RECORDS ADMINIST

Hllllﬂlm TR llﬂl i IIIHIIJ DP-1506

TS F\LE&
RECORD-COPY

MC6800 CROSS-ASSEMBLER
FOR THE PDP-8/E DIGITAL COMPUTER

R. J. SAND

QPONY

SAVANNAH RIVER LABORATORY
AIKEN, SOUTH CAROLINA 29801

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY UNDER CONTRACT AT{07-2)-1

Y4945
Rectangle

NOTICE

This report was prepared as an account of work sponsored by the United
States Government. Neither the United States nor the United States De-
partment of Energy, ror any of their contractors, subcontractors, o7 their
employees, makes any warranty, express or implied or assumes any legal
liability or responsibility for the accuracy, completeness or usefulness of
any information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.

Printed in the United Hiales of Amanica

Avallable from
National Technical information Service
U.5. Departmant of Commarce
5285 Port Rovyal Road
Springtisid, Virginia 221/1

Price: Printed Copy $6.00; Microfiche $3.00

26086 v~ ‘

DP-1506
Distribution Category: UC-32

MC6800 CROSS-ASSEMBLER FOR THE PDP-8/E DIGITAL COMPUTER

R. J. Sand

Approved by

D. Baker, Manager
Laboratory Operations and Services

Publication Date: August 1978

-~

E. I. DU PONT DE NEMOURS AND COMPANY
SAVANNAH RIVER LABORATORY
AIKEN, SOUTH CAROLINA 29801

FREPARED FOR THE U. S. DEPARTMENT OF ENERGY UNDER CONTRACT ATI(07-2)-1

ABSTRACT

A cross—assembler has been developed to assemble Motorola MCBB00
microprocessor programs on a Digital Equipment Corporation PDOP-8/E
minicomputer. This cross—assembier runs in 8K of core under the
05/8 operating system. The advantages of using the cross—assembler
are the large user symbol table and the convenience and speed of
program development. User's instructions for the cross—assembier
are given. The design of the cross-assembler and examples of

its use are described.

CONTENTS

Introduction 5
MBBCA User's Manual 7
Introduction 7
Cross—Assembler Syntax 7
Symbols 7
Operators 9
Connectives 11
Expressions 12
Data Storage 12
Location Control 14
Using "Period"” in an Expression 15
Program Preparation 15
Pseudo-Operations 16
Instruction Set 16
Operating Instructions 16
Error Diagnostics 17
Expression Evaluation Details 18
MBBCA Cross—Assembler Design 30
Program Structure 30
Program Flowcharts 41
Module Functions 63
Memory Map 74
Conclusion 75
Acknowliedgement 75
References 76
Appendix A - Example Programs 77
Appendix B — Binary Tape Format 83
Appendix C - Standard Symbols 85

LIST OF FIGURES

— b e b et —

The MEBCA Cross—Assembler Program Structure 31
Symbo! Table Generation Structure 32
Binary Tape Generation Structure 33

Listing Generation Structure

34

User Symbo!l Table Listing Generation Structure 35

Evaluation Modules Structure

Service Modules Structure
Service Modules Structure
Service Modules Structure
Service Modules Structure

Pass O Flowchart 42
Pass | Flowchart 43
Pass 1 Flowchart 44
Pass 1 Flowchart 45
Pass | Flowchart 46
Pass | Flowchart 47
Pass 2 Flowchart 48
Pass 2 Flowchart 49
Pass 2 Flowehart 50
Pass 2 Flowchart 51
Pass 2 Flowchart 52
Pass 2 Flowchart 53
Pass 3 Flowchart 54
Pass 3 Flowchart G55
Fas5s 3 Flowchar 5 .
Pass 2 Flowchart 57
Pass 3 Filowchart 58
Pass 3 Flowchart 59
Pass 3 Flowchart 60
Pass 4 Flowchart 61
Pass 4 Flowchart 62

36
37

38
39
43

MC6800 CROSS-ASSEMBLER FOR THE PDP-8/E DIGITAL COMPUTER

INTRODUCT ION

The MBBCA MCBB0O0 cross—assembler program is for use

in developing programs for the Motorola MCE800
microprocessor. The MCB800 is one of the leaders in a
computer revolution that has been happening since Intel, Inc.
introduced the C4004, a 4~bit parallel microprocessor,

in 1971,

Since then, the electronics industry has become deeply
involved in developing and refining the microcircuit
technology required to produce the "computer on a chip"

which is being designed into everything from toys to kitchen
appliances to industrial controllers. In 1971, the C40OO4 sold
for over $200 each. 1In 1977, the 8-bit parallel
microprocessor unit MCBBO0 sold fer $20. This dramatic

price drop, with its accompanying high use rate, has produced

a bottle neck in the design phase of electronic equipment.

The current generation of microprocessor circuits has made
control equipment design and fabrication a combination of
electronic hardware and software. Present trade journals and

literature place more than half of total development costs in

the software realm. It is therefore advantageous to be able
to convert the software as rapidiy as possible from the human
assembly language to the binary machine language necessary for

system operation.

Microprocessors are by definition small and as such do not
execute instructions as fast as some minicomputers. In
developing software programs for microprocessors, it 1Is
beneficial to do so on larger, faster machines. This requires
a cross—assembler, a program run on one computer for the

purpose of translating instructions for a different computer.

The cross—assembler speeds up the programming process. But in
a research environment where several different microprocessors
may be used, cross—assemblers for each with nearly

identical operating characteristics are almost a necessity.
The MBBCA MCBS00 cross—assembler has been developed with these
considerations in mind. [t is one of four cross—assemblers
running on a PDP B/E disk based minicomputer. This documenti-
describes the operation of the MBBCA cross—assembler program
and provides information to aid in the maintenance and

modification of the program.

MEBCA USER'S MANUAL

INTRODUCTION

The MBSCA MCES800 cross—assembler operates in a PDP-B* with an
B8K core under 05/8% control and provides symbol table capacity
for 768 symbols. The set of standard MBSCA M&BOD instructions
requires 226 symbols, leaving B42 symbols for the user.

The cross—assembler uses four passes:

Pass | - defines the symbols in the program being assembled.

Pass @ - produces an object file of the program in binary format.
Pass 3 - produces an assembly listing.

Pass 4 — produces a symbol table file.

ASSEMBLER SYNTAX

In general, the cross—assembler syntax is free-form, allowing the
user the ability to format his coding as he wishes. The few
basic rules are:

~ symbols identifying the current location must
appear to the left of any other characters in the
line and must be followed by a comma (,),

- grouping symbols via parentheses is not allowed
in the syntax,

- evaluation of expressions is from left to right.

The accepted form of a coded statement is as follows:
<symbol>,<{expression>/<{comment>

It is not necessary to start a symbol at the left margin,
nor is it necessary to start the expression immediately
following the comma which terminates the symbol. The
components of the statement may appear in combination or
by themselves as the user desires.

SYMBOLS

Alphanumeric symbols

The cross—assembler forms instructions by combining symbol
values and/or numerics as specified by the arithmetic and

logical connectives. A!l symbois are stored in a
symbol table which is created during Pass | of the assembly.

*PDP-8 and 0S/8 are trademarks of Digital Equipment Corporation.

To evaluate an expression, the cross—assembler searches the symbo
table for the given symbol and then substitutes the value

found in the symbol tabie for the symbof. The vaiues

for each symbol in the expression and the numerics are then
combined according to the rules of the cross—assembler.

A symbol consists of from one to six consecutive alphanumeric
characters from the character sets A-Z and 0-9. The first
character of a symbol must be alphabetic. The cross—assembler
only uses the first six characters if the symbol contains
more than six.

The cross-assembler allows the user to include other characters
in a symbol, such as the "greater than," "less than,” “open”
and "closed" parentheses, angd others. The user should take
care not to include those characters already in use by the
cross—assembler as indicated later in the text.

Symbols may be defined in two ways:
A tine of the form
symbol,expression

The symbol will be given the value of the location
into which the expression will be assembled.

This method is used to assign symbolic values to
particular locations in the program.

