
1'5 HLE\
RECORD ,:CoPY

MC6S00 CROSS-ASSEMBLER
FOR THE PDP-S/E DIGITAL COMPUTER

R.J. SAND

<®PDN»
•• -. u , ... ,,"

SAVANNAH RIVER LABORATORY
AIKEN. SOUTH CAROLINA 29801

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY UNDER CONTRACT AT(07-2)-1

~~. ----

Y4945
Rectangle

NOTICE

This report was prepared as an account of wnrk spon90red by the United
Siaies Government. Neither the United States nor the United States De­
partment of Enersy. nor any of their contractors, subcontractors, or their
employeeili. makes any warranty, express or implied or assumes any legal
liability or responsibility for the accuracy. l'Ompleleness or usefulness of
any information. apparatus. product or prol'ess disclosed. or represents
that its use would not infringe privately owned rights.

Pfll1,.d on (he Un,uI(J ~;l"'.S 0' Arllflf" Il I
Ava,lable from

Nat,nnal Tachnlcal Information ServIce

U.S. Department of CommtHCe
&285 Port Royal Road

Springfield, V,rQ'nill '}'}lfil

Price: Printed Copy $6.00; Microfiche $3.00 ___ J

DP-1S06
Distribution Category: UC-32

MC6800 CROSS-ASSEMBLER FOR THE PDP-8/E DIGITAL COMPUTER

R. J_ Sand

Approved by

0_ Baker, Manager
Laboratory Operations and Services

Publication Date: August 1978

E_ I. DU PONT DE NEMOURS AND COMPANY

SAVANNAH RIVER LABORATORY

AIKEN, SOUTH CAROLINA 29801

PREPAREO FOR THE U. S. OEPARTMENT OF ENERGY UNDER CONTRACT ATI07-21-1

ABSTRACT

A cross-assembler has been developed to assemble Motorola MC6800

microprocessor programs on a Digital Equipment Corporation POP-8/E

minicomputer. This cross-assembler runs in 8K of core under the

05/8 operating system. The advantages of using the crass-assembler

are the large user symbol table and the convenience and speed of

program development. User's instructions for the cross-assembler

are given. The design of the cross-assembler and examples of

its use are descr ibed.

- 2 -

CONTENTS

Inlroduct i on 5
M68CA User's Manua I 7

Inhoduct i on 7
Cross-Assembler Synlax 7
Symbols 7
Operalors 9
Conneclives 11
Express ions 12
Dala Slorage 12
Localion Conlrol 14
Us i ng "Per i od" in an Express i on 15
Program Preparal i on 15
Pseudo-Operal ions 16
Inslruct ion Set 16
Operal i ng Inslruct ions 16
Error Diagnoslics 17
Expression Evaluation Details 18

M68CA Cross-Assembler Design 30
Program Slruclure 30
Program Flowcharls 41
Module Funclions 63
Memory Map 74

Conclusion 75
Acknow I edgemenl 75
References 76
Appendix A - Example Programs 77
Appendix B - Binary Tape Formal 83
Appendix C - Slandard Symbols 85

- 3 -

LIST OF FIGURES

J. The M68CA Cross-Assembler Program Slrudure 31
2. Symbol Table Generation Structure 32
3. Binary Tape Generation Structure 33
4. Listing Generation Structure 34
"i. User Symbol Table Listing Generation Structure 35
6. Evaluation Modules Structure 36
7a. Service Modules Structure 37
7b. Service MOdules Structure 38
7c. Service Modules Structure 39
7d. Service Modules Structure 40
8. Pass 0 F owc had 42
9a. Pass I F owc had 43
9b. Pass I F owc had 44
9c. Pass I F owchad 45
9d. Pass I F owc had 46
ge. Pass I F owchad 47

IDa. Pass 2 F owc had 48
lOb. Pass 2 F owchari 49
I Dc . Pass 2 F owchari 50
I Od . Pass 2 F owchari 51
I De . Pass 2 F owchart 52
IOf. Pass 2 F owchari 53
I I a . Pass 3 F owchart 54
I lb. Pass 3 F owchari 55
t if; . P-a--s--s- 3 F +~l'tad ~- -----

I I d . Pass 3 Flowchari 57
lie. Pass 3 FI owchad 58
II f. Pass 3 FI owchad 59
I I 9 • Pass 3 Flowchart 60
12a. Pass 4 Flowchart 61
12b. Pass 4 Flowchart 62

- 4 -

------------------------- ----

MC6800 CROSS-ASSEMBLER FOR THE PDP-8/E DIGITAL COMPUTER

INTRODUCTION

The M68CA MC6800 cross-assembler program is for use

in developing programs for the Motorola MC6800

microprocessor. The MC6800 is one of the leaders in a

computer revolution that has been happening since Intel, Inc.

introduced the C4004, a 4-bit paral lei microprocessor,

in 1971.

Since then, the electronics industry has become deeply

involved in developing and refining the microcircuit

technology required to produce the "computer on a chip"

which is being designed into everything from toys to kitchen

a p p I ian c eSt 0 i n d u 5 if i a I con if a I I e r 5 . I n 1971, lh e C4 0 04 5 a I d

for over $200 each. In 1977, the 8-bit paral lei

microprocessor unit MC6800 sold for $20. This dramatic

price drop, with its accompanying high use rate, has produced

a bottle neck in the design phase of electronic equipment.

The current generation of microprocessor circuits has made

control equipment design and fabrication a combination of

electronic hardware and software. Present trade journals and

I iterature place more than half of total development COStS in

- 5 -

the software realm. It is therefore advantageous to be able

to convert the software as rapidly as possible from the human

assembly language to the binary machine language necessary for

system operation.

Microprocessors are by definition smal I and as such do not

execute instructions as fast as some minicomputers. In

developing software programs for microprocessors, it is

beneficial to do so on larger, faster machines. This requires

a cross-assembler, a program run on one computer for the

purpose of translating instructions for a different computer.

The cross-assembler speeds up the programming process. But in

a research environment where several different microprocessors

may be used, cross-assemblers for e~ch with nearly

identical operating characteristics are almost a necessity.

The M68CA MC6800 cross-assembler has been developed with these

considerations in mind. It is one of four cross-assemblers

running on a P[)P- a-IE dis], based mTnrcompuTer-.---ftrhrr=~nt­

describes the operation of the M68CA cross-assembler program

and provides informacion to aid in the maintenance and

modification of the program.

- 6 -

M6BCA USER'S MANUAL

INTRODUCTION

The M6BCA MC6BOO cross-assembler operaies in a PDP-B* wiih an
BK core under OS/B* conlrol and provides symbol iable capaciiy
for 76B symbols. The sei of slandard M6BCA M6BOO insiruciions
requires 226 symbols, leaving 542 symbols for lhe user.
The cross-assembler uses four passes:

Pass 1 - defines ihe symbols in ihe program being assembled.
Pass 2 - produces an objecl fi Ie of lhe program in binary formaL
Pass 3 - produces an assembly I isiing.
Pass 4 - produces a symbol lable fi Ie.

ASSEMBLER SYNTAX

In general, lhe cross-assembler synlax is free-form,
user lhe abi lily io formal his coding as he wishes.
basic rules are:

allowing lhe
The few

- symbols idenlifying lhe currenl localion musl
appear io ihe lefi of any olher characiers in ihe
line and musl be followed by a comma (,l,

- group i ng symbo I s v i a parentheses is nol a II owed
in the syniax,

- evalualion of expressions is from lefl io righl.

The accepied form of a coded slaiemenl is as fol lows:

<symbol>,<expression)/(commenl>

Il is noi necessary lo slari a symbol al lhe lefi margin,
nor is il necessary io slari lhe expression immedialely
following lhe comma which ierminaies lhe symbol. The
componenls of lhe slalemenl m~y appear in combinalion or
by lhemselves as lhe user desires.

SYMBOLS

Alphanumeric symbols

The cross-assembler forms inslruclions by combining symbol
values and/or numerics as specified by lhe arilhmeiic and
logical conneclives. AI I symbols are slored in a
symbol lable which is crealed during Pass 1 of ihe assembly.

*PDP-B and OS/B are lrademarks of Digilal Equipmenl Corporalion.

- 7 -

~-

To evaluate an expression, the cross-assembler searches the symbo
table for the given symbol and then substitutes the value
found in the symbol lable for lhe symbol. The values
for each symbol in the expression and the numerics are then
combined according to the rules of the cross-assembler.

A symbol consists of from one to six consecutive alphanumeric
characters from the character sets A-Z and 0-9. The first
character of a symbol must be alphabet ic. The cross-assembler
on I y uses the first six characters if the symbo I conta i ns
more than six.

The cross-assembler al lows the user to include other characters
in a symbol, such as the "greater than," "less than," "open"
and "c I osed" parentheses, and others. The user shou I d take
care not to include those characlers already in use by the
cross-assemb I er as i nd i cated later in the text.

Symbols may be defined in tWO ways:

A I ine of the form

symbol,expression

The symbol wi II be given the value of the location
into which the expression wi I I be assembled.
Th i s method is used to ass i gn symbo Ii c va I ues to
particular localions in the program.

