6642 71 DP-939

· · ·

RADIATION PROPERTIES OF ²⁴⁴Cm PRODUCED FOR ISOTOPIC POWER GENERATORS

\$.

SRL RECORD COP+

Savannah River Laboratory Aiken, South Carolina

LEGAL NOTICE

18 A S

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

Printed in USA. Price \$2.00 Available from the Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, U. S. Department of Commerce, Springfield, Virginia

bk

Isotopes - Industrial Technology (TID-4500, 35th Ed.)

RADIATION PROPERTIES OF ²⁴⁴Cm PRODUCED FOR ISOTOPIC POWER GENERATORS

Compiled by

D. H. Stoddard

Contributing Authors

т.	R.	Herold	R.	F.	Overman
H.	P.	Holcomb	с.	s.	Schlea
R.	с.	Milham	D.	H.	Stoddard

Approved by

C. H. Ice, Director Separations Chemistry and Engineering Section

November 1964

E. I. DU PONT DE NEMOURS & COMPANY SAVANNAH RIVER LABORATORY AIKEN, SOUTH CAROLINA

CONTRACT AT(07-2)-1 WITH THE UNITED STATES ATOMIC ENERGY COMMISSION

ABSTRACT

The radiation properties of curium (~95 wt % ²⁴⁴Cm) that would be produced in a large-scale program at the Savannah River Plant are similar to the properties reported in the literature for pure ²⁴⁴Cm. The alpha, gamma, and neutron radiations associated with the ²⁴⁴Cm product are presented for evaluation by users of ²⁴⁴Cm as a heat source in isotopic power generators.

CONTENTS

	Page
List of Tables and Figures	4
Introduction	5
Summary	5
Discussion	7
General Nuclear Properties of Curium Isotopes	7
Curium Produced in Transplutonium Program	7
²⁴⁴ Cm Product of Large-Scale Production Program	8
Alpha Activity of the 244Cm Product	8
Gamma Activity of the 244Cm Product	11
Gamma Rays from Decay of Actinides	11 13 16 17 18 18
Beta Activity of the 244Cm Product	20
Neutron Activity of the ²⁴⁴ Cm Product	20
α,n Neutron Spectra	20 20 24
References	25

- 3 -

LIST OF TABLES AND FIGURES

.

Table		Page
I	General Nuclear Properties of Curium Isotopes	7
II	Spectrographic Analysis of Purified Curium from Transplutonium Program	7
III	Composition of Curium Products	8
IV	Alpha Radiations of Curium Isotopes	9
v	Gamma Rays from Decay of Actinides	12
VI	Significant Gamma Activity from Decay of Purified Curium from Transplutonium Program .	13
VII	Prompt Gamma Rays from Spontaneous Fission of ²⁴⁴ Cm and ²⁵² Cf	16
VIII	Gamma Rays from Fission Products of Spontaneous Fission of ²⁴⁴ Cm and ²⁵² Cf	17
IX	Gamma Rays from Fission Product Impurities	17
x	Significant Gamma Rays of ²⁴⁴ Cm Product	19
XI	Neutrons from α ,n Reactions with Oxygen	21
XII	Spontaneous Fission Neutrons from ²⁴² Cm, ²⁴⁴ Cm, ²⁴⁸ Cm, and ²⁵² Cf	23
Figure		
l	Alpha Spectrum of Purified Curium from Trans- plutonium Program	10
	matel 0	

- 4 -

RADIATION PROPERTIES OF ²⁴⁴Cm PRODUCED FOR ISOTOPIC POWER GENERATORS

INTRODUCTION

Curium-244 is a promising heat source for isotopic power generators. This isotope can be produced in large quantities at reasonable cost, and without excessively long lead times. A pilot production program for 244 Cm is underway at the Savannah River Plant.⁽¹⁾ The program not only pilots the large-scale production of curium, but will also provide three kilograms of 244 Cm for the development and demonstration of power generators fueled with this isotope.

This report presents the radiation properties of ²⁴⁴Cm that would be produced in a large-scale program at the Savannah River Plant. The information is intended for evaluation by users of ²⁴⁴Cm as a heat source in isotopic power generators. These radiation properties are based on:

- Measured radiation properties of a purified sample of ~95 wt % ²⁴⁴Cm produced in a Savannah River reactor.
- Expected purification of the curium product in the chemical separations process being developed.
- Reported radiation properties of the nuclides in the curium product.

SUMMARY

When 244 Cm is produced by irradiating plutonium in a nuclear reactor, a mixture of curium isotopes is obtained. The radiation properties of the curium (~95 wt % 244 Cm) that would be produced in a large-scale program are similar to the properties reported in the literature for pure 244 Cm. The effective alpha half-life of the mixture will be practically the same as that of 244 Cm, since only 0.02 wt % of 242 Cm will be present in the 244 Cm product. The significant amounts of gamma radiation and neutrons associated with the 244 Cm product are not greatly different from those for pure 244 Cm because the isotopic composition of the product is favorable and also

- 5 -

because the chemical separations process can remove sufficient quantities of objectionable impurities such as ²⁵²Cf.