A line of the form
symbol=expression

The expression to the right of the equal sign is
evaluated and the symbol is given this value. ~— ° ~

Instruction symbols

The set of MBBCA instructions is defined by 3— and Y4-character
alphabetic symbols. Each instruction generates one, two, or
three B8-bit bytes to represent that instruction; the

number of bytes required is called the instruction’'s attribute.
Thus, if an instruction has an atiritute of 2, when the
expression containing the symbol for this instruction

is evaluated, two bytes will resuft.

Addressing mode symbols

The set of MBSCA addressing mode symbols is defined by
3-character alphabetic symbols. The symbols are:

IMS Immediate Addressing, Single Byte
DIR Direct Addressing

IND Indexed Addressing

EXT Extended Addressing

IMD Immediate Addressing, Doubie Byte

Inherent is as implied and does not
require definition

Numbers

A number is represented by one to six hex digits whose

value does not exceed 16 bits in length (i.e.,less than
10000 hex). This number thus represented is used to specify
an address (two bytes) or a quantity to be used in a load
immediate instruction; i.e., as part of an expression and
not to be confused with the numeric value used as a data
value. Data value generation is explained later in this
section under Operators.

Numbers must begin with a digit, 0-9 (e.g., FAl is coded
OFAl, 27 is coded 27).

The number does not appear in the symbol table.
OPERATORS

The characters "minus (=), “apostrophe('), "at"(e),
"quote" ("), and "pound"(#) are the set of operators
and are used to change the value of a symbo! during an
evaluation.

Minus (-)

The operator "minus" negates the 16-bit value of the symbol
defined by data words 2 and 3. During evaluation, three
bytes are affected even though only one byte or two bytes
may be generated for the final output. For example, the
load immediate instructions require only two bytes, but
during the evaluation all three possible bytes are involved.

Word | is the instruyction word; words 2 and 3 are
the data words related to that instruction.

Apostrophe (')

The operator "apostrophe" reverses the second and third
data words of the value of the symbol immediateiy following
the operator.

At (@)

The operator "at" is used primarily to set up instruction
symbols in the symbol table and to set up data words.

To explain the function of the "at" operator,

the user should recall the term "attribute",

the number of bytes required by the instruction on
evaluation. The attribute of each symbol is saved In

the symbol table, and its value is determined by the

use of the "at" operator in the symbol table evaluation
during the assembly. The numeric value which immediately
follows the "at" operator contains the resultant evaliuation
and the attribute, where the attribute is the

rightmost digit. Thus, to redefine (or create) the hex
equivalent for the extended jump instruction (attribute 3),
the symbol source file would contain a line:

JMPE=@7E3

where
"@" is the operator.
7E is the hex representation for a JMP EXT instruction.
3 is the attribute (number of bytes required for the
JMP EXT instruction).

Quote (")

The operator "quote" is used to convert a single character
to its ASCI] equivalent without the parity bit; i.e.,
the eighth level bit is stripped off. For example, if the
user wished to compare data read from the ASR33

(with the eighth leve! bit cleared) to a constant,

he would use the compare instruction, as follows:

“A" accumulator contains the character read
CMPA IMS "%

The evaluation of "% is 24 (hex). If the data read were

$ (24), then the comparison would be true. [If the user did
not wish to strip the parity bit (eighth Jevel bit),

he could perform the comparison as follows:

"A" accumulator contains the character read
CMPA IMS "$+80

- 10 -

Pound (#)

The "pound” operator Is used to create data in the program,.

The uyser simply precedes the hex numeric value with

"#" and the cross—assembler generates a one-byte constant. By
adding a "T" after the hex value, the user causes the
cross—assembler to generate a two-byte value (double-precision
constant). The cross—-assembler only accepts the first B
numeric characters in the string; all other numeric

characters are ignored. The user can add the quantities

of the same byte count (single precision plus single
precision,etc.). This is a data operator and is not to be used
with an equal sign to evaluate a symbol.

Examples:
TABL : #10F
#0ABCDT
#03+#1772
#37F2T+#0B8DT
CONNECTIVES

The set of characters plus (+), TAB, and SPACE are the formal
connectives.

The operators described in the previous section also serve
as connectives.

The formal connectives are equivalent and operate on two
values, resulting in a new value. The rules for evaluating
X connective Y are as follows:

The attributes of X and Y are inclusive ORed.

The instruction words of X and Y are inclusive ORed.
The data words of X and Y are added with overflow
from the low—order sum resulting in an increment

of the high—order sum.

1f an operator is used as a connective, it is applied to
the symbol prior to the connective operation.

When the above rules are used, an expression

with two symbols must have compatible attributes;

i.e., if the attribute of the first symbol is 2 and the
second symbol is 1, then the result will be 3, which in some
cases may not be the desired result. For example, it is
incorrect to use the data operator "#" with a load

immediate instruction:

- 11 -

LDAA IMS #276

The result is a three—byte instruction, and the LDAA IMS
instruction requires only two bytes. The proper coding
would be:

LDAA IMS 276

where LDAA has an attribute of 2, IMS has an attribute of O,
and the numeric "2768" has an attribute of 0.

EXPRESS [ONS

Each line of the source program constitutes an "expression”
—a group of symbols with operators joined together by
connectives and governed by the rules given below. A line
is terminated by the character "carriage return" (CR).

The following rules apply to the relationship between
operators, symbols, and connectives when forming an
expression:

A connective does not have to be present before an
operator; e.g.,xxx—yyy is valid.

A connective may be present between the operator
and its associated symbolie.qg.,

LDAA IMS'500

LDAA IMS '+400

#(TAB)S7

X=0++202

are all valid expressions,

Expressions are evaluated from left to right.

Parentheses are not allowed within an expression
{except as a character in a symboi);e.g., there

is no provision in the cross—assembler for distributive
operations: A-(X+Y) is invalid.

DATA STORAGE

To store data in one or two words of memory, the numeric
operator "pound" (#) is used. One—word data is

generated by placing a pound sign (#) before the hex value
to be put into the memory word. For example, to generate

- 12 -

the hex data word 82, the user would code "82." The

result is one word with the value B2 in the current memory
location. The cross-assembler generates the numeric value
modulo 2**8 (256); i1.e., the expression "BF55" would become
“53" in memory.

To store two words of data, the user precedes the data with
the pound sign and then immediately follows the data with
a "T";i.e., the constant "FCOQ" is coded as

“#0FCO0T." The cross—assembler generates double precision data
modulo 2%*16 (65936), using only the first six characters.

The statement format is as follows:

{symbol>,#<{1-6 hex digits> ({symbol>optional)
(hex value from 0-OFF)

(symbol>,#<(1-B6 hex digits>T {<symbol>optienal)
(hex vaiue from O~OFFFF)

1f the user wishes to store the value of a symbol or the

address of a symbol in a memory location, he uses the

foilowing statement format,
Csymbol>,@(n><connective><expression>(<symbold>optional)
To store the value of xxx, where xxx=4321, then

XyZ,®2 xxx

would store 4321 in two bytes, high—order byte first,
at location xyz.

To store the address of yyy, then
xyz,82 yyy

would store the address of yyy in two bytes, high—order
byte first, at location xyz.

To store the high—order portion of the address, then

xyz,®l yyy

would store the high—order portion in one byte
location xyz.

- 13 -

To store the low~order portion of the address, then

xyz,@l ‘yyy

would store the low—order portion in one byte at
location xyz.

In this function, the "at” operator is used to assign
an attribute to a line which otherwise would have an attribute
of 0.

The user can generate a numeric equivalent for any ASCII
character string by using the TEXT pseudo-op. The format of
this statement is:

C¢symbo !>, TEXT <nn> <any text up to 25 hex ASCII characters?

where nnihex) indicates the number of characters which follow
(the space between nn and the first character is not
included in the count).

The ASCI! data which is generated is loaded into memory
starting at the current location and running consecutively
for nn locations. The data does not incliude the parity

bit (eighth level), which is left equal) to zero. For
example, the user wishes to generate the numeric code

to print the message "BAD"; the following statement is used:

XYZ,TEXT 5 BAD(CR) (LF)

where the numeric values generated include the carriage
return and line feed (the same carriage return and line
feed that terminate the statement).