A I ine of the form

symbol=expression

The expression to the right of the equal sign is
eva I uated and He syinooT is gTven -thiS va-iUl!.·

Instruction symbols

The set of M68CA instructions is defined by 3- and 4-character
alphabetic symbols. Each instruction generates one, tWO, or
three 8-bit bytes to represent that instruction; the
number of bytes required is cal led the inslruction's attribute.
Thus, if an instruction has an allrit:ule of 2, when lhe
expression conlaining the symbol for lhis inslruclion
is evaluated, tWO bytes wi I I result.

- 8 -

Addressing mode symbols

The sel of M68CA addressing mode symbols is defined by
3-characler alphabelic symbolS. The symbols are:

Numbers

IMS Immediale Addressing. Single Byle
DIR Direcl Addressing
IND Indexed Addressing
EXT Exlended Addressing
IMD Immediale Addressing. Double Byle

Inherenl is as impl ied and does nol
require definilion

A number is represenled by one lo six hex digils whose
value does nol exceed 16 bils in lenglh (i.e .• less lhan
10000 hex). This number lhus represenled is used lo specify
an address (lwo byles) or a quanlily lo be used in a load
immediale inslruclion; i.e .• as parl of an expression and
nol lo be confused wilh lhe numeric value used as a dala
value. Dala value generation is explained laler in lhis
seclion under Operalors.

Numbers must begin wilh a digil. 0-9 (e.g .• FA1 is coded
OFA1. 27 is coded 27).

, '
The number does nol appear in lhe symbol lable.

OPERATORS

The characlers "minus (-). "aposlrophe"('). "al"(@).
"quole" ("). and "pound" (#) are the set of operalors
and are used lo change lhe value of a symbol during an
evalualion.

Mi nus (-)

The operalor "minus" negales the 16-bil value of the symbol
defined by dala words 2 and 3. During evalualion. lhree
byles are affecled even lhough only one byle or lwo byles
may be generaled for lhe final oulpul. For example. lhe
load immediale inslruclions require only lwo byles. bul
during lhe evalualion al I lhree possible byles are involved.

Word 1 is the instruction word; words 2 and 3 are
the dala words relaled lo lhal inslruclion.

- 9 -

Apostrophe (')

The operator "apostrophe" reverses the second and third
data words of the va I ue of He symbo I i mmed i ate I y fo II owi n9
the operator.

At (@)

The operator "at" is used primari Iy to set up instruclion
symbo lSi n the symbo I tab I e and to set up data words.
To explain the function of the "at" operator.
the user should recal I the term "attribute".
the number of bytes required by the instruction on
eva I uat i on. The allr i bute of each symbo lis saved in
the symbol table. and its value is determined by the
use of the "at" operator in the symbol table evaluation
during the assembly. The numeric value which immediately
follows the "at" operator contains the resultant evaluation
and the attribute. where the attribute is the
rightmost digil. Thus. to redefine (or create) the hex
equivalent for the extended jump instruction (attribute 3).
the symbol source fi Ie would contain a line:

where
JMPE=@7E3

"@" is the operator.
7E is the hex representation for a JMP EXT instruction.
3 is the attribute (number of bytes required for the
JMP EXT instruction).

Quote (")

The operator "quote" is used to convert a single characler
tD ils ,ASCII equivJllenl_wiJ.hn~1 lhp.JlllcrIt'ibit~J,e._L __
the eighth level bit is stripped off. For example. if the
user wished to compare data rp.ad from the ASR33
(with He eighth level bit cleared) to a constant.
he wou I d use the compare instruct i on. as fo II ows:

"A" accumulator contains the characler read
CMPA IMS "$

The evaluation of "$ is 24 (hex). If the data read were
$ (24). then the comparison would be true. If the user did
not wish to strip the parity bit (eighlh level bill.
he could perform the comparison as follows:

"A" accumulator conta:ns the characler read
CMPA IMS "$+80

- 10 -

Pound (#)

The "pound" operal.or is used l.o creal.e dal.a in l.he program.
The user simply precedes l.he hex numeric value wil.h
"#". and l.he cross-assembler general.es a one-byl.e consl.anl.. By
add i ng a "T" after the hex va I ue. l.he user causes l.he
cross-assembler l.o general.e a l.wo-byl.e value (double-precision
constant). The cross-assembler only accepts the firsl. 6
numeric characters in l.he string; al I other numeric
characters are ignored. The user can add l.he quantities
of the same byte count (single precision plus single
precision.etc.). This is a data operator and is not to be used
with an equal sign to evalual.e a symbol.

Examples:

TABL:

CONNECT! VES

#IOF
#OABCDT
#53+#172
#37F2T+#OB8DT

The set of characters plus (+). TAB. and SPACE are l.he formal
connectives.

The operators described in the previous section also serve
as connectives.

The formal connectives are equivalent and operate on l.wo
values. resulting in a new value. The rule, for evalual.ing
X conned i ve Yare as fo I lows:

The attributes of X and Yare inclusive ORed.
The insl.ruction words of X and Yare inclusive ORed.
The data words of X and Yare added with overflow
from the low-order sum resulting in an increment
of l.he high-order sum.

1 f an operator is used as a conned i ve. i l. is app lied to
the symbol prior to the connective operation.

When the above rules are used. an expression
with two symbols must have compatible attributes;
i.e .• if the allribute of the first symbol is 2 and l.he
second symbol is I. then the result wi II be 3. which in some
cases may not be the desired tesult. For example. it is
incorrect to use the data operator "#" with a load
immediate instruction:

- 11 -

LDAA IMS #276

The resull is a lhree-byle inslruclion, and lhe LDAA IMS
inslruclion requires only lwo byles. The proper coding
would be:

LDAA IMS 276

where LDAA has an allribule of 2, IMS has an allribule of 0,
and lh e n u mer i c "276" has a n a H rib u leo f O.

EXPRESSIONS

Each I ine of lhe source program consl ilules an "expression"
-a group of symbols wilh operalors joined logelher by
conneclives and governed by lhe rules given below. A line
i s l e r min ale d by lh e c h a r a cl e r "c a r ria 9 e r el urn" (CR).

The following rules apply lo lhe relalionship belween
operalors, symbols, and conneclives when forming an
expression:

A conneclive does nol have lo be presenl before an
operalor; e.g.,xxx-yyy is valid.

A conneclive may be present belween lhe operalor
and ils associaled symbol;e.g.,

LDAA IMS'500
LDAA IMS '+400
lTAB) 57
X=@++202

are all valid expressions.

Expressions are evalualed from lefl lo righl.

Parenlheses are nol allowed wilhin an expression
(excepl as a characler in a symbol);e.g., lhere
is no provision in lhe cross-assembler for dislribulive
operalions: A-(X+Y) is invalid.

DATA STORAGE

To slore dala in one or lwo words of memory, lhe numeric
operalor "pound" (#) is used. One-word dala is
generaled by placing a pound sign (#) before lhe hex value
lo be pul inlo lhe memory word. For example, lo generale

- 12 -

He hex dah word 82. the user wou I d code "82." The
result is one word with the value 82 in the current memory
location. The cross-assembler generates the numeric value
modulo 2**8 (256); i.e .• the expression "6F55" would become
"55" in memor y.

To store tWO words of data. the user precedes the data with
the pound sign and then immediately fol lows the data with
a "T"; i. e .• the conStant "FCOO" is coded as
"#OFCOOT." The cross-assembler generates double precision data
modulo 2**16 (65536). using only the first six characters.

The statement format is as follows:

(symbol>.#(1-6 hex digits>

(symbol>.#(1-6 hex digits>T

«symbol>optional)
(hex value from O-OFF)

«symbol>optionall
(hex value from O-OFFFF)

If the user wishes to store the value of a symbol or the
address of a symbol in a memory location. he uses the
following statement format.

(symbo I >.@(n>(conned ive>(express i on)«symbo I >opt iona I)

To store the value of xxx. where xxx=4321. then

xyz.@2 xxx

would store 4321 in two bytes. high-order byte first.
at location xyz.

To store the address of yyy. then

xyz.@2 yyy

would store the address of yyy in tWO bytes. high-order
byte first. at location xyz.

To store the high-o~der portion of the address. then

xyz .@1 yyy

would store the high-order portion in one byte
location xyz.

- 13 -

To store the low-order portion of the address, then

xyz ,@\ 'yyy

wou I d store the low-order porU on in one byte at
location xyz.

In th i s .fund ion, the "at" operator is used to ass i gn
an attribute to a I ine which otherwise would have an attribute
of O.

The user can generate a numeric equivalenl for any ASCII
character string by using the TEXT pseudo-op. The format of
this slatemeni is:

<symbol>,TEXT <nn> <any text up to 25 hex ASCII characters>

where nn(hex) indicates the number of characters which fol low
(the space between nn and the first character is nol
included in lhe count).

Th e ASC I I d a law hie his g e n era led i s loa d e din l 0 me m 0 r y
starting at the currenl location and running consecutively
for nn locations. The dala does nol include the parity
bil (eighth level), which is let! equal lo zero. For
example, the user wishes to generate the numeric code
top r i n t the me S sag e "BAD"; th e f 0 I low i n g S tat e men lis use d :

XYZ,TEXT 5 BAD(CR) (IF)

where the numeric values generaled include lhe carriage
return and I ine feed (lhe same carriage relurn and line
feed lhal lerminale lhe stalemenl).

lOCATION CONTROL

An y lin e con t a i n i n g a n as t e r i s k (..) to l h e left 0 f a
(possible) slash wi I I be treated as an origin slatement,
and the location counter will assume lhe value of the
expression constituting the line.