The radiations from ²⁴⁴Cm produced in a large-scale program include radiations from:

- Individual curium isotopes.
- Products of the spontaneous fission of curium isotopes.
- Radioactive contaminants that are not removed in chemical processing.
- Neutrons from α, n reactions with oxygen.

The total alpha, gamma, and neutron radiations are summarized in the following table.

Activity of 244Cm Product

Alpha Activity: 2.88 x 10¹² disintegrations/(sec)(gram)

Ga	mma Activity	Neutron Activity		
Energy, Mev	Abundance, photons/(sec)(gram)	Energy, Mev	Abundance, neutrons/(sec)(gram)	
0 - 0.5	8.1 x 10 ⁸	0 - 0.5	1.4 x 10°	
0.5 - 1.0	5.3 x 10 ⁷	0.5 - 1.0	1.8 x 10 ⁸	
1.0 - 2.0	1.3 x 10 ⁷	1.0 - 2.0	3.7 x 10 ⁶	
2.0 - 3.0	4.3 x 10 ⁸	2.0 - 3.0	2.4×10^{6}	
3.0 - 4.0	5.0 x 10 ⁵	3.0 - 4.0	1.4 x 10 ⁸	
4.0 - 5.0	1.7 x 10 ⁵	4.0 - 5.0	7.8×10^{5}	
5.0 - 6.0	8.9×10^4	5.0 - 6.0	2.6 x 10 ⁵	
6.0 - 7.0	1.5×10^4	6.0 - 7.0	2.0 x 10 ⁵	
		7.0 - 8.0	6.1 x 10 ⁴	
		8.0 - 10	4.9 x 10⁴	
		10 - 13	1.0×10^4	

DISCUSSION

GENERAL NUCLEAR PROPERTIES OF CURIUM ISOTOPES

The general nuclear properties of curium isotopes are presented in Table I.

		<u>General Nucle</u>	ar Properties of (urium Isotopes	сорев			
Isctope	Spontaneous Fission Half-Life	Neutrons per Fission of Pure Isotope	Alpha Decay Half-Life	Specific Activity of Pure Isotope, <u>curies/gram</u>	Specific Power of Pure Isotope, watts/gram			
242 Cm	7.2 x 10 ⁶ y ⁽²⁾	2,61 ±0.09 ⁽⁴⁾	162.5 ±0.3 d ⁽²⁾	3,320	120			
243 _{Cm}	-	-	35 y ⁽²⁾	42	1.44			
24 4 Cm	1.346 ±0.006 x 107 y ^(s)	2,8 ±0.09 ⁽⁴⁾	18.1 y ^(s)	81	2.78			
245Cm	·_	-	1.43 ±0.29 x 104 y ⁽²⁾	1.025 x 10 ⁻¹	5.8 x 10 ⁻³			
248Cm	1.2 x 10 ⁷ y ⁽²⁾	3.0 ^(s)	4.0 ±0.6 x 10 ³ y ⁽²⁾	3.65 x 10 ⁻¹	7 x 10 ⁻³			
247 _{Cm}	-	-	>9 x 10 ⁷ y ⁽²⁾	1.62 x 10 ⁻⁵	4.6 x 10 ⁻⁸			
248 _{Cm}	4.6 ± 0.5 x 10 ⁸ y ⁽²⁾	3.4 ⁽⁵⁾	4.7 ±0.4 x 10 ⁵ y ⁽²⁾	3.08 x 10 ⁻³	1.03 x 10 ⁻⁴			

TABLE I

CURIUM PRODUCED IN TRANSPLUTONIUM PROGRAM

Several hundred grams of ²⁴⁴Cm have been produced at Savannah River for the Atomic Energy Commission's Transplutonium Program. A sample of this material was purified from fission products and other actinides by solvent extraction, double carbonate precipitation, and ion exchange. The resulting curium was of very high purity as indicated by the concentrations of impurities in Table II and the isotopic content in Table III.

TABLE II

Spectrographic Analysis of Purified Curium from Transplutonium Program					
Element	Concentration,	C	oncentration,	Element	Concentration,
Ca	60	Sn	<10	Sb	<5
Zn	50	Mg	5	Si	3
Ce	<50	Cs	<5	Bi	<3
La	<25	Cr	<5	T1	<3
P	<25	Fe	<5	Li	<1
Zr	<25	Мо	<5	Mn	<1
Al	10	ND	<5	Ag	<0.5
Na	10	N1	<5	в	<0.5
Ba	<10	Pb	<5	Be	<0.01

	Purified ²⁴⁴ Cm from Transplutonium Program	²⁴⁴ Cm Product from Large-Scale Program ^(a)
Nuclide	Mass Abundance, wt %	Mass Abundance, wt %
242 Cm	0.12 ±0.006	0.02
243 _{Cm}	0.03 ±0.002	0.002
244 Cm	95.5	95.3
245Cm	1.6 ±0.05	0.9
248 _{Cm}	2.7 ±0.01	2.7
247 _{Cm}	0.04 ±0.01	0.07
248Cm	0.04 ±0.01	0.05
243 _{Am}	0.0009	0.5
²⁵² Cf	<l 10<sup="" x="">-9</l>	<4 x 10 ⁻⁵

TABLE III

Composition of Curium Products

(a) One year after reactor irradiation, 97% of the ²⁴⁴Cm product will be of this composition; 3% of the product will contain higher concentrations of ²⁴²Cm and ²⁴³Cm.

