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ABSTRACT 

The Generalized Area and a/v Methods of interpretation of 
pulsed-neutron measurements for subcritical reactivity were found 
to minimize the error caused by source-induced harmonics and 
kinetic distortion. The use of multiple neutron detectors dis­
tributed over the core of the reactor in the pulsed source measure­
ments is recommended for increased accuracy of interpretation. 
The measured data is reduced to a reported value of the sub­
critical reactivity by the use of numerical solutions to the 
reactor eigenvalue problems. In the Generalized Area Method, 
the numerical solution provides an estimate of the static adjoint 
function which is used to weight the prompt and delayed neutron 
flux integrals measured in the experiment. These weighted in­
tegrals are then used to form the subcritical reactivity. In 
the a/v Method, the static eigenequation solved by numerical 
methods is transformed to a time eigenequation to provide a bridge 
between the measured decay constant of the fundamental mode and 
the subcritical static reactivity. Also, the transformation 
provides a means of normalizing the reported static reactivity. 

The evaluations were performed by applying both methods to 
numerical data generated by one-dimensional, space-time diffusion 
theory for which keff was known precisely. The Generalized Area 
Method was found to deduce reasonably accurate reactivity values 
from simulations of data from pulsed-neutron experiments in both 
large and small reflected reactors. The errors from the true 
reactivity ranged from +3% to -7% in p at keff = 0.9. However, 
the single-detector Sjostrand analysis failed badly for all pulsing 
simulations except for that of the small reactor with the source 
at the center of the core. Errors from the true reactivity ranged 
from +90% to -260% in p at keff = 0.9. The a/v Method was appli­
cable only to the small-reactor simulation where the error was 
-1% in p at keff = 0.9. 
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EVALUATIONS OF THE GENERALIZED AREA AND THE CliP METHODS 
OF INTERPRETING PULSED NEU1:RON MEASUREMENTS 
FOR SUBCRITICAL REACTIVITY 

INTRODUCTION 

The pulsed-source technique has been a standard tool for 
measuring the subcritical reactivity of shutdown thermal reactors 
for about twenty years. Numerous experiments have been reported 
and several schemes have been utilized for the interpretation of 
the measurements. In recent years, a number of analytical schemes 
have been proposed. Area Methods proposed by Sjostrand,l Garelis­
Russell,2 and Gozani 3 were introduced in the late 1950's and 
early 1960's. Preskitt, et al. introduced the Inhour Method,4 
which overcame some of the problems of harmonic and kinetic dis­
tortion that badlY affected the Area Methods. In recent years, 
Kosaly, et al. 5 have reinvestigated the original Sjostrand Method. 
All of these conventional methods are reviewed in Reference 6. 

This report will evaluate two modifications of earlier 
methods of analysis; the modifications are referred to as the 
"Generalized Area Method" and the "a/v Method." In the execution 
of experiments analyzed by these methods, multiple neutron detectors 
should be distributed over the subcritical reactor core. Both 
methods use static reactor codes to reduce the observed pulsed­
source responses in the detectors to the subcritical reactivity. 

In this discussion, the reactivity sought by both the General­
ized Area Method and the a/v Method is the static reactivity, 
Ps = (keffs-1)/keffs. Thus, the results may be compared to a 
reactivity derived from a static eigenvalue computed by a reactor 
code. The a/v Method is shown to be capable of reporting the 
true static reactivity within the uncertainty of the measurement, 
but the Generalized Area Method is shown to yield a reactivity 
which is not the same as the static reactivity (except in special 
cases). Fortunately, the difference between the Generalized Area 
reactivity and the static reactivity tends to vanish as the 
reactivity approaches zero. 

The reader is assumed to be familiar with the general 
description of short-burst neutron experiments as given in 
several standard texts? Derivations of reactivity expressions 
for both the Generalized Area and the a/v Methods will be given. 
The derivation of the Generalized Area expression is different 
from that given by Kosaly and Fischer,6 but the results are 
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essentially the same. Hypothetical pulsing experiments in 
typical small and large thermal reactors are then modeled with 
one-dimensional WIGLE calculations 9

• The numerical data from 
these simulations are then treated by the Generalized Area, the 
a/v, and the Sjostrand methods to determine reactivities. These 
reactivities are compared to the known reactivity of the 
simulations to indicate relative accuracies. The sources of 
error in these methods are also discussed. 

