrary time, T = 0, behind the
shock. In front of the shock a free vibration exists. What is the nature of
the free vibration? Assume that the vibration behind the shock is due to
the step pressure increase and that the vibration in front of the shock
equals the sum of the pressure increase to Py and a pressure decrease
back to P = 0. Then the total vibration equals the sum of two step
responses, such that

Ql- cosQW T- X5

& &8 Voug

Sp(T) =St >(1 - cos(WXT))

=St ﬁosa a"af - —c-)o- cos (WXT)
Vo ﬂg P
However, this assumption does not compensate shock wave speeds, and
the arbitrary selection of T = 0 also affects the pipe response.

(B35)

Effects of the Arbitrary Selection of T = 0. The location of T
= 0 with respect to the shock wave affects the pipe response. As x / V
approaches T, the maximum value of Eq. B35 reduces from 2 - St to 0.
Since the boundary condition is arbitrary, the most that can be claimed
is that the maximum precursor stress lies within a range of stresses
equal to O through 2 - St, which is consistent with the variation in
maximum strains observed in tests (Leishear [10]). Tests actually
showed that the stresses varied between approximately St and 2 - St.
The maximum stress is therefore described by Eq. B35.

Effects of the Wave Speed. If the precursor vibration is
assumed to travel at the wave speed of the shock, the vibration
frequency will appear different to a stationary observer. The higher the
wave velocity, the higher the frequency appears. A significant
assumption is made at this point in the analysis. The critical velocity
defined by Eq. A56 is assumed to be the velocity at which the
maximum stress occurs. Accordingly, at this velocity the frequencies
before and after the shock are nearly equal, and this assumption
provides a requisite boundary condition to apply step response
equations to the stresses induced by shock waves in the pipe. The
frequency after the shock is assumed to equal the frequency for a tube.
For an undamped frequency

w=V>g (B36)
where Wy = E ng (Barez) (B37)
r xR

Note that Eq. B37 differs from Eq. A58 by a factor of \/5 , hence
the significance of assuming maximum stresses occur at the critical
velocity. The assumption introduces an approximation based on
experimental data. Tests performed by Beltman, et. al. [2], measured
after shock frequencies equal to the frequencies predicted by assuming
that the pipe vibrates at its damped natural frequency, which is

W:ﬂ]-zzx E_ng
r xR

Assuming the pipe response frequency equals this equation at the
critical velocity, the apparent frequency to a stationary observer can be
obtained, such that

(B38)

® x 00 0
( ) St %ecosGt w T - —::- cos(WXT): (B39)
& & >§ Vo 26 o
where t= Mo (B40)
Ver

Maximum Damped Precursor Stres. To determine the
damped maximum precursor stress, Eq. B39 can be rewritten similar to
Eq. B32, by recognizing that the exponential function increases with
respect to time. Then,

?Dz +D29 .
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After Shock Free Vibration Stresses
The stresses behind the shock due to free vibrations are assumed to
be identical to the precursor vibrations, except that the exponential
function decreases with respect to time. That is,
gon? +1?2 5

s, (T)=-2P) ><7><H9T S E

@Dz D28 Vo g

éae o)
- tzweT- —= -

¢ wg V0 s @ 76 o
>€1 moségT- — ><t ANX\, -- atang—+_
z 5

c 1- 22 2] &yl-z o
€ 2

(B42)

Similar to the precursor stress, this stress varies between a maximum
predicted by Eq. B42 and zero. Again, a range of stresses are expected
along the pipe wall, and Eq. B42 predicts the maximum possible
stresses along the pipe.



Maximum Stresses and Damping
The maximum stress expressed by Eq. B33, s(T) =sp +sg+s,,

can be determined once damping is approximated. Damping, {, was
approximated in the forms of structural, {;, and fluid damping, (g, such
that
z=2zf +24 (B43)
Structural Damping Factor. An approximation for structural
damping (Lazan [11]) was described in the literature as
Ds xE

= (B44)
281
&= 5 & 8
and D=G2+ +6 m - (B45)
gse a gse a
S =2- St (B46)

where D is the specific damping for a structural material The stress
range, S, is the magnitude of the completely reversed stress, and the
fatigue strength limit is S..

Fluid Damping Factor. The fluid damping factor was determined
by relating the thermodynamic changes in the fluid properties to a
dynamic amplification factor. For a step response, a dynamic
amplification factor, i, is expressed in terms of the percent overshoot
(P.O.) as

® 6 ud

¢ e az

¢ 8- 2P "

¢ @ Sut

¢ afl-z7g" (B47)
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Expressing P.O. in terms of thermodynamic properties (Leishear [3]),

_ Dh - Tamb>Ds (B48)
Dh
f =PO. (B49)
zf = L(f) (B50)
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where Ah and As are the change in enthalpy and entropy respectively,
Tamb is the ambient temperature, and @ is the ratio of available to
theoretical work for a compression process. By substitution, the total

damping in the wake of the shock is defined by

- ln(f ) Ds XE

z:
2><p>s%a

T (B51)

+p202_
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In front of the shock, fluid damping is absent and the total damping
equals the structural damping only. This affects the frequency in front
of the shock, since the damped frequency approximately equals

2

1- 2% >w (B52)

Consequently, the frequency is higher in front of the shock, than behind
the shock. Equation B52, by itself, is inadequate to describe the
behavior of the precursor vibration, since observed vibration

10

magnitudes are consistent with the total damping rather than the
structural damping.
Maximum Stress When the Critical is not
Considered

If the maximum stress is assumed to be independent of the critical
velocity, the maximum stress can be determined by Eq. B33 and
substituting

Velocity

t=1 (B53)
into the constitutive equations. The net result of this substitution is that
the DLF’s will be conservatively higher than when the critical velocity
was compensated (See Fig. 3). In thick wall solutions, the critical
velocity and frequencies are yet to be clearly understood, but this
approximation can be used to find a conservative, albeit somewhat high,
maximum stress, since the maximum stress will be independent of
frequency.
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