LOCATION CONTROL T T T T

Any line containing an asterisk (*) to the left of a
(possible) stash wifl be treated as an origin statement,
and the location counter wil) assume the value of the
expression constituting the line.

- 14 -

For example,

*200
200 *
BEGIN=200

BEGIN®
all establish a value of 200 for the location counter.

In addition, there is a special symbol for the location
counter - the period (.). This symbol may be used to reserve
locations; for example:

* +120

causes the iocation counter to be set to iits present
value plus 120.

" The value of “.” is equal to the location into which the
first byte of the instruction will be assembled.

USING "PERIOD" IN AN EXPRESSION

The symboi "." may be used for expression addressing (e.g.,
JMP EXT .+9). However, this technique should .be used only
with the greatest care, since instructions occupy a
variable number of bytes. For example:

JMP EXT .+2
BSR SUBR!
BSR SuUBRe

would cause a jump to the last byte of the JMP EXT
instruction, not to the BSR SUBRZ instruction.

JMP EXT .+5 would jump to the BSR SUBRZ instruction.
Extensive use of relative addressing is not recommended
programming technigque. [t creates problems when
modifying existing programs.

PROGRAM PREPARATION

Seyrce program files may be prepared by using the PDP-8
Editor. The TAB character may be used freely to line up
l[isting columns. Pass 3 uses the TAB character to provide
simulated tab stops every eight character spaces. The
form feed character appended to each Editor page will
cause a simulated "top of form” on the [isting.

- 15 -

Each line of source code must be terminated with a
CR/LF combination.

PSEUDO-OPERAT IONS

TEXT Text is used to convert ASCII strings to
their numeric equivalent.

b The dollar mark is used to mark the end of the source
program.

INGTRUCTION SET

The set of machine instructions for the MBBCA Assembly Language
is very similar to the Motorola MBBOO Assembly Language.

The MGBCA primary operand does not allow a space before the
accumulator designation. The MBBCA addressing modes are
indicated by 3—character symbols as opposed to the speciali
characters and automatic decisions by the Motorola MBBOC
Assembly Language. Labels {symbels with a comma as a
terminator) and comments are optional on all statements.

The general format for an instruction line, including

the two options mentioned above, is:

<symbof>,<instruction expression>/<comment>

OPERATING INSTRUCTIONS

The cross-assembler is loaded from the system device by using
the PDP-8 0S/8.

.R MBBCA

It responds by activating the 0S/8 Command_Decoder which
prints an asterisk. ST

.R MBBCA
4

A command string is entered which indicates the binary
and Jisting output devices and file names, and the input
device and file name.

.R MBBCA
*NAME 1, NAMECKNAME .S

Assembly wil) begin after a carriage return.

QOutput fiies are available on the indicated device
when control returns to the 0S/8 Keyboard Monitor. The

- 16 -

new files will be identified NAMEL.BN, and NAMEZ.LS. The
files may not be complete. The complete output files may

be manipulated as desired by using 0S/8 Peripheral Interchange
Program (PIP). The binary file must be moved in the Image
(/1) mode.

ERROR DIAGNOSTICS

Certain errors may be detected during an assembly. They
are identified by a 2-character error identifier, printed
on the listing device (teletype), along with the memory
location, in the following format:

* error identifier AT memory location *

The following is a listing of the error identifiers and
their meanings:

ST Symbol table full. The cross—assembler returns to
05/8 Monitor on this error. Source program must be
modified to reduce the number of symbols defined.

U0 Undefined origin expression., The expression defining
an origin cannot be evaluated. The cross-assembler
uses the present value of the location counter.

UE Undefined expression. One or more terms of an expression
are not defined at this point. They may be defined
later in the assembly.

RD Redefinition. A symbol already in the symbol
table has been given a new definition by an expression
containing an equal sign (=),

MT Mulbtiply defined symbol. The same symbo! has
been used more that once as a symbol.

Ul Undefined instruction. One or more terms of an
expression generating binary output are undefined.
The cross—assemblier will generate a return to
0S5/8 Monitor if it does not have an attribute for the
instruction.

SL Source line too 'ong. More than 72 characters
appear between line terminators, exceeding the capacity
of the cross—assembler source |line input buffer. The
cross—assembler returns to OS/8 Monitor on this error.
The source program must be edited to shorten the line.

- 17 -

IN Tilegal number. A symbo! beginning with a numeric
character contains a non-numeric character.
A position calling for only a number does not begin
with 0-S.

BE Branch error. Ap instruction attempted to branch
to a location which exceeded the signed 7-bit
distance (-125,+1238) from the beginning of the next
instruction.

EXPRESSION EVALUATION DETAILS

Symbols

The cross-assembler forms instructions by combining symbol

values as specified by arithmetic and logical connectives.

The cross—assembler does not distinguish between MBBCA instruction
symbols and user symbols in assembling a word. Thus, the

user should not define any symbol which is identical to any

symbol used to define a standard MBBCA instruction symbol;
e.q..TAB,IND,etc. (This error would be flagged during

Pass 1.)

Every symbo! requires four words in the symboi table, plus
two words for data words associated with it. For example,
an alphanumeric symbol which was being defined as "symbol,
expression” at location 7956 would require the basic four
words plus two data words to contain the address.
Therefore, this entry in the symbol table would

require six words in the symbol table.

For the purpose of evaluating an expression, every symbo!

in the expression is given a three-word value. The first
word of this value 75 referred to as the -symbolls atiribute
(ATTR) and the remaining two words are referred to as

the symbol's data words. The precise values these words have
are defined in the following paragraphs.

In the formats and examples that follow, subscripts on

symbols are used to denote bils in the values of the symbols.
Bit positions are numbered from right to left (least significant
to most significant bits].

- 18 -

Alphanumeric symbols

A symbol consists of from one to six consecutive alphanumeric
characters from the character sets A-Z and 0-9. Other ASCII
characters which are not standard cross—assembler characters
can also be used in a symbol; e.g., <, >, (, and). The first
character of a symbo! must be alphabetic. Any more than

six characters in a symbol will be ignored.

Symbois may be defined in one of two ways:
1. A line of the form:
symbol,expression
The symbol will be given the value of the lfocation
into which the expression will be assembled.
This method is used to assign symbolic values

particular locations in the program.

When this symbol is used within an expression, its
three-word value is:

ATTR=0
7 0
Frmm e m +
Data Word 1 | 0 |
Data Word 2 | low—order address |
Data Word 3 |high-order address!
o +

For example, if the symbol ABC were definec as
ABC,INCB and were being assembled into location 423,
its three—word value would be:

ATTR=0
7 0
e +
Data Word 1 | 0 I
Data Word 2 I 00100011 l
Data Word 3 l Co000100]
Fmmm——— e +

- 19 -

2. A line of the form:
symbol=expression

The expression to the right of the equal sign will
be evaluated, and the symbol} will be given this value.

During evaluation, the three~word value of this symbo!
depends on the value of the expression. For example,
if the symbol XYZ were defined as XYZ=1EF, its
three—word value would be:

ATTR=0
7 0
fmm e — e +
Data Word 1 | 0 i
Data Word 2 | 11101111 l
Data Word 3 | 00000001 {
e — +

Instruction symbols

The set of MSBCA instructions is defined by 3- and 4-character
alphabetic symbols.

The value of a MBBCA instruction consists of a B-bit

instruction code. The attribute of an instruction represents

the number of 8-bit words required to make a complete instruction
For evaluation, the three-word value of an instruction would be:

ATTR=tength of the instruction
7

D
e it L +
Data Word 1T - }instruction code |
Data Word 2 I 0 I -
Data Word 3 ! 1) |
ittt +

For example:

The instruction BEQ has an instruction code of 27 and requires
two words to complete the instruction; the instruction
code and the immediate value. Its three-word value would be:

ATTR=2
7 0
Frm e ————— +
Data Word 1 | 00100111 |
Data Word 2 | 0 |
Data Word 3 | 0 |
o e — +

Addressing modes

The set of MBBCA addressing modes are defined by three-character
alphabetic symbols.