- 14 -

For example,

*200

200 *

BEGIN=200

BEGIN*

a II estab I ish a va I ue of 200 for the I ocat i on counter.

In addition, there is a special symbol for the location
counter - the period (.). This symbol may be used to reserve
locations; for example:

*.+120

causes the location counter to be set to its present
val u e p I us 120.

The value of "." is equal to the location into which the
first byte of the instruction wi 11 be assembled.

USING "PERIOD" IN AN EXPRESSION

The symbol "." may be used for expression addressing (e.g.,
JMP EXT .+9). However, this technique should ·be used only
with the greatest care, since instructions occupy a
variable number of bytes. For example:

JMP EXT .+2
BSR SUBR1
BSR SUBR2

would cause a jump to the last byte of the JMP EXT
instruction, not to the BSR SUBR2 instruction.
JMP EXT .+5 would jump to the BSR SUBR2 instruction.
Extensive use of relative addressing is not recommended
programming technique. It creates problems when
modifying eXisting programs.

PROGRAM PREPARATION

Source program fi les may be prepared by using the PDP-B
Editor. The TAB character may be used freely to I ine up
I isting columns. Pass 3 uses the TAB character to provide
simulated tab StOPS every eight character spaces. The
form feed character appended to each Editor page wi I I
cause a simulated "tOP of form" on the listing.

- 15 -

Each I ine of source code must be terminated with a
CR/LF combination.

PSEUDO-OPERATIONS

TEXT Text is used to convert ASCII strings to
their numeric equivalent.

$ The dollar mark is used to mark the end of the source
program.

INSTRUCTION SET

The set of machine instructions for the M68CA Assembly Language
is very similar to the Motorola M6BOO Assembly Language.
The M68CA p rim a r y 0 per and doe s nOt a I low asp ace be for e the
accumulator designation. The M6BCA addressing modes are
indicated by 3-character symbols as opposed to the special
characters and automatic decisions by the Motorola M6800
Assembly Language. Labels (symbols with a comma as a
terminator) and comments are optional on al I statements.
The general format for an instruction line. including
the tWO options mentioned above. is:

<symbo 1>.< i nstreet i on express i on>l<comment>

OPERATING INSTRUCTIONS

The cross-assembler is loaded from the system device by using
the PDP-B OS/B .

. R M6BCA

H respondS by ad;h-aHtt~ UH) OSlB ComlMnn_D_e~oQH __ which
printS an asterisk .

. R M6BCA
*

A command string is entered which indicates the binary
and I isting OUtpUt devices and fi Ie names. and the input
device and fi Ie name .

. R M6BCA
*NAMEI.NAME2<NAME.S

Assembly wi I I begin after a carriage return.
Ou t pUt f i I e s are a v a i I a b leo nth e i n d i cal e d de vic e
when control returns to the OS/8 Keyboard Monitor. The

- 16 -

new fi les wi I I be idenlified NAMEl.BN. and NAME2.LS. The
fi les may nol be complele. The complele oulpul fi les may
be manipulaled as desired by using 05/8 Peripheral Inlerchange
Program (PIP). The binary fi Ie musl be moved in lhe Image
(II) mode.

ERROR DIAGNOSTICS

Cerlain errors may be delecled during an assembly. They
are idenlified by a 2-characler error idenlifier. prinled
on lhe I isling device (leletype), along wilh lhe memory
location, in the fol lowing format:

* error idenlifier AT memory location *

The following is a listing of He error identifiers and
their meanings:

ST Symbo I lab I e fu II. The cross-assemb I er relurns to
05/8 Monilor on this error. Source program mUSt be
modified lo reduce lhe number of symbols defined.

UO Undefined origin expression. The expression defining
an origin cannot be evalualed. The cross-assembler
uses the presenl value of lhe localion counler.

UE Undefined expression. One or more lerms of an expression
are nol defined at lhis poinl. They may be defined
later in the assembly.

RD Redefinition. A symbol already in the symbol
table has been given a new definilion by an expression
conlaining an equal sign (=).

MT Multiply defined symbol. The same symbol has
been used more thal once as a symbol.

UI Undefined instruction. One or more terms of an
expression generating binary outpul are undefined.
The cross-assembler wi I I generale a relurn lo
OS/8 Monilor if il does nol have an allribute for the
instruction.

SL Source I ine loa long. More than 72 characters
appear between line lerminators, exceeding the capacity
of lhe cross-assembler source I ine input buffer. The
cross-assembler relurns to 05/8 Monitor on this error.
The source program must be ediled to shorlen lhe line.

- 17 -

IN Illegal number. A symbol beginning with a numeric
character contains a non-numeric character.
A position cal I ing for only a number does nOt begin
with 0-9.

BE Branch error. An instruction attempted to branch
to a location which exceeded the signed 7-bit
distance (-125.+129) from the beginning of the next
instruct ion.

EXPRESSION EVALUATION DETAILS

Symbols

The cross-assembler forms instructions by combining symbol
values as specified by arithmetic and logical connectives.
The cross-assembler does not distinguish between M68CA instruction
symbols and user symbols in assembling a word. Thus. the
user should not define any symbol which is identical to any
symbol used to define a standard M68CA instruction symbol;
e.g .• TAB.IND.eic. (This error would be flagged during
Pass].)

Every symbol requires four words in the symbol table. plus
tWO words for data words associated with it. For example.
an alphanumeric symbol which was being defined as ··symbol.
expression" at location 756 would require the basic fOJr
words plus tWO data words to contain lhe address.
Therefore. this enlry in lhe symbol table would
require six words in the symbol table.

For lhe purpose of evaluating an expression. every symbol
in the expression is given a three-word value. The first
word of this value is referre~t~ a~ {~symbQl~s atlribute
(ATTR) and the remaining tWO words are referred to as
the symbol's data words. The precise values these words have
are defined in the fol lowing paragraphs.

In the formals and examples lhal follow. subscripls on
symbols are used lo denole bi ls in the values of lhe symbols.
Bil positions are numbered from right lo lefl. (Ieasl significanl
lo mosl significanl bils).

- 18 -

Alphanumeric symbols

A symbol consists of from one to six consecutive alphanumeric
characters from the character sets A-Z and 0-9. Other ASCII
characters which are not standard cross-assembler characters
can also be used in a symbol; e.g .• <. >. (. and l. The first
character of a symbol must be alphabetic. Any more than
six characters in a symbol wi I I be ignored.

Symbols may be defined in one of tWO ways:

1. A I ine of the form:

symbol.expression

The symbol wi I I be given the value of the location
into which the expression wi I I be assembled.
This method is used to assign symbol ic values
particular locations in the program.

When this symbol is used within an expression. its
three-word value is:

ATTR=O

Dah Word 1
Data Word 2
Data Word 3

7 o
+------------------+
I 0 I
I low-order address I
Ihigh-order address I
+------------------+

For example. if the symbol ABC were defined as
ABC.INCB and were being assembled into location 423.
its three-word value would be:

ATTR=O

Data Word 1
Data Word 2
Data Word 3

- 19 -

7 o
+------------------+
I 0 I
I 00100011 I
I 00000100 I
+------------------+

2. A line of the form:

symbol=expression

The expression to !:he right of the equal sign will
be evalualed. and the symbol wi I I be given this value.

During evaluation. lhe lhree-word value of lhis symbol
depends on lhe value of lhe expression. For example.
if lhe symbol XYZ were defined as XYZ=IEF, ils
lhree-word value would be:

ATTR=O

Dala Word 1
Dala Word 2
Dala Word 3

Inslruclion symbols

7 a
+------------------+
I a I
I 11101111 I
I 00000001 I
+------------------+

The sel of M68CA inslruclions is defined by 3- and 4-characler
alphabelic symbols.

The value of a M68CA inslruction consisls of a 8-bil
inslruclion code. The altribule of an instruclion represenls
the number of 8-bil words required to make a complele inslruclion
For evaluation. lhe three-word value of an inslruclion would be:

ATTR=length of the inslruction
7 0

Dafa-Word 1
Dala Word 2
Data Word 3

For example:

+------------------+
{ + ~H!:_u_c_LLQn _~Q d e I 0 - -

I 0
+------------------+

The instruclion 8EQ has an inStruction code of 27 and requires
lwo words lo complele lhe instruction; lhe inslruclion
code and the immediate value. Ils lhree-word value would be:

ATTR=2

Da la War d 1
Dala Word 2
Dala Word 3

- 20 -

7 o
+------------------+
I 00100111 I
I a I
I a I
+------------------+

Addressing modes

The sel of M68CA addressing modes are defined by lhree-characler
alphabelic symbols.

The value of a M68CA addressing mode symbol consisls of an 8-bil
code and is placed in bils 5 and 4 of Dala Word 1 for evalualion

ATTR=O

Dala Word 1
Dala Word 2
Dala Word 3

For example:

7 o
+----+----+--------+
I o I MODE I 0 I
I 0 I
I 0 I
+------------------+

The exlended mode has a code of 00110000; ils lhree-word
value would be:

Numbers

ATTR=O

Dala Word 1
Dala Word 2
Oala Word 3

7 54 o
+------------------+

001\0000
o
o

+------------------+

A number is represenled by one lo six hex digils whose value
does nol exceed 16 bils in lengH (i.e., less Han 10000).