²⁴⁴Cm PRODUCT OF LARGE-SCALE PRODUCTION PROGRAM

From the measured composition of the purified curium from the Transplutonium Program, the isotopic composition was calculated for curium produced in the irradiation scheme for a large-scale ²⁴⁴Cm program. This calculated composition is listed in Table III.

The product of the large-scale program will be referred to as the "244 Cm product" in the remainder of this report.

ALPHA ACTIVITY OF THE 244Cm PRODUCT

Alpha radiation is the major source of energy released by curium isotopes. The relative abundance and energies of the alpha particles emitted from the principal alpha-emitting curium isotopes are given in Table IV.

The alpha spectrum of purified curium from the Transplutonium Program is shown in Figure 1. The spectrum shows

- 8 -

TABLE IV

, - -

Alpha Radiations of Curium Isotopes

Isotope	Energy, Mev	Alpha Particles per Disintegration of Isotope ⁽²⁾	Energy/Disin Per Energy Interval, Mev	tegration Total, <u>Mev</u>
242 _{Cm}	6.110 6.066 5.965 5.811 5.605 5.515 5.200 5.120	0.737 0.263 3.5 x 10 ⁻⁴ 6 x 10 ⁻⁵ 3 x 10 ⁻⁷ 1 x 10 ⁻⁶ 3 x 10 ⁻⁷ 4 x 10 ⁻⁸	4.5 1.6 2.1 x 10 ⁻³ 3 x 10 ⁻⁴ 2 x 10 ⁻⁶ 6 x 10 ⁻⁶ 2 x 10 ⁻⁶ 2 x 10 ⁻⁷	6.1
243 _{Cm}	6.061 6.054 6.005 5.987 5.900 5.872 5.780 5.736 5.680	1×10^{-2} 5×10^{-2} 9×10^{-3} 6×10^{-2} 1×10^{-3} 5×10^{-3} 0.73 0.115 1.6×10^{-2}	$6 \times 10^{-2} 3 \times 10^{-1} 5 \times 10^{-2} 3 \times 10^{-1} 6 \times 10^{-3} 3 \times 10^{-2} 4.2 0.66 0.09$	
≥ 4 4 _{Cm}	5.798 5.756 5.658 5.511	0.767 0.233 1.6 x 10 ⁻⁴ 4 x 10 ⁻⁵	4.44 1.34 9 x 10 ⁻⁴ 2 x 10 ⁻⁴	5.7 5.78

- 9 -

FIG. 1 ALPHA SPECTRUM OF PURIFIED CURIUM FROM TRANSPLUTONIUM PROGRAM

only the peaks from ²⁴²Cm and ²⁴⁴Cm and agrees with the spectrum calculated from the known isotopic content:

	Alpha Activity	of Purified Cm	
	from Transplu	tonium Program,	
	% of_total		
	From Measured	Calculated from	
<u>Isotope</u>	Spectrum	<u>Isotopic Content</u>	
242 _{Cm}	5	4.9	
244 Cm	95	95.1	

From the calculated isotopic content of the 244 Cm product, greater than 99% of the total alpha activity of the product will be from 244 Cm; therefore, the over-all alpha decay rate of the 244 Cm product will be practically the same as that of pure 244 Cm.

GAMMA ACTIVITY OF THE 244Cm PRODUCT

The gamma activity of the ²⁴⁴Cm product will consist of gamma rays from:

- Decay of curium isotopes and actinide impurities.
- Prompt spontaneous fission of curium isotopes and actinide impurities.
- Fission products continuously produced by the fission of curium isotopes and actinide impurities.
- Radioactive impurities (primarily fission products) that are not removed in the chemical separations process.

Gamma radiations from each of these sources are described in the following sections.

Gamma Rays from Decay of Actinides

Gamma rays reported for the decay of actinides in the ²⁴⁴Cm product are listed in Table V.

From the mass abundances listed in Table III, only two groups of these gamma rays above 0.2 Mev contribute significantly to the total gamma spectrum of the purified curium