The value of a MBBCA addressing mode symbol consists of an B-bit
code and is placed in bits 5 and 4 of Data Word 1 for evaluation

ATTR=0
7 0
P SR +
Data Word 1 l 0 {MODE | 0 |
Data Word 2 I 0 |
Data Word 3 | 0 |
fom e +

For example:

The extended mode has a code of 00110000; its three-word
value would be:

ATTR=0
7 5y]
fommm——— e +
Data Word 1 | 00110000 |
Data Word 2 | 0 |
Data Word 3 | 0 I
fomm e — e +

Numbers

A number is represented by one to six hex digits whose value
does not exceed 1B bits in length (i.e., less than 10000).

Numbers do not have symbol table entries but may be
included as part of or all of an expression defining
an alphanumeric symbol.

When a number appears in an expression, it has the following
word configuration for the purpose of evaluating the expression:

ATTR=0
7 0
o +
Data Word 1 | 0 |
Data Word 2 | low—order 8 bits of number |
Data Word 3 lhigh-order 8 bits of number|
e +

- 21 -

Examples are shown later in this section.

Operators

The characters "minus” (=), "apostrophe” ('), "at" (@),
"quote" ("), and "pound" (#) are the set of operators and
are used to change the value of a symbol during evaluation.

Minus (=)

The operator - negates the 16-bit value of the symbol
defined by data words @ and 3. ATTR is not affected.

7 0
pmmm e +

-X= | 0 | Data Word 1
| (-X)bits 7-0 | Data Ward 2
| (-X)bits 15-8 | Data Word 3
Fomm e ————————— +

Apostrophe (')

The operator ' reverses the second and third data words
of the value of the symbol. ATTR is not affected.

7 0
pmm———————————— +

'X= | 0 | Data Word 1
I (X)bits 195-8 | Data Word 2
| (X)ibits 7-0 | Data Word 3
fommm +

At (@)

The operator © causes the value of the symbol to be
configured as below:

ATTR=(X)bits 3-0

e +

exX= | (X)bits 11-4 | Data Word 1
| 0 | Data Word 2
i 0 | Data Word 3
e +

The effect is to use the least significant 4 bits as an attribute
and to place the next 8 most significant bits in the first
data word of the configured value.

- 22 -

This operator is used primarily to set up instruction

symbols in the symbol table. For example, the instruction
extended jump has an attribute of 3 and an instruction

code of 7E. To set up JMPE (redefined JMP EXT) in the symbol
table, the following statement would be used:

JMPE=@/E3

Whenever JMPE appears in an expression, its vaiue would
be:

7 g ATTR=3
fom e m e +
@7E3= I 01111110 | Data Word 1

l 0 | Data Word 2
| 0 | Data Word 3
o +

Quote (")

The operator " is used to convert a single ASCIT character to

its hex equivalent. The parity bit (eighth level bit) is
always 0. The character converted is the character immediately
to the right of the cperator. The value is configured as

shown below:

7 0 ATTR=0
P +

"A= | 0 | Data Word 1
] 01000001 | Data Word 2
| 0 | Data Word 3
b e +

This operator is used primarily to provide the numeric
values of ASCII characters for compare functions and load
immediate functions. For example, if the user wishes to
put the ASCII equivalent of an "E" in the A Accumulator,
the following instruction would be used:

LDAA IMS "E
This is equivalent to:

LDAA IMS 45
By adding 80, the parity bit can be set:

LDAA IMS "E+80

- 23 -

Pound (#)

The # operator is used to generate numeric data (either
one byte or two bytes) in the program.

The single byte is configured as shown:

7 0 ATTR=1
e +

#95= [0 [Data Word 1
| 10010101 { Data Word 2
| 9] | Data Word 3
o e +

The two-byte data is configured by following the least
significant digit with a "T".

7 0 ATTR=2
S + :

#0FC17T=| 0 | Data Word 1
| 00010111 ! Data Werd 2 low-order
| 11111100 | Data Word 3 high-order
e +

The data operator # should not be used in place of a simpie
numeric as part of an expression, because inconsistent resuits
will be generated; e.g.,

LDAA IMS 10 is NOT equivalent to
LOAA IMS #10

The first expression has an attribute of 2, the latter of 3.

Connectives

The characters plus(+), TAB, and SPACE comprise the set of
formal connectives. The operators described in the preceding
paragraphs also serve as conngctives. The connectives are
equivalent and operate on two values, resuiting in a new
value. The new value is determined as follows:

ATTR=3 ATTR=w
$m—————— + pm————— +
if A= i b { and W= | % |
{ ¢ i I y [
I d i l z |
tmm——— + o +

- 24 -

The result of A<connective®W is:

ATTR=avw

o ———— +
I bvx |
i c+y |
| d+z |
S +

If an overflow occurs when ¢ plus y

the result of d plus z is

(a)

(b}
(c)
{d)

inclusive OR (w)
inclusive OR (x)

plus (y)
plus (z)

is calculated,

incremented.

If an operator Is used as a connective, it is applied to the
symbol prior to the connective operation. For example
to evaluate the instruction,

JMP EXT DOFCGD
JMP has the value of

ATTR=
pmm—————————— e +
| gigotlilg |
| 0 l
I 0 |
e +

ATTR=1
+ ———————————————
| 0110000
D
I 0
o e e e

ATTR=0
Fm—————————— e ———
\ 0
| 00000000
| 11111100
o ———————————

- 25 -

The result of JUMP EXT OFCOC

ATTR= v 1 v 0 = 2

pm e + h—m—m e + pm—————— + b= +
(010011101 v (00110000} v | 0 [= 011111104
} 0 |+ 0 I+ | 0 | =) 0 |
| 0 |+ | 0 | + 111111001 = 111111100]
fpm——————— I R 4+ fm——————— +

Thus, the assembled expression output would have
the three-word value

e

FC

00

The ATTR is the attribute and is only used to determine the
number of words to output. If the attribute were 2, the third
data word s omitted during the output of the object fiie and
the assembly listing file. Since the attribute is 3, all
data words are output in the order #1, #3, #2.

Expressions

Each [ine of the source program constitutes an "expression”,

a group of symbols with operators joined together by connectives
and governed by the rules for forming expressions. A line is
terminated by the characters “"carriage return” (CR}, or

"form feed" (FF).

Expression evaluation examples

. Evaluate the expression LDAA IMS A

The instruction LDAA has a value of:

ATTR=1
fmmmm—————— +
LDAA= | 10000110 { {instruction code)
| 0
] 0 l
A —— +

ATTR=0
o +
IMS= | 00000000 |
l 0 I
} 0 }
e +

The number 7A has a value of

ATTR=0D
fmm e +
TA= 0 |
| 01111010 |
b
o +

ATTR=1 v Q v 0 = 1

fomm———— + A + A= + Am——m———— +
|1ooo0110] v | 0 bovo 0 | = 1100001101
i 0 b+ v { + (011110101 = (01111010|
! 0 [+ | 0 |+ | 0 | = | 0 l
Fm———— + A—m————— + F=—e————— + e +

Since the attribute is 2, the assembled expression
output would be the two words:

86
TA.

b. Evaluate the expression STAB DIR 'XYZ

The instruction STAB has a value of:

ATTR=
pmm—————— +
STAB= |110001111
| O I
0 |
rmm—m e +

ATTR=0
DIR= +om—m +
1G0010000|
Y I
| 0O l
Fom————— +

ATTR=0
fmm e m e +
X¥Z= | 0 |
| (XYZ)bits 7-0 | Low—order
| (XYZ)bits 15-8]| High-order
Fmmm e ————— +

then } 0] |
'XYZ= 1 IXYZ)bits 15-8| High~order
| (XYZ)bits 7-0 | Low-order

output files; the first word will be the code for
STAB DIR and the second word will be the high order
byte of XYZ. The third word is dropped since the
attribute is 2.