Numbers do nol have symbol lable enlries bul may be
included as parl of or al I of an expression defining
an alphanumeric symbol.

When a number appears in an expression, il has lhe fol lowing
word configuralion for lhe purpose of evalualing lhe expression:

ATTR=O

Dala Word 1
Dala Word 2
Dala Word 3

- 21 -

7 o
+---------------------------+
I 0 I
I low-order 8 bils of number I
Ihigh-order 8 bils of numberl
+---------------------------+

Examples are shown laler in lhis seclion.

Operalors

The characlers "minus" (-), "aposlrophe" ('), "al" (@),

"quole" ("), and "pound" (#) are the set of operalors and
are used lo change lhe value of a symbol during evaluation.

Mi nus (-)

The operalor - negales lhe 16-bil value of lhe symbol
defined by dala words 2 and 3. ATTR is nol affecled.

-X=

Apostrophe (')

7 o
+---------------+
I 0 I
I (-Xlbils 7-0 I
I (-X) b i l s 15-8 I
+---------------+

Dala Word 1
Dala Word 2
Dala Word 3

The operalor reverses the second and third data words
of lhe value of lhe symbol. ATTR is not affecled.

'X=

At (@)

7 o
+---------------+

a I
(X) bit s 15-8 I
(Xlbils 7-0 I

+---------------+

Dala Word 1
Dala Word 2
Da!a Word 3

The operator @ causes lhe value of the symbol lo be
configured as below:

+---------------+
I (X) bits 1 1 -4 I
I 0 I
I 0 I
+---------------+

ATTR=(X)bits 3-0

Dala Word 1
Data Word 2
Data Word 3

The effect is to use lhe leasl significanl 4 bils as an allribute
and to place lhe next 8 most significant bits in the firsl
dala word of lhe configured value.

- 22 -

This operator is used primarily to set up instruction
symbols in the symbol table. For example, the instruction
extended jump has an attribute of 3 and an instruction
cod e 0 f 7E. To s el up JMPE (r e d e fin e d JMP EXT 1 i nth e s y m b 0 I
tab Ie, the fo I I owi ng statement wou I d be used:

JMPE=@7E3

Whenever JMPE appears in an expression, its value would
be:

@7E3=

Qu 0 t e (" 1

7 o
+---------------+

01111110
o
o

+---------------+

ATTR=3

Data Word 1
Data Word 2
Data Word 3

The operator" is used to convert a single ASCII characler to
its hex equivalent. The parity bit (eighth level bill is
always O. The character converted is the character immediately
to the right of the operator. The value is configured as
shown below:

IIA=

7 o
+---------------+

o
01000001

o
+---------------+

ATTR=O

Data Word 1
Data Word 2
Data Word 3

This operator is used primari Iy to provide the numeric
values of ASCII characters for compare functions and load
immediate functions. For example, if the user wishes to
put the ASC I I e qui val e n t 0 fan "E " i n th e A A c cum u I a tor ,
the fol lowing instruction would be used:

LDAA IMS "E

This is equivalent to:

LDAA IMS 45

By adding BO, the parity bit can be set:

LDAA IMS "E+80

- 23 -

i-­
I

I

I

Pound (#)

The # opera~or is used ~o genera~e numeric da~a (ei~her
one by~e or ~wo by~es) in the program.

The single byte is configured as shown:

7 o
+---------------+

#95= I 0 I
I 10010101 I
I 0 I
+---------------+

ATTR=I

Data Word I
Data Word 2
Data Word 3

The two-byte data is configured by following the least
significant digit with a "T".

7 o
+---------------+

#OFC17T=1 0
I 00010111
I 11111 100
+---------------+

ATTR=2

Data Word 1
Data Word 2 low-order
Oat, Word 3 high-order

The data operator # should not be used in place of a simple
numeric as part of an expression. because inconsistent results
will be generated; e.g .•

LDAA IMS 10
LDAA IMS #10

is NOT equivalent to

The first expression has an attribute of 2. the latter of 3.

Cannl>ctives

The characters plus(+). TAB. and SPACE comprise the set of
formal connectives. The operators described in the preceding
paragraphs also serve as connectives. The connectives are
equivalent and operate on two values. resulling in a new
value. The new value is determined as follows:

ATTR=a ATTR=w
+-------+ +-------+

if A= b and W= I x I
c I y I
d I z I

+-------+ +-------+

- 24 -

The result of A<conned i ve>W is:

ATTR=avw (a) inclusive OR lw)
+-------+
I bvx I (b) inclusive OR (x)
I c+y I (c) plus (Y)
I d+z I (d) plus (z)
+-------+

If an overflow occurs when c plus y is calculated.
the resu It of d p I us z is incremented.

If an operator is used as a connective. it
symbol prior to the connective operation.
to evaluate the instruction.

JMP EXT OFCOO

JMP has the value of :

ATTR=2
+---------------+
I 01001110 I
I 0 I
101
+---------------+

EXT has the value of :

ATTR=1
+---------------+
I 0110000
I 0
I 0
+---------------+

The number OFCOO has the value of:

ATTR=O
+---------------+
I 0
I 00000000
I 11111100
+---------------+

- 25 -

is applied to the
For example

The result of JMP EXT OFCOO

ATTR=2 v v 0 = 3
+--------+ +--------+ +--------+ +--------+
1010011101 v 1001100001 v 1 0 1 = 1011111101
1 0 1 + 1 0 1 + 1 0 1 = 1 0 1
1 0 1 + 1 0 1 + 1111111001 = 1 11111100 1
+--------+ +--------+ +--------+ +--------+

Thus. the assembled expression OUtpUt would have
the three-word value

7E
FC
00

The ATTR is the attribute and is only used to determine the
number of words to OUtPUt. If the attribute were 2. the third
data word is omitted during the OUtPUt of the object fi Ie and
the assembly listing file. Since the aHribute is 3, all
data words are OUtpUt in the order #1, #3, #2.

Expressions

Each I ine of the source program constitutes an "expression".
a group of symbols with operalors joined logelher by conneclives
and governed by the ru I es for formi ng express ions. A line is
terminaled by lhe characters "carriage relurn" ICR). or
"form feed" IFF).

Expression evaluation examples

~T £~ajuate lhe expression LDA~_I~_7A

The instruction LDAA has a value of:

ATTR=1
+-----------+

LDAA= 1 10000110 1 (i nslrucl i on code)
1 0 I
1 0 1
+-----------+

The addressing mode IMS has a value of

ATTR=O
+-----------+

IMS= 00000000 1
o 1

o I
+-----------+

- 26 -

ATTR=1

The number 7A has a value of

7A=

ATTR=O
+-----------+
I 0 I
I 01111010 I
I 0 I
+-----------+

Therefore the expression =

v 0 v 0 = 1
+--------+ +--------+ +--------+ +--------+

1100001101 1100001101 v I 0 I v I 0 I =
1011110101 1011110101 I 0 I + I 0 I + =

I 0 I + I 0 I + I 0 I = I 0 I
+--------+ +--------+ +--------+ +--------+

Since the attribute is 2. the assembled expression
output would be the two words:

85
7A.

b. Evaluate the expression STAB DIR 'XYZ

The instruction STAB has a value of:

ATTR=2
+--------+

STAB= I 11000111 I
I 0 I
I 0 I
+--------+

The addreSSing mode DIR has a value of

ATTR=O
DIR= +--------+

IG00100001
I 0 I
I 0 I
+--------+

Assume XYZ has the fol lowing value:

XYZ=

ATTR=O
+--------------+
I 0 I
I(XYZlbits 7-0 I
I (XYZ l bit s 15-81
+--------------+

- 27 -

Low-order
High-order

ATTR=2

ATTR=O
+--------------+

lhen 1 0 1
'XYZ= 1 (XYZ)bits 15-81

I (XYZ)bits 7-0 1
+--------------+

Therefore lhe expression =

v ATTR=O v 0

High-order
Low-order

= 2
+--------+ +--------+ +--------------+ +--------------+
1110001111 v 1000100001 v 1 0 1 = 1 11010111 1

15-81 1 0 1 + 1 0 1 + I (XYZ) bit s 15-81 = 1 (XYZ) bit s
1 0 1 + 1 0 I + 1 (XYZ) bit s 7-0 I = I (XYZ) bits 7-0 I
+--------+ +--------+ +--------------+ +--------------+

c.

This expression wi I I be outpUt in tWO 8-bit words to the
OUtput fi les; the first word wi I I be the code for
STAB OIR and the second word wil I be the high order
byte of XYZ. The third word is dropped since the
aHribule is 2.