TABLE	V
and the second se	-

	<u> </u>	Gamma Rays
	Energy,	Abundance,
Nuclide	_Mev	photons/(sec)(g of nuclide)
242 _{Cm} (8)	0.044 0.101 0.157 0.210 0.562 0.605 0.890 0.935 1.010	4.8 x 10 ¹⁰ 4.3 x 10 ⁹ 2.8 x 10 ⁹ 2.5 x 10 ⁷ 2.2 x 10 ⁸ 1.7 x 10 ⁸ 1.1 x 10 ⁷ Negligible 1.2 x 10 ⁷
243 _{Cm} (7)	0.106 0.2100 0.2280 0.2775	Negligible 9.3 x 10 ¹⁰ 1.1 x 10 ¹¹ 2.7 x 10 ¹¹
244 _{Cm} (6)	0.043 0.100 0.150 0.262 0.570(⁹) 0.610/ 0.825 ⁽⁹)	6.3 x 10^{8} 4.5 x 10^{7} 3.9 x 10^{7} 3.5 x 10^{8} 4.2 x 10^{8} 2.0 x 10^{8}
252 _{Cf} (8)	0.043 0.100	2.78 x 10 ⁹ 2.0 x 10 ⁹
243 _{Am-} 239 _{Np} (8) (a)	0.074 0.0447 0.0494 0.0572 0.0615 0.0678 0.1062 0.1818 0.2099 0.2265 0.2284 0.2546 0.2731 0.2778 0.2856 0.3161 0.3346	5.9 x 10^8 4.1 x 10^6 9.5 x 10^6 7.5 x 10^6 4.0 x 10^8 1.1 x 10^7 2.14 x 10^9 3.4 x 10^7 2.5 x 10^8 1.1 x 10^8 5.4 x 10^8 5.4 x 10^7 9.0 x 10^8 8.2 x 10^7 2.7 x 10^7 1.4 x 10^8

Gamma Rays from Decay of Actinides

(a) Daughter in equilibrium with parent. The 0.074-Mev gamma ray is from alpha decay of ²⁴³Cm; the others are from beta decay of ²³⁹Np.

from the Transplutonium Program. These are the 0.210-0.278 Mev gamma rays from 243 Cm and the 0.570-0.825 Mev gamma rays from 244 Cm. From the second and fourth columns of Table VI, the gamma rays from 243 Cm account for 16% of the total 0.0-0.5 Mev gamma radiation from fission and decay, and the gamma rays from 244 Cm account for 18% of the total 0.5-1.0 Mev gamma radiation.

TABLE VI

Significant Gamma Activity from Decay of Purified Curium from Transplutonium Program

	Gamma Activi photons/(sec		
Energy, Mev	Calculated from Decay Schemes and Isotopic Content	From Interpretation of Gamma Spectrum	Total Gamma Activity from Fission and Decay, <u>photons/(sec)(g of sample)</u>
0.2 - 0.5	1.4 x 10 ⁸	1.1 x 10 ⁸	$8.9 \times 10^{8(a)}$
0.5 - 1.0	6.2 x 10 ⁸	4.0 x 10 ^e	3.5×10^7

(a) 0.0 - 0.5 Mev.

The contribution of gamma rays from decay calculated from published decay schemes and measured mass ratios was verified by the observed spectra shown in Figure 2. In interpreting the gamma spectra, the fission spectrum of ²⁵²Cf was subtracted from the ²⁴⁴Cm spectrum, and the intensities of the remaining photopeaks were corrected for detector efficiency, geometry, and Compton events.

In addition to the gamma rays from decay of curium isotopes, there would be gamma rays from decay of 252 Cf and 243 Am- 239 Np in the 244 Cm product. The contributions of 252 Cf and 243 Am- 239 Np to the total gamma rays from decay were calculated from the predicted concentrations of these isotopes in the 244 Cm product (Table III) and the data in Table V. Since 252 Cf has only low-energy decay gamma rays and would be present in extremely low concentration, it would not contribute a significant amount to the total. The decay gamma rays from the 0.5 wt % 243 Am (and the 239 Np daughter) predicted in the 244 Cm product would amount to about 2.8 x 10⁷ photons/(second) (g 244 Cm product), with about 1.1 x 10⁷ photons/(second)(g 244 Cm product) above 0.2 Mev.

Prompt Gamma Rays from Spontaneous Fission

The energy and abundance of prompt gamma rays from spontaneous fission were calculated by assuming the spontaneous fission gamma energy spectrum for ²⁴⁴Cm to be the

- 13 -

same as that reported for $^{235}U.(^{4})$ The validity of this assumption, which is in accord with theory, $^{(5)}$ was supported experimentally by measuring the total gamma spectra of ^{252}Cf and ^{244}Cm and by comparing literature data for $^{252}Cf(^{(5)})$ and $^{235}U.(^{4})$ The ^{252}Cf and ^{244}Cm spectra, shown in Figure 2, are quite similar in the high energy region (beyond 2 Mev)

FIG. 2 TOTAL GAMMA SPECTRA OF ²⁵²Cf AND PURIFIED CURIUM 0.1 to 9.0 Mev 3" x 3" NaI Detector

- 14 -

where the gamma contribution from short-lived fission products is relatively small. In this energy region the measured ratio of photons/fission for 252 Cf was 1.26 times that for 244 Cm, which is in line with the ratio of 1.35 calculated from literature data for 252 Cf and 235 U. The 244 Cm used in measuring the spectrum was the purified curium from the Transplutonium Program.

The spectra of prompt gamma rays from spontaneous fission of 244 Cm and 252 Cf were measured with a γ ,n coincidence technique, also. With this technique, only 100-kev or greater gamma rays emitted within 180 nanoseconds of a spontaneous fission are recorded. The measurements are shown in Figure 3.