Evaluate the expression LDX IMD XYZ+3

The instruction LDX has a value of:

ATTR=2
tmmm +
LOX= |11001110|
1 0 l
l 0 |
o +

ATTR=1 T
o +
M= | 0|
| O I
| 0 l
tm——————— +

XYZ= | 0 |
| (X¥YZ)bits 7-0 |
| (XYZ)bits 15-8|

- 28 -

ATTR v ATTR=0 v 0 = c
t——m + e I e LT +
111000111} v 000100001 v | 0 I =1 11010111 |
i 0 L+ 1 0 | + 1(XYZ)bits 15-8] = | (XYZ)bits 15-8]
| 0 P+ 0 | + [(XY2Z)bits 7-0 | = 1 (XYZD)bits 7-0 |
o + A + fmm—m—m e m——em + e~ +
This expression will be output in two B-bit words to the

ATTR= v ATTR=l y) = 3

e ————— + t——————— + o ———— + o m +
1110011101 v 1 0 b v i 0 | = | 11001110 |
| 0 [v | 0 | + |(XYZ)bits 7-0 | = | (XYZ)bits 7-0 |
I 0 | v | 0 | + [(XYZ)bits 15-8| = | (XYZ)bits 15-8|
t—————— + - + +————m e ——————— + Fmm— +

And the numeric +3 has a value of:

ATTR=0
pm——————— +
+3= 1 0 I
| 0C000011 1]
| O I
Fmmm +

With the numeric 3, the expression

>
—
—
v
i
<
o
|
W

| 11001110

| v | 11001110 |
| (XYZ)bits 7-0 | +
| +

| (XYZ+3)bits 7-0 |

| (XYZ)bits 15-8B | (XYZ+clbits 15-8l|

4 ———t
OoOWo
oo

c=Carry from low—order sum

This expression will output to the output files three
8-bit words: the first word will be the code for a
load index immediate, the second word will be

the high-order byte, and the third word will be

the low-order byte of XYZ+3.

- 29 -

MBBCA CROSS-ASSEMBLER DESIGN
PROGRAM STRUCTURE
The structure of MBBCA is patterned after the L Series
cross—-assembler written by Control Logic, Inc. This
was done to enabie convenient use and maintenance of
a family of four cross—assemblers in use at the
Savannah River Laboratory.
The structure diagrams help to visuvalize the
organizational concepts of the MBBCA cross—-assembler.
Each module is shown with its immediate service
module. Beginning with the first diagram, hierarchy

is illustrated in descending rank on succeeding pages.

- 30 -

THE MBSCA CROSS-ASSEMBLER

PROGRAM STRUCTURE

(Start)

h

Pass O

Pass |

Symbol
Table

Pass &

Binary Tape Pass 3

FIGURE |

- 31 -

D

Pass 4

Symbo! Table Generation

CLRLC

GNL

SL

EVAL

SETVAL

GNW

Structyre

PASS!

]

v -

STS

EVSY

LC1

TLCI

TCNT

WC

DMP

FIGURE 2

- 32 -

CLRLC

LTP

GNL

SL

EVAL

1 OFV

|

Binary Tape Generation
Structure

PASSE

OCHN

LCl

TCNT

STE

ST1S

SETVAL

DMP

GNW

FIGURE 3

- 33 -

Listing Generation
Structure

PASS3

CLRLC ///////////// BTAS
GNL LCI
SL BTAF
EVAL TCNT
SETVAL PE
ve W\ e
OCHN WC
GNW STS STE
FIGURE 4

- 34 -

User Symbol Table Listing Generation

Structure

PASSY

P4BS

P4CM

P4VAL

FIGURE 5

- 35 o

Evaluatlion Modules

Structure
EVAL
GNIW DMP
EvSY DNEG
DIOR DADD OCHN
EVSY
s
1)
ATH ATIN
STS OCHN DNEG
FIGURE 6

- 36 -

Gervice Modules

Structure

T~

BBP

BOAHEX

BTAS

N\

GP

LP

N

BTAF
/ T
PC
#C

S
B

TAF

FIGURE 7a

- 37 -

Service Modules

Structure
=B GP
WC GNW [TTO [LDV
GNL BBP
I SIv DMP I LDV BTAF
TCNT = -
ATB bMP PE 1 LDV

FIGURE 7b

Servicte Modules
Structure
PC = WC LTP
I LDV I LDV WCC [BOV
STS STE LCI TLCI
WC DMpP DADD DADD
GNW ATB
GNAPK oMP
FIGURE T¢

- 39 -

Service Modules

Structure
WCC CLRLC SETVAL P4BS
P4CM PHVAL 171 TT0
BTAF BTAS ATIN DICR
OCHN DADD BOAHEX
FIGURE 7d

- A0 -

PROGRAM FLOWCHARTS

Flowcharts for Pass 0, Pass 1, Pass 2, Pass 3, and
Pass 4 indicate the general pragram operation,
These charts give a more detailed accounting of the
major program operation and can be used along

with the program listing to understand the
processing involved in assembling MC6800 programs.
Program labels are placed in the flowcharts to aid

in correlating the program listing with the flowcharts.

- 4] -

Pass 0

Flowchart
.
START
Get 1/0 B Command
Filles — = 1| Decoder
PASS]
Generate I S— Pl
Symbol Table
PASSE \
Generate ‘ Pe
Binary File 4—_37
PASS3
Generate P3
Program <——H
Listing File I
PY4

FINISH Y

Close Out
Files

1

Go To
Monitor

FIGURE B

- 42 -

le—————] Get Next |-
Line

Pass 1
Flowchart

Resel User
Symbo| Table

¥

Location
Counter=0

P10]

Contains

No

Get Next

No

*1 Word

Wor.d

Present
?

Yes

1D

FIGURE 9a

- 43 -

oMP

P13J

Print UE

Diagnostic |

Message

B

Print RD
Diagnostic
Message

$

OMP

Pass 1

Flowchart
Evaluvate < 3t EVAL
Line
Set
No Lecation
Error » Counter=
Value
Yes
A <&
Evaluate |- .| EVAL
Line
STS
Pl2 Y
Store Tag
and Value inke— > STE
Symbol Table

FIGURE 9b

- 44 -

WC

WC

EVAL

LCI

No

Pass 1

Flowchart
P16
Yes Reset
EXPUNGE Symbo!l Table
Pointer
No
P17
Yes Fix Permanent
FIXTAB Symbol Table
Pointer
No
P18
Yes
PAUSE 1A
No
P19
Yes
% »{ Return
No
PI1ST
Yes
TEXT TCNT
No
P19l
DAOP TLCI

Yes

” o Evaluate
Line

Increment

A

> Location

Counter

1A)

FIGURE S¢

- 45 -

Pass 1

Flowchart
EVSY Evaluate DMP
B I[nstructian
h
P19
Yes Print Ul
» Diagnostic
Message
A
No Set
Attribute Attribute
=3
P194
Increment
LCI ————>} Location <
Counter by
Attribute
¥
Get
GNW iz Second
Word
| EVSY | b= » Evaluate
1 A —
No
nstructio =1 1A
Yes
Increment
Location P =i| LCI
Counter by
Attribute

Pass |
Flowchart

Search

Symbo| | > [STS
Table

DMP
P15
Yes Print MT
> Diagnostic
Message
Store Label
and
Location
STE 71 Counter in >{ 10
Symbol Table
FIGURE Qe

- 47 -

LTP

Pass 2
Flowchart

l.ocation
Counter=0

Chechsum=0

-

Binary
Count=0

=

> Punch
Leader

Pp__¥

Get Next

Line

ord

No

Present

FIGURE 10s

- 48 -

EVAL

Pass 2
Flowchart

A

A

A

eJ

F

DMP

® ®

Yes
Yes
Yes
Yes
Yes
» bLvaluate
Line
No
rror >
Yes
P265
Print UI
Diagnostic
Messaqe
FIGURE 10b

- 49 -

® ®

TONT

1 OFV

Pass 2
Flowchart

Get It

Y

LCI

Qutput
Character

Bump

Location
Counter

Yes

Any
More

No

Instruction
= NOP

Attribute=3|

No

Alttribute
Set

FIGURE 10c

- 50 -

Pass &
Flowchart

No
N

Change
High-Low < > | OCHN
Order

P27

<§E>__) nstructio
=0

No

Yes

AC=1

P277 3

I OFV [, Output
Value

Increment
1L.C1 < > Location
Counter by

Attribute

)

FIGURE 10d

- 51 .