Evaluale lhe expression LOX IMO XYZ+3

The ins truct i on LOX has a value of:

ATTR=2
+--------+

LOX= 111001 110 I
1 0 1
I 0 I
+--------+

The addressing mode IMO has a value

ATTR=l
+--------+

IMO= 0
o
o

+--------+

Assume XYZ has the following value:

ATTR=O
+--------------+

XYZ= I 0 I
I (XYZ) b its 7-0 1
1 (XYZ) b i l s 15-B I
+--------------+

- 28 -

of:

ATTR=2

And lhe numeric +3 has a value of:

ATTR=O
+--------+

+3= I 0 I
100000011 I
I 0 I
+--------+

Therefore lhe inlermediale value of LOX IMO XYZ is

v ATTR=I v 0 = 3
+--------+ +--------+ +--------------+ +--------------+

I 11 1001 1 101 v 1 0 1 v 1 0 1 = I 1100 III 0
I (XYZl b i ls 7-0 I I (XYZ l b i l s 7-0 I I 0 I v I 0 I + =

I 0 I v I 0 I + I (XYZ l b i ls 15-81 = I (XYZl b i l s 15-81
+--------+ +--------+ +--------------+ +--------------+

Wilh lhe numeric 3, lhe expression =

ATTR=3 v .0 = 3
+--------------+ +--------+ +----------------+
I 1 1001 1 10 I v I 0 I = 1 1 10011 10 I
I(XYZlbils 7-0 I + 1 3 1 = 1 (XYZ+3lbils 7-0 1
I(XYZlbils 15-81 + 1 0 I = I (XYZ+clbils 15-81
+--------------+ +--------+ +----------------+

c=Carry from low-order sum

This expression wi I I oulpul lo lhe oulpul fi les lhree
8-bil words; lhe firsl word wi I I be lhe code for a
load index immediale, lhe second word wi I I be
lhe high-order byle, and lhe lhird word wi I I be
lhe low-order byle of XYZ+3.

- 29 -

M68CA CROSS-ASSEMBLER DESIGN

PROGRAM STRUCTURE

The slruclure of M68CA is pallerned afler lhe L Series

cross-assembler wrillen by Conlrol Logic, Inc. This

was done lo enable convenient use and mainlenance of

a fami Iy of four cross-assemblers in use at lhe

Savannah River Laboralory.

The slructure diagrams help lo visual ize lhe

organizational concepts of lhe M68CA cross-assembler.

Each module is shown wilh ils immediale service

module. Beginning wilh lhe firsl diagram, hierarchy

is i I luslraled in descending rank on succeeding pages.

- 30 -

Pass \

Symbol
Table

THE M68CA CROSS-ASSEMBLER
PROGRAM STRUCTURE

Start

Pass 0

Pass 2 Pass 't

Binary Tape Pass 3

FIGLR: I

- 31 -

FiniSh

Program
LisUng

CLRLC

GNL

SL

EVAL

SET VAL

Symbol Table Generallon
Sirudure

PASS I

STS DMP

FIGURE 2

- 32 -

EVSY

LCI

TLC I

TeNT

WC

- -sn:

CLRLC

UP

GNl

SL

EVAL

1 lFV

SETVAL

Binary Tape Generalion
Slruclure

PASS2

DMP

FIGLH: 3

- 33 -

OCHN

LCI

TCNT

WC

STE

STS

GNW

I

I

I

I

CLRLC

GNL

SL

EVIIl

SETVAL

OCI-N

GNW

Llsllng Generallon
Slrudure

PASS3

STS

FIGURE 4

- 34 -

STE

BTAS

LCI

BTAF

TCNT

PE

LLP

WC

P485

PE

User Symbol Table Lls~lng Genera~lon
S~ruclure

PASS4

P4CM P4VAL

FIGlH: 5

- 35 -

GP

PC

GNW

EVSY

DIOR

ATB

STS

Evaluallon Modules
Slruclure

EVAL

DADO

EVSY

FIGURE 6

- 36 -

DMP

DNEG

ATIN

DNEG

B8P

PC

PC

Service Modules
Slrudure

STAF SOAl--lEX

LLP

GP

DMP

GP

FIGt..R:: 7a

- 37 -

BTAS

SLP

STAF

SL

r--_.L./_-,

WC

GNl

I SIV

TCNT

,..--_..J.) __

ATB

Service Modules
Slruclure

GNW I no

OMP I LOV

DMP PE

FIGURE 7b

- 38 -

GP

I LOV

BBP

STAF

SlP

I LDV

PC

I LDV

STS

Sen Ice Modu I es
Slruclure

PE we

I LDV wee

STE LeI

OM? DADO

ATB

DMP

Fl~ 7c

- 39 -

UP

I BOV

TLCI

DADO

Service Modules
Slruclure

~ I CLRLC I I SETVAL I I P4BS

[;J I P4VAL

,--_B_T_I>F __ -,I I BT AS

,-_oc_I-t-l_--l1 I DADO

FIGURE 7d

- 40 -

PROORAM FLOWCHARTS

Flowcharls for Pass O. Pass 1. Pass 2. Pass 3. and

Pass 4 indicale lhe general program operallon.

These charls give a more delai led accounl ing of lhe

major program operalion and can be used along

wilh lhe program I isling 10 undersland lhe

processing involved in assembling MC6800 programs.

Program labels are placed in Ihe flowcharls 10 aid

in correlaling Ihe program lisling wilh lhe flowcharls.

- 41 -

Pass 0
Flowchart

PO

STAR T

Gel 1/0
FI I es

PAS SI

Generale
Symbol Table

PAS S2

Generale
Binary Fi Ie

PAS S3
,~

Generale
Program
lislinQFile

FIN ISH

Close Oul
F i I es

Go To
Monitor

FIGLK 8

- 42 -

Command
~ Decoder

~ PI

P2
~

P3

P4

- --

GNL

No

Pass I
FlolI/chad

PI

Resel User
Symbo I Tab I e

Localion
Counler=O

No

FIGURE 9a

- 43 -

Yes

DMP

Prlnl UE
Dlagnosllc
Message

Prlnl RD
Di agnosll c
Messa e

DMP

Pass I
Flowcharl

Evaluale
Line

Evaluale
li ne

Yes

No

EVAL

Sel
Location
Counler=
Value

EVAL

")-<.~11 STS II
No

P
Siore Tag
and Val u e I n,f4---.".,
Symbol Table

FIGURE 9b

- 44 -

STE

No

EVAl

LCI

Pass I
Flowcharl

Evaluale
LI ne

FIGlH: 9c

- 45 -

Yes
Relurn

Yes
TCNT

TLCI

Yes

EVSY

lCI

No

Pass I
FloO/chad

Yes
Pig"

Incremenl
localion
Counler by
Allr ibule

Incremenl
Locallon
Counler by

rlbule

FIGURE 9d

- 46 -

Yes Prlnl U!
Diagnoslic
Message

No Sel

No

Allr lbule
=3

lei

STE

Pass 1
F lOll/chad

Search
Symbol
Tab I e

STS

Yes Prin~ MT
)-----~~~~ Diagnos~ic

S~ore Labe I
and
Loca~ion
Counhr in
Symbol Table

F1GLR: ge

- 47 -

Message

UP

Pass 2
Floli/charl

P2

~ ____ ~~ Gel Nexl
LI.... __ JJ line

L-__ ~ __ --I

SL
•

Gel Nexl
Word

FIGURE IDa

- 48 -

Yes

Yes

No
>----_0>4 2A

Yes

Yes

we

we

we

EVAL

Pass 2
Flowchad

No

No

No

No

No

No

Yes
P265

F!iP~r""I""nl:-!--:-:U-:-l-'