FIG. 3 FISSION GAMMA SPECTRA OF 252CF AND PURIFIED CURIUM

- 15 -

The energy and abundance of the prompt gamma rays calculated for 244 Cm from the literature data for 235 U are given in Table VII; literature data for 252 Cf are also included. In the 244 Cm product, prompt gamma rays from the spontaneous fission of curium isotopes other than 244 Cm will be less than 2.5% of those from 244 Cm. The prompt gamma rays from 252 Cf (<4 x 10⁻⁵ wt %) in the 244 Cm product will amount to 10% of the prompt gamma rays from 244 Cm. These are the only nuclides that will contribute significantly to the prompt gamma rays ' from spontaneous fission in the 244 Cm product.

TABLE VII

Prompt Gamma Rays from Spontaneous Fission of ²⁴⁴Cm and ²⁵²Cf

Energy.	Abund photons/(sec)	iance,)(g of nuclide)
Mev	244 _{Cm}	252Cf ⁽⁵⁾
0.0 - 0.5	1.2 x 10 ⁷	3.3 x 10 ¹²
0.5 - 1.0	7.4 x 10 ⁶	1.7 x 10 ¹²
1.0 - 1.5	3.3 x 10 ⁶	7.7 x 10 ¹¹
1.5 - 2.0	2.1 x 10 ⁶	4.2 x 10 ¹¹
2.0 - 2.5	1.1 x 10 ⁶	2.2 x 1011
2.5 - 3.0	5.8 x 10 ⁵	1.1 x 10 ¹¹
3.0 - 3.5	2.4 x 10 ⁵	5.6 x 10 ¹⁰
3.5 - 4.0	2.5 x 10 ⁵	3.0 x 10 ¹⁰
4.0 - 4.5	9.3 x 10 ⁴	1.7 x 10 ¹⁰
4.5 - 5.0	7.4 x 10 ⁴	8.2 x 10 ⁹
5.0 - 5.5	6.6 x 104	4.9 x 10 ⁹
5.5 - 6.0	2.7 x 10^4	1.8 x 10 ⁹
6.0 - 6.5	1.6 x 10 ⁴	1.0 x 10 ⁹

Gamma Rays from Equilibrium Fission Products

The fission products formed from spontaneous fission approach equilibrium in the curium within a few hours after separation. Equilibrium fission product gamma activities were calculated by assuming that the gamma spectra of the fission products are the same as those of the fission products from ²³⁵U. Table VIII lists the energy and abundance of these gamma rays from fission products of ²⁴⁴Cm and ²⁵²Cf.

- 16 -

TABLE VIII

Energy, Mev	Abundance, photons/ From Products Of 244 Cm	(sec)(g of nuclide) From Products of ²⁵² Cf
0.1 - 0.4	6.3 x 10 ⁸	1.3 x 10 ¹²
0.4 - 0.9	1.9×10^7	4.0 x 10 ¹²
0.9 - 1.35	1.9 x 10 ⁸	4.0 x 10 ¹¹
1.35 - 1.8	2.4 x 10 ⁸	5.1 x 10 ¹¹
1.8 - 2.2	1.2 x 10 ⁶	2.5 x 1011
2.2 - 2.6	4.5 x 10 ⁵	9.4 x 10 ¹⁰
2.6 - 3.0	4.4 x 104	9.3 x 10 ⁹

Gamma Rays from Fission Products of Spontaneous Fission of ²⁴⁴Cm and ²⁵²Cf⁽⁴⁾

The contributions of ²⁴⁴Cm and ²⁵²Cf to the total gamma activity from equilibrium fission products in the ²⁴⁴Cm product were calculated from the predicted isotopic composition (Table III) and the data in Table VIII. Curium-244 will contribute about 92% of the total; ²⁵²Cf, about 8%.

Gamma Rays from Impurities

In addition to the equilibrium fission products from spontaneous fission, the ²⁴⁴Cm product will contain small amounts of fission products formed in the irradiation process and not removed in the chemical separations process. From the predicted performance of the chemical process and the calculated quantities of fission products associated with the curium after irradiation, the gamma activity of the fission product impurities are those given in Table IX.

TABLE IX

Gamma Rays from	Fission Product Impurities
Energy, Mev	Abundance, photons/ (sec)(g ²⁴⁴ Cm Product)
0.0 - 0.5	6 x 107
0.5 - 1.0	2×10^{7}
1.0 - 2.0	3 x 10 ⁸
2.0 - 3.0	1 x 10°

- 17 -

Almost all of the gamma rays above 1 Mev are from 144 Pr and $^{152-154}$ Eu, and those below 1 Mev are primarily from 95 Zr- 95 Nb, 144 Ce, 106 Rh, and 103 Ru- 103 Rh.

X-Rays

The X-ray spectrum of purified ²⁴⁴Cm from the Transplutonium Program is shown in Figure 4. Because most of the X-rays detected are less than 40 kev in energy, X-rays are not included in the calculations of the total gamma radiation.

FIG. 4 X-RAY SPECTRUM OF 3.4 μ g ²⁴⁴Cm SAMPLE

Total Gamma Radiation

The total gamma activity of the ²⁴⁴Cm product was obtained by combining the individual contributions listed in the preceding sections. The gamma energies and corresponding abundance are listed in Table X.