Pass 2
Flowchart

©

EVAL -t >4 Evaluale
Line

DMP

$

Print UD

Diagnaostic e

Message
AC=0

1 OFV <=, Output
Origin
Location
Counter
= Value

B 1ad
AC=-1
v

I OFV |he——3d Output
End

LTP Punch
Trailer

FIGURE Qe

- 52 -

Pass 2

EVAL

DMP

OGN

Flowchart
Eva]uate -©
Line
P23
Print UO Ye
> Diagnostic
Message
® 1
@ Get Next e
Word

STS

Yes

4

Store Tag
and Value In
Symbo! Table

> CA

(@)

FIGURE 10f

- 53 -

 J

STE

Pass 3
Flowchart

t.ocation
Counter=0

'

Set uyp to
Start
New Page

P30
Initialize

Gelt Next

Line

Left Culumns
to Spaces

ine

Contains

No

FIGURE Ila

- 54 -

—®

EVAL

Pass 3
Flowchart

Yes

Yes

Yes

Yes

Yes

Evaluate
Line

Yes

FIGURE 11b

- 55 -

No

Pass 3
Flowchart

3 Byte
Instructio

No

Change
OCHN {}e———> High-Low
Qrder

P37

Convert and \
BYAF |l o Store >®
Location

In Left Cols

&
=

Print Ul
DMP | f<———>» Diagnostic
Message

)

tiribuyte
et

Instruction
= HALT
Attribute = 3

FIGURE 1lc

- 56 -

TCNT

BTAF

Pass 3
Flowchart

Character

\
Convert

LCI

BTAS

Location

Convert
Location

Y

Convert

LLP

Value

Print

AT’{Line

More

Yes

)

FIGURE 11d

- 87 -

LCl

BTAS

LLP

EVAL

OCHN

S Evaluate

Pass 3
Flowchart

S

Increment
Location
Counter

™.

Convert and

| ——————— S tore Value
In Left Cols

329 v

Print left
Cols and
Source Line

Line

Yes

Error

No

Set Locati
Counter

= Yalue

P311

Set

IS

OMP

P31

Print UQ
Diagnostic
Message

¥
_Set
Value=0

Attribute=2{™

\
Change

A

High~Low
Order

FIGURE 1le

- 58 -

Pass 3
Flowchart

P

Yes

EVAL " > EYaluale
Line
Diagnosticlk
Message
| No
GNIW Get Next
| Word |
STS
Store Tag
STE ste———3~ And Value in
Symbol Table

OCHN

Attribute

et

Set
Attribute=e

Change

Y

High-Low

Order

®

FIGURE 11°f

- 59 -

A

LLP

pe—> and Left

e———> EiECt

LLP

=t———2>1 and Leflt

Pass 3
Flowechart

Print Line

Columns

L

Page

P

Print Line

Columns

P4 1
Return

FIGURE 11g

- 60 -

Pass 4

Flowchart
-
Initialize P4BS
Buffer < ?
A
Get Start
of User
Symbol Table
Eject

PE

Get Storage
Buffer

A

For Symbols

" Get Character

A

\
(Return j

Put in
Buffer

A
Y

y

P4CM

Get Value

¥

Store
Attribute
[n Buffer

L

Get Value

Y

Store Value
in Buffer

S BE—

P4 VAL

©

FIGURE 1ca

- 61 -

Pass 4
Flowchart

O

Slore
High-Low |«

Value

heck

P4VAL

For New
age

Print

PC

Y

Buffer
Line

FIGURE 12b

- 62 -

GP

MODULE FUNCTIONS
PO - PASS O

PO initializes the 1/0 device flags, sets up the 1/0
device and format vectors, and calls the appropriate
passes in order.

PO Call:

PO is entered by starting at location 200,

P1 - PASS 1

Pl evaluates the program's symbols and places them

in the symbol table. If a symbol 15 being

used as a label, it will use the location counter

as the value of the symbol. [If a symbol is being
defined through the use of an equal sign, the
expression to the right of the equal sign is evaluated
and the resulting value is used in the symbol table.

P1 Call

Pl is entered via a JMP P1 from the PO and returns
to PASS2 in Pass O.

P2 - PASS 2

P2 evaluates each instruction and punches the result
for the binary tape in the Control Logic binary format.

P2 Call
P2 is entered via a JMP P2 and returns to PASS3E in Pass 0.
P3 - PASS 32

P3 evaluates each instruction and prints the result
in the following format: location counter

(2 double hex characters), attribute number of words
of the instruction (each word is 2 hex characters),
and the source line.

P3 Call

P3 is entered via a JMP P3 and returns to FINISH in
Pass 0.

- 63 -

EVAL - EVALUATE LINE

EVAL evaluates a complete source line and places

the three-word result in VALUE. It extracts one

word at a time from the source line, adjusts the
word's value according to the word's operator and ORs
the first word of the accumulated value of the line,
adds the second words of each, and aliso adds the third
words.

EVAL Cai!l
JMS EVAL
{error return>

{nmormal return>

EVSY - EVALUATE SYMBOL

EVSY evaluates the six-character symbol input in the
following format in EVWBF:

gy +
| Terminator | Terminators:
[Sign | 0 Normal
|1st Char. |2nd Char. | 1 =
|3rd Char. |4th Char. | e,
|5th Char. |B6th Char.) 3 *
o +

Signs:

D +

1 —_

c @

3 - ——

and places the three-word result in EVVAL. If the

symbol is numeric, it will convert it to two

8~bit binary words and place them right—-justified,
zero—filled in EVVAL+1 (low order) and EVVAL+2 (high order).
If the symbol is a variable, it will retrieve its

value from the symbol table. Before returning, the

value in EVVAL is adjusted according to its sign.

EVSY Call
JMS EVSY

error return>
<normal return>

- 64 -

GNL - GET NEXT LINE

GNL reads the next source line from the specified
reader and places it, one character per word,

in the source line buffer.

GNL Call

JMS GNL

GNW - GET NEXT WORD

GNW retrieves the next word in the specified buffer
and places it and its terminator and sign in the specified
buffer in the following format:

e +
|Terminator | Terminators:
|Sign 1 0 Normal
{1st Char. |2nd Char. | 1 =
|3rd Char. |4th Char. | e,
|Sth Char. [|Bth Char. | 3 *
b ——— e +
Signs:
0 +
1 —_
2 @
3 (]

If the word is less than six characters, the

remaining locations are blank—-filled. If the word

is greater than six characters, all characters after
the sixth are ignored. If there is no next word,

the terminator is set to —1. ONW increments the second
call argument for its next entry before returning.

GNW Call
JMS GNW

{address of 5-word buffer to receive word>
<address of search starting point>

- 65 -

STE - SYMBOL TABLE ENTER

STE enters a symbol and its value into the next
available entry in the symbol tabie if there is room.
Each symbo! table entry consists of the following

six words:

|1st Char. 2nd Char. |
|3rd Char. 4th Char. |
i5th Char. 6th Char. |
! VALUE |
|
|

| VALUE
| VALUE
e +
STE Call
JMS STE

{address of packed symbol>
{address of three-word value>

STS - SYMBOL TABLE SEARCH

STS searches the symbol table for the specified symbol.
If it finds the symbol, it sets AC equal to the

address of the value. [If it does not find the symbol,
it sets AC = 0.

STS Call

MO CTC
AT R S T So- oo =

{address of pached syﬁbof>
WC - WORD COMPARE

WC compares two three-word long arrays. [f they match,
it sets AC = 0; if they do not match, it sets
AC not equal 0.

WC Call
JMS WC

{address of lst array>
{address of 2nd array>

- 66 -

WCC — SINGLE WORD COMPARE

WCC compares the word whose address is in WCIA with

the word whose address is in WC2A. If the words match,
it sets AC = 0 and returns via a JMP 1 WC: if they

do not match, it sets AC not equal 0 and returns

via a JMP 1 WC.

WCC Call
JMS WCC
SL - SCAN LINE

S scans the source line buffer for the 8-bit
character in the AC. If a match is found, AC is
set tg the address of the matched character; if
no match is found, AC is not equal O.