Yes

Yes

Yes

Yes

Yes

No

DMP t+--~oi 0 I 8gnos! I c I-------;.-{
LL-__ .J.J Me s s a e

FlGLH: lOb

- 49 -

II TeNT Ir

Inslrucllon No
=NCP
AHrlbule=3

Pass 2
Flolllcharl

Output
Characler

FIGURE IOc

- 50 -

No

Yes

Pass 2
F I owcharl

No

Change
High-Low
Order

I OFV 11-+----..0-\

Lei
Incremenl

I-+--~ Locali on
Counler by
Ailr i bule

2A

FIGURE tOd

- 51 -

No I

I

I

I

I

I

OCHN I

I

Yes
I

I

I

Prinl UO
Diagnoslic
Messa e

I OFV

UP

Pass 2
Flowcharl

Evaluale
Line

Localion
Counler
= Value

FlGURE IDe

- 52 -

P23
Prinl UO

DMP Diagnoslic
Messa e

STS

Pass 2
Flowcharl

Evaluale
li ne

Gel Nexl
Word

EVAL

GNW

Yes
>-----+l2A

No

Slore Tag
and Value In14----;O ...
S mbol Table

FIGLH: IOf

- 53 -

STE

Pass 3
Flowcharl

Location
Counler=O

Sel up 10
Slarl
New Page

P30
Inilialize
Lef! Columns,\..E.----I3A
10 S aces

•

P32

P34

Gel Nexl
Word

FIGURE II a

- 54 -

Yes

No

Yes

No

No

Yes
3D

we

we

we

[VAl

Pass 3
Flowcharl

3F

FIGURE lib

- 55 -

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

Yes

No

OCHN

OMP

Pass 3
Flowcharl

Localion

and

In Len Cols

No

ns ruclion
= HALT
AHrlbule =

FIGURE lIe

- 56 -

No

Yes

TCNT

STAF

LCI

STAS

LLP

Pass 3
Flowcharl

Gel
Counl

e
Charader

Converl
Loca!ion

Converl
Localion

Convert
Value

Prinl
1I ne

No

FIGURE lid

- 57 -

No

Yes

LeI

BTAS

EVAL

OCI-N

Pass 3
FlolI/chad

Incremen!
LocaUon
Counler

P38
Converl and

lore Value
In Lefl Col

K------,;).j Eva I uale
Li ne

Change
~--+-I High-Lolli

u-__ ~ Order
~~r--~

FIGURE lie

- 58 -

3M

DMP

P31
Yes Prinl UO

Diagnoslic
Message

-Sel
Value=O

EVAL

DMP

P3

Pass 3
F I olilchad

Evalua!e
Line

Print UE Yes
Di agnos! i c:~--<
Message

GNW

STS

STE

OCI-N

Ge! Nex!
Word

No

Slore Tag
",*---"...1 And Value in

Symbo I Tab I e

Yes

No

Set
AHrlbu!e=2

Change
High-Lolli
Order

FIGURE Ilf

- 59 -

Yes

LLP

PE

LLP

Pass 3
Flowchad

Prinl Line
i-<o----I>-l and L e fl

Columns

11-oI;------i~ E j e cl
Page

Pr in l li n e
and Left
Columns

P4
Relurn

FIGURE I I 9

- 60 -

I
I

I
I

Pass 4
FlolI/chad

P4

Initialize
Buffer

Gel Slarl

P40

of User
S mbol Tabl

Slore Value
In Bu ff er

FIGURE 12a

- 61 -

P4BS

Yes Ej eel PE
Page

Relurn

P4CM

P4VAL

Pass 4
Flowchad

S!ore

L-H.:,.V=..: 9.:.,1 ~;:-:~:....L_o_W~k------i"'1 P4VAL 11

Prin!
Buffer
li ne

4A

FIGURE 12b

- 62 -

GP

MODULE FUNCTIONS

PO - PASS 0

PO inilializes the 1/0 device flags. setS up the 1/0
device and format vectors. and calls the appropriate
passes in order.

PO Ca II:

PO is entered by starting at location 200.

PI - PASS I

PI evaluates the program's symbols and places them
in the symbol table. If a symbol is being
used as a I abe I. it wi II use the I ocat i on counter
as the value of the symbol. If a symbol is being
defined through the use of an equal sign. the
expression to the right of the equal sign is evaluated
and the resulting value is used in the symbol table.

PI Ca I I

PI is entered via a JMP PI from the PO and returns
to PASS2 in Pass O.

P2 - PASS 2

P2 evaluates each instruction and punches the result
for the binary tape in the Control Logic binary format.

P2 Ca 1\

P2 is entered via a JMP P2 and returns to PASS3 in Pass O.

P3 - PASS 3

P3 evaluates each instruction and prints the result
in the fol lowing format: location counter
(2 double hex characters). attribute number of words
of the instruction (each word is 2 hex characters).
and the source line.

P3 Ca II

P3 is entered via a JMP P3 and returns to FINISH in
Pass O.

- 63 -

EVAL - EVALUATE LINE

EVAL evaluates a complete source I ine and places
the three-word result in VALUE. It extracts one
word at a time from the source I ine, adjusts the
word's value according to the word's operator and ORs
the first word of the accumulated value of the line,
adds the second words of each, and also adds the third
words.

EVAL Ca I I

JMS EVAL
<error return>
<norma I rE turn>

EVSY - EVALUATE SYMBOL

EVSY evaluates the six-character symbol input in the
fo II owi ng format in EVWBF:

+-----------------------+
ITerminator I
lSi gn I
lIst Char. 12nd Char. I
13rd Char. !4th Char. I
15th Char. 16th Char. I
+-----------------------+

Terminators:
o Normal
I =
2
3 *

Signs:
o +
I
2 @
:;

and places the three-word result in EVVAL. If the
symbol is numeric, it will convert it to tWO
8-bit binary words and place them right-justified,
zero-f i I led in EVVAL+I (low order) and EVVAL+2 (h i gh order).
If the symbol is a variable, it will retrieve its
value from the symbol table. Before returning, the
value in EVVAL is adjusted according to its sign.

EVSY Ca I I

JMS EVSY
<error return>
<normal return>

- 64 -

GNL - GET NEXT LINE

GNL reads the next source I ine from the specified
reader and places it. one character per word.
in the source I ine buffer.

GNL Ca II

JMS GNL

GNW - GET NEXT WORD

GNW retrieves the next word in the specified buffer
and places il and its terminalor and sign in the specified
buffer in the following format:

+-----------------------+
ITerminator
lSi gn
lIst Char.
13rd Char.
15th Char.

12nd
141h
16th

Char.
Char.
Char.

+-----------------------+

Terminators:
o Normal
1 =
2
3 ..

Signs:
o +
1
2 @

3

If the word is less than six characters. the
remaining locations are blank-filled. If the word
is greater than six characters. al I characters afler
the sixth are ignored. If there is no next word.
the lerminator is sel 10 -1. GNW increments lhe second
cal I argument for its next enlry before returning.

GNW Ca I I

JMS GNW
<address of 5-word buffer to receive word>
<address of search starting poinl>

- 65 -

STE - SYMBOL TABLE ENTER

STE enlers a symbol and ils value inlo lhe nexl
avai lable enlry in He symbol lable if Here is room.
Each symbol lable enlry consisls of He following
six words:

+-----------------------+
Iisl Char. 2nd Char. I
13rd Char. 4lh Char. I
15th Char. 6lh Char. I
I VALUE I
I VALUE I
I VALUE I
+-----------------------+

STE Ca I I

JMS STE
<address of packed symbol>
<address of lhree-word value>

STS - SYMBOL TABLE SEARCH

STS searches lhe symbol lable for lhe specified symbol.
I f i l fin d s th e s y mba I. H s el s AC e qua I lo l h e
address of He value. If il does nol find lhe symbol.
it s el s AC = O.

STS Ca I I

IMe eTC
VI- -t....T ;.J- 1" >..T

<address of packed symbo I>

WC - WORD COMPARE

WC compares lwo
il sels AC = 0;
AC nol equal O.

lhree-word long arrays. If lhey malch.
if lhey do nol malch. il sels

WC Ca II

JMS WC
<address of lsl array>
<address of 2nd array>

- 66 -

l

WCC - SINGLE WORD COMPARE

WCC compares the word whose address is in WCIA with
the word whose address is in WC2A. If the words match.
it setS AC = 0 and returns via a JMP I WC: if they
do nOt match. it sets AC nOt equal 0 and returns
via a JMP I WC.

WCC Ca II

JMS WCC

SL - SCAN LI NE

SL scans the source I ine buffer for the 8-bit
c h a r a cl e r i nth e AC. I f a mat chi s f 0 u n d. AC i s
set to the address of the matched character; if
nom at chi s f 0 u n d. AC i s nOt e qua I O.

SL Ca II

JMS SL

GNWPK - GET NEXT WORD PACK

GNWPK is entered wi th I ocat i on 17 equa I to the address-I
of the two-word array to be packed and location
15 equal to the address-I of the word where the
packed characters are to be stored. GNWPK packs the
tWO characlers into one word. as follows:

+-----------------------+
lIst Char. 12nd Char.
+-----------------------+

GNWPK Ca I I

JMS GNWPK

- 67 -

BTAF - BINARY TO ASCII - 4 DIGITS

BTAF lakes a lhree-word value, configures lhe bils as
f 0 I lows:

+---------------------------------------+
\Word 3, b i ls 4-11 \Word 2, b i ls 4-11 \
+---------------------------------------+

and l hen con v e r l s l h e s e 16 b i lsi n l 0 4 ASC I I hex. dig i l s
and places lhem, one per word, right-juslified,
zero-filled, high-order digit first, in the specified
five-word array.

BTAF Ca I I

JMS BTAF
<address of 5-word array>
<address of value>

ATB - ASCII TO BINARY

ATB converts a packed ASCII hex number whose maximum
lenglh is six characlers into a 16-bit binary number
and slores lhe value in a lhree-word specified array in
the following formal:

+-------------------------------+
\

I I 0 w- 0 r de r 8 bit s I
iil i yh-u,uer B hi t-s t

+-------------------------------+
ATB Ca I I

JMS ATB
<address of packed ASCII number>
<address of 3-word value array>

- 68 -

BTAS - BINARY TO ASCII - ATTRIBUTE NUMBER OF WORDS

BTAS assumes lhe lhree-word value il is lo converl has
lhe following formal:

o 2 3 4 11
+------------------------------+
lallribulel IB bils of dalal
I 18 bils of dalal
I 18 bils of dalal
+------------------------------+

Il lhen converls lhe allribule number of 8-bil dala
words inlo 2-digil ASCII hex numbers and slores
lhem in lhe specified array. one digil per word.
wilh a space belween numbers.

BTAS Call

JMS BTAS
<address of array>
<address of 3-word value>

DNEG - DOUBLE PRECISION NEGATE

DNEG lakes a 3-word value. configures lhe bils as
follows:

+-----------------------------------+
I Wo r d 3. b i l s 4-11 I Wo r d 2. b i l s 4-11 I
+-----------------------------------+

lhen negales lhis configuration and replaces lhe
original 8 bils in words 2 and 3 wilh lhe negaled
result.