TABLE	х

					(e)
Significant	Gamma	Rays	of	244 Cm	Product `	a /

				A	bundance, phot	tons/(sec)(g ²	44Cm product)	I		
Energy,	Fr	com Decay	of Nuclid	es	From Spontane	eous Fissions	From Fission	Products of	From	
Mev	24.2Cm	243Cm	244 Cm	24 3 Am	244 Cm	252Cf	244 Cm	252Cf	Impurities	<u>Total</u>
0.0-0.5	1.1x10 ⁷	9.5x10 ^e	6.8x10 ⁸	2.8x10 ⁷	1.1x10 ⁷	1.3x10 ⁸	5.9x10 ⁶	5.2x10 ⁵	6x107	8.1x10 ⁸
0.5-1.0	8x104	-	5.9x10 ⁶	-	7x10 ⁸	6.8x10 ⁵	1.8x107	1.6x10 ⁶	2x10 ⁷	5.3x10 ⁷
1.0-2.0	2.4x10 ³	-	-	-	5.2x10 ⁶	4.8x10 ⁵	4.1x10 ⁶	3.6x10 ⁵	3x10 ⁸	1.3x10 ⁷
2.0-3.0	-	-	-	-	1.6x10 ⁶	1.3x10 ⁵	1.6x10 ⁸	1.4x10 ³	lx10 ⁸	4.3x10 ⁶
3.0-4.0	-	-	-		4.7x10 ⁵	3.4x104	-	-	-	5.0x10 ⁵
4.0-5.0	-,	-	-	-	1.6x10 ⁵	1.0x104	-	-	-	1.7x10 ⁵
5.0-6.0	-	-	-	-	8.9x10 ⁴	2.7x10 ³	-	-	-	8.9x10 ⁴
6.0-7.0	-	-	-	-	1.5x10 ⁴	4.0x10 ²	-	-	-	1.5x10 ⁴

(a) Isotopic composition listed in Table III.

- 61

Т

BETA ACTIVITY OF THE 244Cm PRODUCT

The principal beta emitters in the 244 Cm product are short-lived fission products, fission product contaminants, and 249 Bk (estimated concentration: 2×10^{-5} wt %). Beta radiations will not contribute significantly to the specific power or to the shielding problems associated with the curium product.

NEUTRON ACTIVITY OF THE 244Cm PRODUCT

The neutron radiation from the 244 Cm product will consist principally of neutrons from spontaneous fission of 244 Cm, with minor contributions from spontaneous fission of 242 Cm, 246 Cm, and 252 Cf. A second minor source of neutrons is the a,n neutrons from the reaction of alpha particles with light elements, for example, the reaction with oxygen in CmO₂.

a,n Neutron Spectra

The only appreciable source of α , n neutrons in a ²⁴⁴Cm heat source will be the reaction with oxygen in CmO₂ or Cm₂O₃. If other curium compounds are used in the heat source, the values for the α , n neutrons must be changed accordingly.

The quantities⁽¹⁰⁾ and spectra⁽¹¹⁾ of neutrons formed by the reaction of alpha particles with oxygen have been reported for polonium and plutonium isotopes. These data were extrapolated to the alpha energies of nuclides in the ²⁴⁴Cm product.* From the resulting data in Table XI and the predicted composition of the ²⁴⁴Cm product, the total neutrons produced by α ,n reactions with oxygen in CmO₂ were calculated. The total was only 3% of the neutrons from spontaneous fission. Almost all of the α ,n neutrons are produced by the alpha activity of ²⁴⁴Cm.

Spontaneous Fission Neutron Spectra

The neutron spectrum of the purified 244 Cm from the Transplutonium Program was experimentally determined and compared with reported spectra of $^{235}U^{(12)}$ and ^{252}Cf .⁽⁵⁾ Since the spectra, shown in Figure 5, are quite similar, the spectra for ^{235}U or ^{252}Cf may be used to calculate the abundances in each energy interval for 244 Cm, 242 Cm, 24e Cm, and ^{252}Cf . Neutron energies and corresponding abundances for these nuclides are listed in Table XII. From these data and

^{*} The total quantities of neutrons agree with those reported by Arnold. (13)