GENERALIZED AREA METHOD 

A derivation of the Generalized Area Method, given in the 
Appendix, indicates that 

Il 

ITO r I Vol + + - p + PA 0 o 0 
W(r,E) xT(r,E) P q, (r,E,t) dV dE dt 

T 
I VOI effA I 0 

00 -+ -+ - d + 
10 W(r,E) xT(r,E) P q, (r,E,t) dV dE dt 

where PA 

0 0 

the reactivity (zero at delayed critical) 
deduced by the Generalized Area approach 

= the effective delayed-neutron fraction defined 
in Appendix A 

W = unspecified weighting function 

P = the total neutron production operator 

XT = the total neutron energy distribution reSUlting 
from fission and precursor decay 

q,P and q,d = prompt and delayed-neutron fluxes 

To = the period between repetitive pulses. 

The operation of P on q, is defined as 

(1) 

The experiment should be preformed with several neutron detectors 
distributed over the reactor. The choice of the detector type 
depends on the reactor type being pulsed. Since 
pq, = VLf q,th for thermal reactors, a detector of thermal 

th neutrons would be appropriate. Similarly, a fast neutron 
detector w01l1d be appropriate for a fast reactor because 
pq, ; VL

f 
q, The value of pq, will be non-zero only in the 

fast fast 
core regions of the reactor. Thus, detectors should be placed 
only in the core. 
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The only time-dependent quantities in Equation 1 are ~p and 
~d. These quantities are not directly measured in pulsed neutron 
experiments. Usually, counting rates from distributed detectors 
are stored in the memory of a multiscaler. The prompt counting 
rate decays rapidly with time after each source burst, and the 
total counting rate is due only to delayed neutrons at large 
times within the pulse period. Thus, good estimates of the time 
integrals of prompt and delayed counting rates are possible. 
However, the counting rate from neutrons originating from sources 
other than the pulsed source must first be subtracted over the 
entire period. Then, the delayed neutron counting rate detected 
during prompt neutron decay must be estimated and subtracted to 
form the prompt counting rate. The prompt and delayed counting 
rate integrals must then be converted to prompt and delayed 
neutron flux integrals. 

Equation 1 may be conveniently approximated from a mUlti-
group perspective. In the two-group diffusion approximation, the 
Generalized Area reactivity, is given by 

N f:o GE~i 
1 ~l2) I r'N. wI ~~ 2 

P A " 
1 1 1 

+ vLf . dt i=l 1 (2) 
Beff -- N T 0E

f: 

A L !iV. W~ f: dl 2 
d

2
) dt ~. + vLf . <Pi 

i=l 1 1 1 
1 

when using data taken with N neutron detectors. Note that only 
a fast group weighting function appears in Equation 2 because 
Xf = 0.0 in the two-group approximation. 

Tests of the Generalized Area Method 

The pUlsed-neutron experiment has been simulated wjth numeri­
cal computer codes to test the Generalized Area Method equation 
in two-group form (Equation 2). The simulation is based on the 
space-time diffusion theory code WIGLE 9 and a corresponding 
static diffusion theory code. The calculated space-and time­
dependent neutron flux responses to a source burst are treated as 
if they were derived from real experimental data and are analyzed 
for reactivity by Equation 2. 

The static flux and reactivity were calculated in two-energy 
groups for one-dimensional (slab) hypothetical models. The 
models reasonably typify small H20 and large D20 moderated reactors. 
The static flux served as the initial flux for a source response 
calculation with WIGLE. The source was non-zero only for two 
adjacent mesh points and only in the fast energy group. The neutron-
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source duration was fixed at 500 microseconds for all cal­
culations. The WIGLE calculation of the single-burst response 
was continued for 100 seconds for all pulsing simulations. 

The usual pulsed-neutron experiment consists of a measure­
ment of the flux response to a series of periodic source bursts 
after delayed-neutron equilibrium has been established. The 
channels of a multi-scaler are turned on sequentially following 
each source burst; all channels are opened and closed before 
the next source burst. In a single sweep of the multi-scaler 
channels at delayed equilibrium, one prompt-neutron response is 
recorded; however, the delayed-neutron tails, from many previous 
bursts as well as the present burst are also recorded. The 
Single-burst WIGLE response was used to construct the delayed 
equilibrium response by adding the responses of many identical 
bursts (each displaced one pulse period from the preceding burst). 

Prompt- and delayed-neutron flux integrals of the form 
Jbo~P(~,E,t) dt and J6o~d(~,E,t) dt were then formed from the multi­
scaler simulations of detector responses at selected positions 
in the reactor core. The integrals Were formed by the technique 
discussed in the previous section. These integrals were used to 
compute reactivity by Equation 2. 

Two very different thermal reactors were chosen to provide 
examples of pulsed data. The first, a small H20-moderated core 
(20 cm thick) was surrounded by a H20 reflector (10 cm on each 
side). The second, a large D20-moderated core (480 cm thick) was 
surrounded by a D20 reflector (60 cm on each side). The two-group 
cross sections and inverse velocities for both reactors are listed 
in Table 1. The listed vEf cross sections have been adjusted to 
produce keff = 0.9 (computed by the static ·code). The fast group 
inverse velocity was set equal to zero in every case to facilitate 
WIGLE convergence. 