DNEG Ca II

JMS DNEG
<address of 3-word value>

- 69 -

OCHN - ORDER CHANGE

OCHN ta~es a three-word value and swaps words 2 and 3.

+---------------+
If A= 1 The result of

1 a 1 OCHN 0 n A =
1 b 1

+---------------+

OCHN Ca I I

JMS OCHN
<address of value>

ATIN - ATTRIBUTE AND INSTRUCTION SET

+---------------+
1 1
1 I b 1
1 1 a 1
+---------------+

ATIN ta~es a three-word value and moves the bits as follows:

a. Bits 9-11 of word 2 moved to bits 0-2, word I.
b. Bit 3 of word 1=0.
c . Bits 9- 1 1 0 f w 0 r d 3 m 0 v edt 0 bit s 4 -6, w 0 r d 1.
d. Bits 4-8 of word 2 moved to bits 7-11, word I.
e. Word 2=0.
f. Word 3=0.

o 3 4 I I
+---------------+

If A= The resu I t of
la AT!N on A =
Ib

+---------------+

ATIN Call

JMS ATIN
<address of va I ue>

DIOR - INCLUSIVE OR

o 2 3 4 6 7 II
+------------------+
1 a9-11 101 b9-11 1 a4-81
1 0 1
1 0 1

-+-~-----~-~----------+

DIOR inclusively ORs the first words of tWO three-word
va I ues and p I aces the resu It in the first word of
the first value.

- 70 -

DIOR Ca I I

JMS DIOR
<address of 1st value>
<address of 2nd value>

DADO - DOUBLE PRECISION ADD

DADO takes lwo lhree-word values and adds lhem in lhe
fol lowing manner:

a. Bils 4-11 of lheir second words. resull slored
in word 2 of lhe firsl value.

b. Bils 4-11 of their third words. result slored
in word 3 of lhe firsl value.

c. If lhe addilion of lhe second words causes
an overf low. lhe resu Il of lhe
addilion of lheir lhird words is incremenled.

DADO Ca I I

JMS DADO
<address of firsl value>
<address of second value>

LCI - LOCATION COUNTER INCREMENT

LCI incremenls lhe localion counler (in bolh fields)
by lhe amounl found in bils 0-2 of lhe value.

LC I Ca I I

JMS LCI
<address of value>

PC - PAGE CONTROL

PC contra I s the pag i ng of pr i nloul. I l a II ows
60 I ines of lexl per page. and 6 blank lines belween
pages.

PC Ca II

JMS PC

- 71 -

PE - PAGE EJECT

PE ejectS the present page of OUtpUt.

PE Ca II

JMS PE

GP - GENERAL PRINTER

GP prints the specified number of characters from
the specified buffer where the characters are stored
right-justified, zero-fi I led.

GP Ca II

JMS GP
<address of buffer>
<negative length of buffer>

SLP - SOURCE LINE PRINTER

SLP pr i nts the source line wh i ch is in the source
line buffer.

SLP Ca I I

JMS SLP

LLP - LISTING LINEPRINTER

LLP prints a I isting I ine which consists of:

a. location counter
b. assembled code
c. source line

LLP Ca I I

JMS LLP

DMP - DIAGNOSTIC MESSAGE PRINTER

DMP prints lhe requesled diagnostic message, whose
n u m b e r i sin AC, i n th e f 0 I I 0 \II i n g for mal:

- 72 -

DMP Ca I I

JMS DMP

<msg. code> AT <Iocation>

LTP - LEADER-TRAILER PUNCH

LTP punches the specified character the specified
number of times.

LTP Ca I I

JMS LTP
<negative number of characters>
<punch character>

BP - BINARY PUNCH

BP is entered with the type of block to be punched
in the AC.

AC=O, ORIGIN BLOCK
AC=-\, END BLOCK
AC=+\, DATA BLOCK

For an origin block, it punches the buffer and sets
the location counter into the starting address for
the next set of data.

For an end block, it punches the buffer fol lowed by
the tape terminate block.

For a data block, it stores the data in the buffer.

BP Ca II

JMS BP

BBP - BINARY BUFFER PUNCH

BBP punches the start character, the starting address of
the data, the number of data words, the data in
the buffer, followed by the checksum. It then
resets the buffer address so new data may be stored.

BBP Ca I I

JMS BBP

- 73 -

MEMORY MAP

The memory is divided inlo several regions. The aclual

cross-assembler code occupies a large parl of the first

field. Variables and lemporary buffers for the program

code occupy the firsl page of the firsl and second field.

These variables are essenlially identical and facililale

access lo lhem depending on where lhe program is aclually

operaling on dala. The 05/8 handlers reside in the second

field as do the symbol lables. The layoul of the memory

map is as f 0 I lows:

Locali on

20- 140
144- 177
::>nn- <=.777 ----- _ .. ~

10020-10140
12000-13177
13200-14445
14446-17775

General conlenls

Program variables, buffers
Conslants
P r -c--9-r am c -eae _
Program variables, buffers
05/8 handlers
Permanenl symbo I lab I e
User symbol table

- 74 -

CONCLUSIONS

This cross-assembler provides rapid assembly of

MC6800 microprocessor assembly language programs.

Large programs that take typically 5 minutes to assemble

on a PDP 8/E disk system would theoretically lake

as much as 6 hours to assemble on a paper tape system

in an M6800 system using a Teletype. The operalion

of the M68CA cross-assembler is straightforward. and

documentation provides information to enable a

programmer to maintain and modify the cross-assembler.

ACKNOWLEDGEMENT

The material in this report was accepted in partial

fulfi I Iment of the requirements for the degree of

Master of Science in Electrical Engineering at the

University of South Carolina. Columbia. South Carolina

in May 1978.

- 75 -

REFERENCES

L Series Cross Assembler (PDP 8 version)
Conlrol Logic Incorporaled, Oclober 1974

L Series Cross Assembler (05/8 version)
Universily of Soulh Carolina, July 1975

M Series Cross Assembler (05/8 version)
E I Du Pont De Nemours & Co Inc
Savannah River Laboralory, September 1975

M6800 Microprocessor Programming Manual
Molorola Semiconduclor Producls Inc. 1975

M6800 Microprocessor Appl icalions Manual
Molorola Semiconduclor Producls Inc. 1975

- 76 -

APPENDIX A - EXAMPLE PROGRAMS

{

{ BUBBLESORT PROGRAM ASSEMBLED BY M68CA
{ RJS II NOV 77
{

02 00 *200
{

02 00 8E 01 00 XIO, LOS IMD 100 {INITIALIZE STACK
02 03 BD 02 09 JSR EXT X20 ISORT DATA
02 06 7E FC 00 JMP EXT OFCOO IRETURN TO MONITOR

I
02 09 B6 02 57 X20, LOA A EXT 1+1 IGET I
02 DC B7 02 5A STAA EXT J+I IPUT I IN J
02 OF FE 02 56 LOX EXT I IPUT I IN INDEX
02 12 09 DEX IINDEX-I
02 13 E6 4C LDAB IND DATA IGET DATA
02 15 7A 02 5A X30, DEC EXT J+I IJ-I
02 18 B6 02 5A LDAA EXT J+I IGET J
02 IB 81 00 CMPA IMS 0 I IS J ZERO?
02 10 27 19 BEQ X80 IYES
02 IF FE 02 59 X40, LOX EXT J IPUT J IN INDEX
02 22 A6 4C LDAA IND DATA IGET DATA
02 24 B7 02 58 STAA EXT TEMP IPUT THIS DATA IN TEMP
02 27 FI 02 58 X50, CMPB EXT TEMP liS B GREATER THAN TEMP?
02 2A 2A 09 BPL X70 IYES
02 2C FE 02 59 X60, LOX EXT J IPUT J IN INDEX
02 2F 09 DEX IINDEX-I
02 30 E7 4C STAB IND DATA IPUT LARGE NUMBER IN DATA
02 32 F6 02 58 LDAB EXT TEMP IPUT SMALL NUMBER IN B
02 35 7E 02 15 X70, JMP EXT X30 INEXT J
02 38 FE 02 56 X80, LOX EXT I IPUT I IN INDEX
02 3B 09 DEX IINDEX-I
02 3C E7 4C STAB IND DATA IGET NEW DATA
02 3E 7A 02 56 DEC EXT I II-I
02 41 B6 02 56 LDAA EXT I IGET I
02 44 81 00 CMPA IMS 0 liS I ZERO?
02 46 27 03 BEQ XIOO IYES,DATA SORTED
02 48 7E 02 09 X90, JMP EXT X20 INOT YET
02 4B 39 XIOO, RTS

I
I VARIABLES AND CONSTANTS
I

02 4C 24 DATA, @I 24 IDATA TO SORT
02 40 10 @I 10
02 4E AB @I DAB
02 4F 49 @I 49
02 50 07 @I 7
02 51 AC @I OAC
02 52 15 @I 15
02 53 68 @I 68