TABLE XI

Neutrons	from	a,n	Reactions	with	Oxygen

Energy, Mev	<u>Abundance, ne</u> α from ^{24,2} Cm	utrons/(sec)(g <u>a from ²⁴⁴Cm</u>	of nuclide) a from ²⁵² Cf
0.2	5.0 x 10 ³	4.5 x 10 ²	8.1 x 10 ²
0.4	1.0 x 10 ⁴	1.9 x 10 ³	1.6 x 10 ³
0.6	2.0 x 10 ⁴	2.3 x 10 ³	3.3 x 10 ³
0.8	2.5 x 10 ⁴	4.7 x 10 ³	4.1 x 10 ³
1.0	7.6 x 10 ⁴	7.5 x 10 ³	1.2 x 10 ⁴
1.2	1.5 x 10 ⁵	1.2×10^4	2.5×10^4
1.4	2.8 x 10 ⁵	1.7 x 10 ⁴	4.5 x 10⁴
1.6	4.5 x 10 ⁵	2.3 x 10 ⁴	7.4 x 10 ⁴
1.8	7.6 x 10 ⁵	2.8 x 10 ⁴	1.2 x 10 ⁵
2.0	1.0 x 10 ⁸	3.3 x 10 ⁴	1.7 x 10 ⁵
2.2	1.3 x 10 ⁶	3.7 x 10 ⁴	2.2 x 10 ⁵
2.4	1.7 x 10 ⁸	3.9 x 10 ⁴	2.7 x 10 ⁵
2.6	2.0 x 10 ⁸	3.9 x 10⁴	3.2 x 10 ⁵
2.8	2.1 x 10 ⁸	3.8 x 104	3.4 x 10 ⁵
3.0	2.1 x 10 ⁸	3.4 x 10 ⁴	3.4 x 10 ⁵
3.2	2.1 x 10 ⁸	2.8 x 10 ⁴	3.4 x 10 ⁵
3.4	1.8 x 10 ⁸	2.2 x 10 ⁴	2,9 x 10 ⁵
3.6	1.5 x 10 ⁸	1.4×10^4	2.4 x 10 ⁵
3.8	1.0 x 10 ⁸	8.4 x 10 ³	1.7 x 10 ⁵
4.0	6.5 x 10 ⁵	5.6 x 10 ³	1.1 x 10 ⁵
4.2	4.0 x 10 ⁵	3.8 x 10 ³	6.5 x 10 ⁴
4.4	2.8 x 10 ⁵	2.4 x 10 ³	4.5 x 10 ⁴
4.6	1.8 x 10 ⁵	2.0 x 10 ²	2.9 x 10 ⁴
4.8	5.0 x 104		8.1 x 10 ³

- 21 -

FIG. 5 SPONTANEOUS FISSION NEUTRON SPECTRA

TABLE XII

Spontaneous Fission Neutrons from 242Cm, 244Cm, 246Cm, and 252Cf

•

Ener	gy,	Abundanc	e, neutrone	/(sec)(g of	nuclide)
Me	v	242Cm	244Cm	248Cm	252Cf
0.3 -	0.4	7.7 x 10 ⁵	4.2 x 10 ⁵	5.2 x 10 ⁵	9.4 x 10 ¹⁰
0.4 -	0.6	1.6 x 10 ⁸	8.7 x 10 ⁵	1.1 x 10 ⁸	1.9 x 10 ¹¹
0.6 -	0.8	1.6 x 10 ⁸	8.9 x 10 ⁵	1.1 x 10 ⁸	2.0 x 10 ¹¹
0.8 -	1.0	1.4 x 10 ⁶	7.7 x 10 ⁵	9.5 x 10 ⁵	1.7 x 10 ¹¹
1.0 -	1.2	1.4 x 10 ⁸	7.9 x 10 ⁵	9.7 x 10 ⁵	1.8 x 10 ¹¹
1.2 -	1.4	1.4 x 10 ⁶	7.8 x 10 ⁵	9.6 x 10 ⁵	1.7 x 10 ¹¹
1.4 -	1.6	1.2 x 10 ⁸	6.8 x 10 ⁵	8.3 x 10 ⁵	1.5 x 10 ¹¹
1.6 -	1.8	1.1 x 10 ⁸	6.1 x 10 ⁵	7.5 x 10 ⁵	1.4 x 10 ¹¹
1.8 -	2.0	1.0 x 10 ⁸	5.5 x 10 ⁵	6.7 x 10 ⁵	1.2 x 10 ¹¹
2.0 -	2.2	9.1 x 10 ⁵	5.0 x 10 ⁵	6.2 x 10 ⁵	1.1 x 10 ¹¹
2.2 -	2.4	8.4 x 10 ⁵	4.6 x 10 ⁵	5.7 x 10 ⁵	1.0 x 10 ¹¹
2.4 -	2.6	8.0 x 10 ⁵	4.4 x 10 ⁵	5.5 x 10 ⁵	1.0 x 10 ¹¹
2.6 -	2.8	6.5 x 10 ⁵	3.6 x 10 ⁵	4.4 x 10 ⁵	8.0 x 10 ¹⁰
2.8 -	3.0	5.5 x 10 ⁵	3.0 x 10 ⁵	3.7 x 10 ⁵	6.8 x 10 ¹⁰
3.0 -	3.2	5.0 x 10 ⁵	2.8 x 10 ⁵	3.4 x 10 ⁵	6.2 x 10 ¹⁰
3.2 -	3.4	5.0 x 10 ⁵	2.7 x 10 ⁵	3 4 x 10 ⁵	6.1 x 10 ¹⁰
3.4 -	3.6	4.7 x 10 ⁵	2.6 x 10 ⁵	3.2 x 10 ⁵	5.9 x 10 ¹⁰
3.6 -	3.8	3.7 x 10 ⁵	2.1 x 10 ⁵	2.5 x 10 ⁵	4.6 x 10 ¹⁰
3.8 -	4.0	4.1 x 10 ⁵	2.2 x 10 ⁵	2.8 x 10 ⁵	5.0 x 10 ¹⁰
4.0 -	4.4	5.2 x 10 ⁵	2.9 x 10 ⁵	3.5 x 10 ⁵	6.4 x 10 ¹⁰
4.4 -	4.8	4.4 x 10 ⁵	2.4 x 10 ⁵	2.9 x $\cdot 10^{5}$	5.4 x 10 ¹⁰
4.8 -	5.2	3.2 x 10 ⁵	1.8 x 10 ⁵	2.2 x 10 ⁵	3.9 x 10 ¹⁰
5.2 -	5.6	2.5 x 10 ⁵	1.4 x 10 ⁵	1.7 x 10 ⁵	3.1 x 10 ¹⁰
5.6 -	6.0	1.9 x 10 ⁵	1.1 x 10 ⁵	1.2 x 10 ⁵	2.3 x 10 ¹⁰
6.0 -	6.4	1:5 x 10 ⁵	8.2 x 10 ⁴	1.0 x 10 ⁵	1.8 x 10 ¹⁰
6.4 -	6.8	1.1 x 10 ⁵	5.9 x 10 ⁴	7.2 x 10 ⁴	1.3 x 10 ¹⁰
6.8 -	7.2	7.5 x 10 ⁴	4.1 x 10 ⁴	5.1 x 10 ⁴	9.3 x 10 ⁹
7.2 -	7.6	5.6 x 10 ⁴	3.1 x 10 ⁴	3.8×10^4	6.9 x 10 ⁹
7.6 -	8.0	4.7 x 10 ⁴	2.5 x 10⁴	3.2×10^4	5.8 x 10 ⁹
8.0 -	8.8	5.0 x 10 ⁴	2.8×10^4	3.4×10^4	6.2 x 10 ⁹
8.8 -	9.6	1.5 x 10⁴	8.2 x 10 ^s	1.0 x 10 ⁴	1.8 x 10 ⁹
9.6 -	10.4	1.6 x 10 ⁴	8.6 x 10 ³	1.1 x 10 ⁴	1.9 x 10 ⁹
10.4 -	11.2	1.0 x 10 ⁴	5.7 x 10 ³	7.0 x 10 ³	1.3 x 10 ⁰
11.2 -	12.8	7.1 x 10 ³	3.9 x 10 ^s	4.8 x 10 ³	8.8 x 10 ⁸