SL Call

JMS SL

GNWPK - GET NEXT WORD PACK

GNWPK is entered with location 17 equal to the address—iI
of the two-word array to be packed and lccation

15 equa! to the address—l of the word where the

packed characters are to be ctored. ONWPK packs the

two characters into one worgd, as follows:

O +
l1st Char. {2nd Char. |
NS +

GNWPK Call
JMS GNWPK

BTAF - BINARY TO ASCII - 4 DIGITS

BTAF takes a three-word value, configures the bits as
follows:

[Word 3, bits 4=11 |Word 2, bits 4-11 |

and then converts these 18 bits into 4 ASCII hex digits
and places them, one per word, right—justified,
zero—filled, high~order digit first, in the specified
five-word array.

BTAF Call

JMS BTAF
{address of S-word array>
{address of value>

ATB - ASCI! TO BINARY

ATB converts a packed ASCII hex number whose maximum
length is six characters into a 16-bit binary number
and stores the value in a three-word specified array in
the following format:

[low-order 8 bits |
inigh—order 8 tits- i

————

ATB Call
JMS ATB

Caddress of packed ASCII number>
{address of 3-word value array>

- 68 -

BTAS - BINARY TO ASCII - ATTRIBUTE NUMBER OF WORDS

BTAS assumes the three-word value it is to convert has
the following format:

01 2 3 .4 1]
e e —— — +
jattributel |8 bits of datal
| 18 bits of datal
! |8 bits of datal
e — +

it then converts the attribute number of B-bit data
words into 2-digit ASCII hex numbers and stores
them in the specified array, one digit per word,
with a space between numbers.

BTAS Cal!l

JMS BTAS

Caddress of array?
{address of 3-word value>

DNEG - DOUBLE PRECISION NEGATE

DNEG takes a 3-word value, configures the bits as
follows:

then negates this configuration and replaces the
original B bits in words 2 and 3 with the negated
result.

DNEG Call

JMS DNEG
Caddress of 3-word value>

- 69 -

OCHN - ORDER CHANGE

OCHN takes a three-word value and swaps words 2 and 3.

S + S +

If A= | | The result of | |
[[a [OCHN on A = l {b [
| Ib | i | a |
+—————————————— + e ———————— +

QCHN Call

JMS OCHN

{address of value>

ATIN — ATTRIBUTE AND INSTRUCTION SET

ATIN takes a three-word value and moves the bits as follows:

a. Bits 9-11 of word 2 moved to bits 0-2, word 1.

b. Bit 3 of word 1=0.

c. Bits 9-11 of word 3 moved to bits 4-6, word 1.

d. Bits 4-8 of word 2 moved to bits 7-11, word 1.

e. Word 2=0.

f. Word 3=0.

0 34 11 D 2 34 6 7 11

e + - +

If A= | | The result of |aS-11i01b9-11]a4-8|
l | a | ATIN on A = | D |
t | b | I 0 I
Fmmm—— + T —————— +

ATIN Call

JMS ATIN

{address of value>

DIOR - INCLUSIVE OR

DIOR inclusively ORs the first words of two three-word
values and places the result in the first word of
the first value.

- 70 -

DIOR Call
JMS DIOR
{address of 1st value>
<address of &nd value>

DADD - DOUBLE PRECISION ADD

DADD takes two three-word values and adds them in the
following manner:

a. Bits 4—11 of their second words, result stored
in word 2 of the first value.

b. Bits 4-11 of their third words, result stored
in word 3 of the first value.

C. If the addition of the second words causes

an overflow, the result of the
addition of their third words is incremented.

DADD Call

JMS DADD
Caddress of first value>
<address of second value>

LCT - LOCATION COUNTER INCREMENT

LCI increments the location counter (in both fields)
by the amount found in bits 0-2 of the value.

LCI Call

JMS LCI
{address of value>

PC - PAGE CONTROL

PC controls the paging of printout. It allows
60 lines of text per page, and 6 blank lines between
pages.

PC Call

JMS PC

PE - PAGE EJECT

PE ejects the present page of output.
PE Call

JMS PE

GP - GENERAL PRINTER

GP prints the specified number of characters from
the specified buffer where the characters are stored
right-justified, zero-filled.

GP Cal!

JMS GP
{address of buffer>
<negative tength of buffer>

SLP - SOURCE LINE PRINTER

SLP prints the source line which is in the source
line buffer,

SLP Call
JMS SLP
LLP — LISTING LINEPRINTER

LLP prints a listing line which consists of:

a iocation counter
b. assembled code
c. source |line

LLP Cal

JMS LLP

DMP - DIAGNOSTIC MESSAGE PRINTER

DMP prints the requested diagnostic message, whose
number is in AC, in the following format:

- 72 -

<{msg. code> AT <location>¥
DMP Call
JMS DMP
LTP - LEADER-TRAILER PUNCH

LTP punches the specified character the specified
number of times.

LTP Call

JMS LTP
<negative number of characters>
{punch character>

BP - BINARY PUNCH

BP is entered with the type of block to be punched
in the AC.

AC=0, ORIGIN BLOCK

AC=-1, END BLOCK

AC=+1, DATA BLOCK
For an origin bilock, it punches the puffer and sets
the location counter into the starting address for
the next set of data.

For an end block, it punches the buffer followed by
the tape terminate block.

For a data block, it stores the data in the buffer.
BP Call

JMS BP

BBP - BINARY BUFFER PUNCH

BRP punches the start character, the starting address of
the data, the number of data words, the data in

the buffer, followed by the checksum. It then

resets the buffer address so new data may be stored.

BBP Call

JMS BBP

- 73 -

MEMORY MAP

The memory is divided into several regions. The actual
cross—assembler code occupies a large part of the first
field. Variables and temporary buffers for the program
code occupy the first page of the first and second field.
These variables are essentially identical and facilitate
access to them depending on where the program is actually
operating on data. The 05/8 handlers reside in the second
field as do the symbol tables. The iayout of the memory

map is as follows:

Location General contents
20- 140 Program variables, buffers
144- 177 Constants
200- 5777 : Pregram code - :
10020-10140 Program variables, buffers
12000-13177 0S/8 handlers
13200-14445 Permanent symbo! table

1H446-17775 User symbol table

}

CONCLUSIONS

This cross—assembler provides rapid assembly of

MCBB800 microprocessor assembly language programs.

Large programs that take typically D minutes to assemble
on a PDP 8/E disk system would theoretically take

as much as B hours to assemble on a paper tape system

in an MBB00 system using a Teletype. The operation

of the MBBCA cross—assembler is straightforward, and
documentation provides information to enable a

programmer to maintain and modify the cross—assembler.

ACKNOWLEDGEMENT

The material in this report was accepted in partial
fulfiliment of the requirements for the degree of
Master of Science in Electrical Engineering at the
University of South Carolina, Columbia, South Carolina

in May 1978.

- 75 -

REFERENCES

L Series Cross Assembler (PDP 8 version)
Control Logic Incorporated, October 1974

L Series Cross Assembler (0S/8 version)
University of South Carofina, July 1975

M Series Cross Assembier (0S/8 version)
E I Du Pont De Nemours & Co Inc
, Savannah River Laboratory, September 1975

‘ MBB00 Microprocessor Programming Manual
Motorola Semiconductor Products Inc, 1975

| MBBO0 Microprocessor Applications Manual
‘ Motorola Semiconductor Products Inc, 1975

- 76 -

00
00
57

5A
56

BA
54
53

58
58

59

58
15
56

o6
56

0s

APPENDIX A - EXAMPLE PROGRAMS

X30,

x40,

x50,
XB0,

X710,

X80,

X390,

X100,

DATA,

BUBBLESORT PROGRAM ASSEMBLED BY MBE8CA

RJS

LDS IMD 100
JSR EXT X20
JMP EXT 0FCODO

LDAA EXT I+l
STAA EXT J+1
LDX EXT 1

DEX

LDAB IND DATA
DEC EXT J+l
LDAA EXT J+1
CMPA [MS O
BEQ X80

LDX EXT J
LDAA IND DATA
STAA EXT TEMP
CMPB EXT TEMP
BPL X70

LDX EXT J

DEX

STAB IND DATA
LDAB EXT TEMP

JMP EXT X30
LDX EXT 1

DEX

STAB IND DATA
DEC EXT 1
LDAA EXT 1
CMPA IMS O
BEQ X100

JMP EXT X20
RTS

11 NOvV 77

/INITIALIZE STACK
/SORT DATA
/RETURN TO MONITOR

/GET I

/PUT T IN J

/PUT T IN INDEX

/ INDEX-1

/CET DATA

/J-1

/GET J

/15 J ZERO?