- 77 -

02 54 35
02 55 96
02 56 00 OA
02 58 00
02 59 00 00

XIO 0 00 02 00
X20 0 00 02 09
X30 0 00 02 15
X40 0 00 02 IF
X50 0 00 02 27
X60 0 00 02 2C
X70 0 00 02 35
X80 0 00 02 38
X90 0 00 02 48
XIOO 0 00 02 48
DATA 0 00 02 4C
I 0 00 02 56
TEMP 0 00 02 58
J 0 00 02 59

I ,
TEMP,
J,
$

@I 35
@I 96
@2 OA
@I 0
@2 0

- 78 -

INUMBER OF DATA WORDS

02 00
02 03
02 06
02 08
02 OA
02 DB
02 OE
02 10
02 12

02 15
02 16
02 17
02 18
02 19
02 IA
02 IB
02 IC
02 10
02 IE
02 IF
02 20

OOT
FNDIT
ONE
OATAS
OATAE
SC

FC 00
02 00
CE 02 15
B6 02 20
Al 00
27 08
08
8C 02 IF
2E 02
20 F4
7E FC 00

41
42
43
44
45
46
47
48
49
4A
4B
46

o 00 FC 00
o 00 02 06
o 00 02 12
o 00 02 15
o 00 02 IF
o 00 02 20

I
I SEARCH DATA FOR CHARACTER
I ASSEMBLED BY M68CA
I RJS II NOV 77
I
ODT=OFCOO IMONITOR LOCATION
*200

LDX IMD DATAS IINIT INDEX TO 1ST SPOT
LDAA EXT SC IGET SEARCH CHARACTER

FNDIT , CMPA IND 0 IOOES SC=DATA BYTE
BEQ ONE IYES
INX INEXT SPOT
CPX IMD OATAE lEND OF DATA YET?
BGT ONE IYES
BRA FNDIT ITRY NEXT SPOT

ONE, JMP EXT OOT IRETURN TO MONITOR
I
DATAS, TEXT OA ABCOEFGHIJ

DATAE, TEXT I K
SC, TEXT I F
$

- 79 -

EXAMPLE OF AN ASSEMBLED
PROGRAM (wilh errors)

.R M6SCA
*USCAPB,USCAPB<USCAPB.S
UI AT FC07
"MT AT FOOS*
IN AT FDOA
"IN AT FOOA*
UI AT FC07
"BE AT FD06"
IN AT FOOA
IN AT FOOA
UI AT F037
UO AT F039
UO AT F039
UI AT FC07
*BE AT FO06"
IN AT FOOA
IN AT FO06
UI AT FD37
UO AT F039
UO AT F039

R PIP
"TTY: <USCAPB.LS

- 80 -

CO 06
CO 07

F8 00
F8 00 00 00
F8 02 00
F8 03 00
F8 04 00 00

F8 26
F8 26 00

FC 00

FC 00 8E F8 26
FC 03 86 00
FC 05 C6 F8

UI AT FC07
FC 07 FF 00 00
FC OA 81 52
FC DC 7E FD 06
FC OF 40
FC 10 45
FC II 53
FC 12 53
FC 13 41
FC 14 47
FC 15 45

FD 06
8E AT FD06

FD 06 27 00
FD 08 86 AA

IN AT FDOA
IN AT FDOA

FD OA 41
FD DB 50
FD DC 50
FD 00 4C
FD DE 45
FD OF 09
FD 10 3B
FD II 58
FD 12 20
FD 13 4E
FD 14 4F
FD 15 54
FD 16 20
FD 17 41
FD 18 20
FD 19 4E
FD IA 55
FD IB 40

!
I
I

EXAMPLE PROGRAM ASSEMBLED BY M68CA
RJS 9 SEPT 77

I
ACIACS=OC006
ACIADA=ACIACS+I
I

ICONTROL STATUS
IDATA

*OF800
VARI.
VAR2.
VAR3.
VAR4.
*.+20

I---RAM---
12 BYTE VARIABLE
II BYTE VARIABLE
II BYTE VARIABLE

STACK. @I 0
*OFCOO

12 BYTE VARIABLE
IMAKE ROOM FOR STACK
IPROGRAM STACK
I---EPROM---

I
LABEL. LOS IMD STACK

LDAA IMS VARI
LDAB IMS 'VARI

IINITIALIZE STACK POINTER
ILOW ORDER BYTE OF VARI
IHIGH ORDER BYTE OF VARI

LOA AIMS VARI ISPACE NOT ALLOWED
CMPA IMS "R /NUMERIC FOR ASCI I
JMP EXT CONTI N

MSG. TEXT 7 MESSAGE I MESSAGE

*.+OFO

CONTIN. BEQ LABEL IBRANCH TOO FAR BACKWARDS
VAR2. LDAA IMS OAA IVAR2 MULTIPLY DEFINED

TEXT OX APPLE IX NOT A NUMBER

- 81 -

I
FD IC 42
FD 10 45
FD IE 52
FD IF 00
FD 20 OA
FD 21 59
FD 22 20
FD 23 44
FD 24 45
FD 25 46
FD 26 49
FD 27 4E
FD 28 45
FD 29 44
FD 2A 00
FD 2B OA
FD 2C 00
FD 20 OA
FD 2E 52
FD 2F 00
FD 30 OA
FD 31 20
FD 32 20
FD 33 20
FD 34 20
FD 35 20
FD 36 20

UI AT F037
FD 37 86 00 LOAA IMS APPLE IAPPLE NOT A SYMBOL

I
UO AT FD39

00 00 *FEOO INUMBERS START WITH 0-9
UO AT FD39

00 00 *APPLE IUNOEFINEO SYMBOL
I
I
$

-- - - - - -- - -- - -

ACIACS 0 00 CO 06
ACIADA 0 00 CO 07
VARI o 00 F8 00
VAR2 o 00 F8 02
VAR3 o 00 F8 03
VAR4 o 00 F8 04
STACK o 00 F8 26
LABEL o 00 FC 00
MSG o 00 Fe OF
CONTIN 0 00 FO 06

*

- 82 -

APPENDIX B - BINARY TAPE FORMAT

The binary formatted OUtput of the cross-assembly program
represents each byte of assembled instructions and data in a
single frame of punched tape.

The assembled data is divided into "blocks". The leader and
trai ler are blank. The format of a block is shown below:

00
00 Leader (Nu I Is)
00
00

Frame 00
00

1 1 FF Start charader
2 1 XX LSB a f s tart i n g address

3 1 XX MSB of start i ng address
4 1 XX Data byte count
5 1 1 1
5 N \ 1
7 < 1 1
8 3 B C
9 8 Y H Data

10 \ T E
1 1 1 E C

1 K
1 C S
1 0 u
1 u M
1 N 1
1 T 1
1 1 1
1 __ 1-_1-

N _I XX Checksum

The checksum is the sum modulo 255 of data bytes. The end
of the binary tape is denoted by BF hex.

- 83 -

APPENDIX C - STANDARD SYMBOLS

MNEMONIC CODE ATTRIBUTE

INHERENT ADDRESSING

NOP 01 1
TAP 06 1
TPA 07 1
\NX 08 1
DEX 09 1
CLV OA 1
SEV DB 1
CLC DC 1
SEC 00 1
CLI DE 1
SEI OF 1
SBA 10 1
CBA 1 1 1
TAB 16 1
TBA 17 1
OAA 19 1
ABA 1B 1
BRA 20 2
BHI 22 2
BLS 23 2
BCC 24 2
BCS 25 2
BNE 26 2
BEQ 27 2
BVC 28 2
BVS 29 2
BPL 2A 2
BMI 2B 2
BGE 2C 2
BLT 20 2
BGT 2E 2
BLE 2F 2
TSX 30 1
INS 31 1
PULA 32 1
PULB 33 1

DES 34 1
TXS 35 1
PSHA 36 1
PSHB 37 1
RTS 39 1
RTI 3B 1
WAI 3E 1
SWI 3F 1

- 85 -

NEGA 40 1
COMA 43 1
LSRA 44 1
RORA 46 1
ASRA 47 1
ASLA 48 1
ROLA 49 1
DECA 4A 1
INCA 4C 1
TSTA 40 1
CLRA 4F 1
NEGB 50 1
COMB 53 1
LSRB 54 1
RORB 56 1
ASRB 57 1
ASLB 58 1
ROLB 59 1
DECB 5A 1
INCB 5C 1
TSTB 50 1
CLRB 5F 1

ADDRESSING MODES

IMS 00 0
DIR 10 0
IND 20 0
EXT 30 1
IMD 00 1

TWO PART INSTRUCTIONS

NEG 40 2
COM 43 2
LSR 44 2
ROR 46 2
ASR .to -- -.2
ASL 48 2
ROL 49 2
DEC 4A 2
INC 4C 2
TST 40 2
JMP 4E 2
CLR 4F 2
SUBA 80 2
CMPA 81 2
SBCA 82 2
ANDA 84 2
BITA 85 2
LOA A 86 2
STAA 87 2
EORA 88 2
ADCA 89 2

- 86 -

L.......--. ____ _

ORAA
AOAA
CPX
JSR
BSR
LOS
STS
SUBB
CMPB
SBCB
ANOB
BITB
LOAB
STAB
EORB
AOCB
ORAB
ADDB
LOX
STX

BA
8B
8C
80
80
BE
8F
CO
Cl
C2
C4
C5
C6
C7
C8
C9
CA
CB
CE
CF

- 87 -

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