- 23 -

the predicted isotopic composition (Table III), the neutron energies and abundances of the 244 Cm product were calculated. These data were combined with values for α ,n neutrons to obtain the total neutron activity of the 244 Cm product listed in the Summary.

Total Neutrons

The neutron emission rate of purified curium from the Transplutonium Program was measured in a counting assembly of BF₃ tubes embedded in a paraffin moderator. The assembly was calibrated with a 252 Cf standard. The specific neutron activity of the purified curium was found to be 9.7 x 10⁸ neutrons/(second)(g of sample), which agrees well with the specific neutron activity reported for 244 Cm, 1.09 x 10⁷ neutrons/(second)(g 244 Cm) (see Table I).

REFERENCES

- J. A. Smith. <u>Curium-244 Production at Savannah River</u>. USAEC Report DP-914, E. I. du Pont de Nemours & Co., Savannah River Laboratory, Aiken, S. C. (1964) (Secret).
- 2. B. S. Dzhelepov and L. K. Peker. <u>Decay Schemes of</u> <u>Radioactive Nuclei</u>. Pergamon Press, New York (1961).
- 3. D. Metta, H. Diamond, R. F. Barnes, J. Milsted, J. Gray, Jr., D. J. Henderson, and C. S. Stevens. "Nuclear Constants of Nine Transplutonium Nuclides." <u>148th American Chemical Society Meeting, Chicago, 1964.</u> Abstract of Papers, p. 8R (1964).
- 4. <u>Reactor Physics Constants</u>. USAEC Report ANL-5800, Argonne National Laboratory, Lemont, Illinois (1958).
- 5. E. K. Hyde. <u>A Review of Nuclear Fission</u>. <u>Part One -</u> <u>Fission Phenomena at Low Energy</u>. USAEC Report UCRL-9036, University of California, Lawrence Radiation Laboratory, Berkeley, California (1960).
- <u>1960 Nuclear Data Tables.</u> Part Four Short Tables. National Academy of Sciences - National Research Council, Washington, D. C. (1961).
- 7. D. Strominger, J. M. Hollander, and G. T. Seaborg. "Table of Isotopes." <u>Rev. Modern Phys</u>. <u>30</u>, 585-904 (1958).
- 8. C. F. Miller. <u>Proposed Decay Schemes for Some Fission-Product and Other Radionuclides</u>. USAEC Report USNRDL-TR-160, Naval Radiological Defense Laboratory, San Francisco, California (1957).
- 9. S. Bzornholm, M. Lederer, F. Asaro, and I. Perlman. "Alpha Decay to Vibrational States." <u>Phys. Rev. 130</u>, 2000-2010 (1963).
- 10. E. Segre and C. Wiegand. <u>Thick-Target Excitation</u> <u>Functions for Alpha Particles</u>. USAEC Report MDDC-185, Oak Ridge, Tenn. (1944)(Declassified July 30, 1946).
- A. G. Khabakhpashev. "The Spectrum of Neutrons from a Po-α-O Source." Atomnaya Energiya 7, 71 (1959).

- 25 -