TABLE 1 

Two~Group Cross Sections for Reactor Models 

VEIl 
1~2 "",-' XT l/V, 8ec/cYm 

ReaatoI' D, 
, cm-' 'r, ",,-' ",,-' '. ' Case am 0, 

Small H2O 

Uniform Core 1.0 8,0 x 10- 3 4.0 X 10- 3 7.6104 X 10- 3 2.0 X 10- 2 1.0 0,0 

0.2 5.0 x 10- 2 1.0 X 10- 1 2.2831 X 10- 1 0,0 3.0 X 10- 6 

Reflector 1.3 S.O x 10-" 0.0 0.0 5.0 X 10- 2 0,0 0,0 

0,1 2.0 X 10- 2 0,0 0.0 0.0 4.0 X 10- 6 

Large DlD 

Uniform Core 1.4 1.6 x 10- 3 9.3 X 10-'+ 2.0883 X 10- 3 8.2 X 10- 3 1.0 0,0 

O,g 1.3 x 10- 2 9.5 X 10- 3 2.0883 X 10-2 0.0 3,1 x 10- 6 

Reflector 1.3 1.4 x 10- 6 0,0 0,0 1.2 x 1O-~ 0,0 0,0 

0.8 7.5 x 10- 5 0,0 0,0 0,0 4.2 X 10- 6 

- 8 -



A common set of Si and Ai; values for six families was chosen 
CST = Seff = '0.007705) for convenience. The Ai' decay constant, 
values were typical of a H20-moderated reactor. Actually, values 
with much longer-lived photoneutrons should have been chosen for 
the D20-moderated and reflected reactor. This was not done 
because a longer WIGLE calculation would be required to ensure 
delayed-neutron equilibrium in the pulsing simulation. 

Two sets of WIGLE computations were made for each reactor 
type. In the first set, the source was placed in the reactor 
center. In the second set, the source was placed at the core­
reflector interface. Two different weighting functions were 
chosen for this study. The first used a weight of unity every­
where. The second used the static adjoint flux. 

Eleven "detectors" were distributed over the core of the 
small H20 reactor. Seventeen "detectors" were distributed over 
the COre of the large D20 reactor. The volume increments repre­
sented by each detector were uniform. Table 2 lists the values 
of the Generalized Area keff for the two reactor cases. These 
values were derived from the simulated fluxes at the detector 
locations for the two different source locations and the two 
weighting functions. In general, the error with static adjoint 
weighting was always less than ±l% in keff at keff = 0.9. For 
the small core, no accuracy was lost by using uniform weighting. 
However, uniform weighting of the results in the large core led 
to a somewhat larger error (-2.9% in keff at keff = 0.9) when 
the source was placed at the core edge. 

TABLE 2 

Generalized Area Multiplication Constantsa 

Reaatop Type 

Source in MiddZe 

W = 1 W = $+ 
8 

Sourae at Cope Edge 
W = 1 W = $+ 

B 

Small H20 .8984 .8973 .9014 .9030 

.8968 .8930 .8713 .8928 

a. The true static keff = ,9000 in every case. 

Comparison of the Generalized Area and Sjostrand 
t1ethod Resu 1 ts 

Appendix A shows the Generalized Area Method equation 
(Equation I) takes on the very simple Sjostrand form if ~P/~d 
1.0 for all space and time where wP and ~d are the shape functions 
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of the prompt and delayed neutrons (defined in Appendix A). In 
that case, Equation 1 reduces to 

T 
P

S
'" f 0 cpP dt 

."..:;;:,i.J.::.o_ = -.;;0 __ _ 
S T 
effS '" f 0 ",d dt 

JO 0 'I' 

Figure I shows the Sjostrand reactivities for each separately 
analyzed detector. 

(3) 

The errors of the Sjostrand Method are due to prompt and 
delayed harmonic distortions and kinetic distortion. Figures 2-5 
show the flux-shape distortion away from the static shapes at 
selected times for all the pulsing simulations. In these figures, 
the ratio 

<P(x)/cjJ(s) Itime 
cjJ(x) Jcp (s) static 

is defined as a measure of the distortion where cp(x) is the time 
dependent or static flux at position x and cp(s) is the time depen_ 
dent or static flux at the source position. A spatially constant 
flux ratio of 1.0 indicates no distortion. 