/YES

/PUT J IN INDEX

/GET DATA

/PUT THIS DATA IN TEMP
/1S B GREATER THAN TEMP?
/YES

/PUT J IN INDEX

/ INDEX~1

/PUT LARGE NUMBER IN DATA
/PUT SMALL NUMBER IN B
INEXT J

/PUT 1 IN INDEX

/ INDEX-1

/GET NEW DATA

/11

/GET 1

/1S 1 ZERO?

/YES,DATA SORTED

/NOT YET

VARIABLES AND CONSTANTS

@] 24
el 10
@l 0AB

‘el 49

el 7

@l OAC
el 15
@] B8

- 77 -

/DATA TO SORT

02 54 35

02 55 96

02 56 00 0A I, @2 0A /NUMBER OF DATA WORDS

02 58 00 TEMP, el 0

02 59 00 00 Jy @2 0
3

X1i0 0 00 02 00

Xe0 0 00 Ge 09

X30 0 00 02 15

x40 0 00 02 1F

x50 0 00 02 27

X60 0 00 02 2C

X70 0 00 02 35

X80 0 00 02 38

X380 0 00 02 48

X100 0 00 02 4B

DATA 0 00 02 4C

I 0 00 D2 56

TEMP 0 00 02 S8

J 0 00 02 89

- 78 -

ooT
ENDIT
DNE
DATAS
DATAE
SC

FC
02
CE
BES
Al
27
08
8C
kb
c0

41
42
43
Ly
45
46
47
48
49
LA

46

oOCCocoOo

00
00
02 15
02 20
00
08

02 1F
02
Fit
FC 00

00
06
12
15

el

— e

SEARCH DATA FOR CHARACTER
ASSEMBLED BY MESCA

RJS 11 Nov 77
/
ODT=0FCO0 /MONITOR LOCATION
*200
LDX IMD DATAS /INIT INDEX TO 1ST SPOT
LDAA EXT SC /GET SEARCH CHARACTER
FNDIT, CMPA IND O /DOES SC=DATA BYTE
BEQ DNE /YES
INX /NEXT SPOT
CPX IMD DATAE /END OF DATA YET?
BGT DNE /YES
BRA FNDIT /TRY NEXT SPOT
DNE, JMP EXT ODT JRETURN TO MONITOR
/
DATAS, TEXT OA ABCDEFGHIJ
DATAE, TEXT 1 K
sC, TEXT 1 F
$

- 79 -

.R MBBCA
*USCAPB, USCAPBKUSCAPB. S

*U]
*MT
*IN
*IN
*U1
*BE
*IN
*IN
*Ul
*U0O
*UO
*U1
*BE
* N
*IN
*U1
*U0
*U0

AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT

R PIP

*TTY:<USCAPB.LS

FCO7+
FDOB*
FDDA*®
FOOA*
FCO7*
FDOG6*
FDOA*
FDOA*
FD37*
FD39*
FD3g+
FCO7*
FDOB*
FDOA*®
FDOB*
FD37*
FD39+
FD39*

EXAMPLE OF AN ASSEMBLED
PROGRAM (with errors)

- 80 -

06
07

00
00

cb

0o
06

/
/
/

EXAMPLE PROGRAM ASSEMBLED BY MGSBCA

RJS

/
ACIACS=0C006
ACTADA=ACIACS+]

/
*0F800
VAR1,
VARZ ,
VARZ3,
VARY ,
* +20
STACK,
*0FCO00
/
LABEL ,

MSG,

* +0FD

CONTIN,
VARZ,

ez 0
el O
#0

20T

@l D

L0S IMD STACK
LDAA IMS VARI
LDAB IMS 'VARI
LDA A IMS VARI
CMPA IMS "R

JMP EXT CONTIN
TEXT 7 MESSAGE

BEQ LABEL
LDAA IMS DAA

TEXT 0OX APPLE

- 81 -

9 SEPT 77

/CONTROL STATUS
/DATA

/——-RAM—--

/2 BYTE VARIABLE

/1 BYTE VARIABLE

/1 BYTE VARIABLE

/2 BYTE VARIABLE
/MAKE ROOM FOR STACK
/PROGRAM STACK
/———EPROM-~—

/INITIALIZE STACK POINTER
/LOW ORDER BYTE OF VARI
/HIGH ORDER BYTE OF VARI

/SPACE NOT ALLOWED
/NUMERIC FOR ASCII

/MESSAGE

/BRANCH TOO FAR BACKWARDS
/VARE MULTIPLY DEFINED

/X NOT A NUMBER

U0 AT FD39
00 00 *FEQD
U0 AT FD39
06 00 * APPLE
/
| /
r $

ACIACS O 00 CO 06
ACIADA O 00 CO 07

VARI 0 00 F8 00
VARe 0 00 F8 02
VARZ 0 00 F8 03
VAR4Y 0 00 F8 04
STACK 0 00 FB 26
LABEL 0O 00 FC 00
MSG 0 00 FC OF
CONTIN O 00 FD 06

*

LOAA IMS APPLE /APPLE NOT A SYMBOL

/NUMBERS START WITH 0-9
/UNDEF INED SYMBOL

- 82 -

APPENDIX B — BINARY TAPE FORMAT

The binary formatted output of Lthe cross—assembly program
represents each byte of assembled instructions and data in 2
single frame of punched tape.

The assembled data is divided into “blocks". The leader and
trailer are blank. The format of a biock is shown below:

00
00 Leader (Nulls)
Do
00
Frame Co
00
1 | FF Start character
e | XX LSB of starting address
3 | XX MSB of starting address
4 [— XX Data byte count
5 | | !
B N b
7 < | |
B8 3 B C
9 8 Y H Data
10 | T E
11 | E C
. | K
l € S
| 0O U
| u M
l N I
l T |
| | 1
. R PR P
N | XX Checksum

The checksum is the sum modulo 256 of data bytes. The end
of the binary tape is denoted by BF hex.

- 83 -

APPENDIX C - STANDARD SYMBOLS

MNEMONIC CODE ATTRIBUTE

—_—— —

INHERENT ADDRESSING

NOP 01 1
TAP 06 1
TPA 07 1
INX 08 1
DEX 09 1
CLV OA 1
SEV 0B 1
CLC 0C 1
SEC 0D 1
CL1 Ok 1
SE1 OF 1
SBA 10 1
CBA 11 1
TAB 16 1
TBA 17 1
DAA 19 1
ABA 1B 1
BRA 20 e
BHI ce 2
BLS 23 2
BCC 24 2
BCS 25 c
BNE cb e
BEQ 27 c
BvC 28 2
BVS c9 e
BPL 2A e
BMI B =
BGE cC =
BLT 2t 2
BGT cE =
BLE cF c
TSX 30 1
INS 31 1
PULA 32 1
PULB 33 1
DES 34 1
XS 35 1
PSHA 36 1
PSHB 37 1
RTS 39 1
RTI 3B 1
WAT 3E 1

1

SWI 2F

NEGA
COMA
LSRA
RORA
ASRA
ASLA
ROLA
DECA
INCA
TSTA
CLRA
NEGB
coMB
LSRB
RORB
ASRB
ASLB
ROLB
DECB
INCB
TSTB
CLRB

ADDRESSING MODES

IMS
DIR
IND
EXT
IMD

TWO PART INSTRUCTIONS

NEG
COM
LSR
ROR
ASR
ASL
ROL
DEC
INC
TST
JMP
CLR
SUBA
CMPA
SBCA
ANDA
BITA
LDAA
STAA
EORA
ADCA

40
43
L4
4B
- 47
48
49
4A
4C
4D
HE
4F

ULV

e et et b ek et ek b gk et b b et b A b ek ek et s & e

—— OO0

ORAA
ADAA
CPX
JSR
BSR
L DS
STS
suBB
CMPB
SBCB
ANDB
BITB
L DAB
STAB
EORB
ADCB
ORAB
ADDB
LDX
STX

- 87 -

ULV