A derivation of the harmonic shape eigenequations for both 
prompt and delayed neutrons is given in Appendix C. These 
derivations indicate that most of the distortion that exists 
near the peak of the prompt response is from prompt harmonics 
induced by the source because the first time derivative of the 
flux is very small, precluding kinetic distortion. After the 
delayed flux becomes the dominant portion of the flux, most of 
the distortion is due to delayed harmonics because the first 
time derivative is again very small. However, during prompt 
fundamental decay, no prompt harmonic distortion exists, by 
definition; thus only kinetic distortion may exist whenever the 
prompt decay is in the fundamental mode. 

The delayed harmonic distortion is small for the small H20 
reactor, but the prompt harmonic and kinetic distortions are con­
siderably larger (Figures 2 and 3). In the large 020 reactor, 
all the distortions are very severe (Figures 4 and 5). The prompt 
harmonic distortions were so large for both source pOSitions that 
a fundamental mode of prompt-neutron decay was not clearly defina­
ble. 
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The error of the Sjostrand Method has been somewhat exaggerated 
in these simulations by the point description of the fast group 
external source. In reality, most pulsed sources use the 3H(d,n)4He 
reaction which releases neutrons at 14 MeV. As the source neutrons 
slow down to the average fast group energy, they will spread toward 
a less strongly peaked distribution than the point distribution 
used in the WIGLE response calculations. Nevertheless, the errors 
of the Sjostrand Method in real, large reactor experiments will be 
much larger than those of the Generalized Area Hethod. 

Sources of Error in the General i zed Area ~1ethod 

The reactivity is approximated by Equation 2 in the multhgroup 
form with the assumption that information about ~p and ~d is obtained 
only from the multiple neutron detectors. Clearly an integration 
approximation error exists which can be made acceptably small only 
by using a relatively large number of detectors. 

It is also doubtful that PA/SeffA is equivalent to the static 
dollars reactivity ps/Ss, even in the absence of any integration 
error. This is shown by the following arguments. In the Appendix, 
the Generalized Area reactivity is defined as 

<W, [XT P - IT 1 1/h 
- d <W, XT P 1jJ > 

~f the code calculated ~; is chosen as the weighting function. 
D is the loss (or destruction) operation which is defined in 
the Appendix. The neutron flux shape (1jJd) may be distorted 
considerably from the fundamental mode flux shape. We define 

(4 ) 

(5) 

where 1jJ~ represents the fundamental mode flux shape of delayed 
neutrons and 81jJd represents the distortion from the fundamental 
shape. The Appendix shows that the fundamental mode of 1jJd has 
very closely the same shape as ~s' the static flux shape calculated 
by a static code. Thus, the harmonic distorted, delayed flux shape 
may also be expressed as 

(6) 
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Therefore 

(7) 

Henry has shown that the static reactivity determined by a 
code is consistent with 

<<1>:0' tXT P - D) <l>s> 

+ 
<<I>SO' XT P <l>S> 

(8) 

where <I>~o is the adjoint of the critical (ps = 0) flux. IO If no 
distortion were present in the delayed neutron flux shape (OWd = 0), 
then 

<",+ 
"'s' 

(9) 

Thus, to the extent that <1>; approximates <I>~o' PA (OWd=O) ~ Ps. 
However, error terms involving Owd will be present in PA whenever 
significant delayed neutron harmonic distortion exists. Thus, by 
this analysis, it appears that PA ~ Ps when significant harmonic 
distortion exists in the delayed neutron flux shape. In the small 
reactor case, ~ ~ <l>s (Figures 2 and 3), and this source of error 
is small. However, in the large core case, ~ is strongly dis­
torted (Figures 4 and 5), and this source of error is not incon­
sequential. 

Similar arguments could be invoked to examine SeffA. Thus, 
when one identifies PA/SeffA as Ps/Seffs ' another indeterminant 
error, in addition to the integration error, is made. The dif­
ferences of the k ff values reported by the Generalized Area 
Method (Table 2) Irom keffs equal 0.9 are due to these two sources. 

THE a/v METHOD 

The a/v Method is a modification of Preskitt's Inhour Method." 
Both methods take advantage of the fact that for a large class of 
reactors a fundamental mode of decay, Ctm, ultimately will be estab­
lished throughout the reactor following injection of a burst of 
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neutrons from an extraneous. source. This is usually true for thermal 
reactors, although there are cases for fast reactors where a "quasi­
equilibrium" spectrum may not be established and no unique per­
sisting exponential decay may exist. 11 There also may be experimen­
tal difficulties in determining Om. In principle, a single detector 
could be used to determine Om. Since the fundamental mode exists 
only when a can be shown to have approximately the same value at 
all points in the reactor, the use of multiple detectors is recom­
mended to prove that the decay constant measured is indeed Om. 

In Preskitt's original introduction of the Inhour Method, the 
static reactivity was shown to be 

(10) 

where Ao (generation time of the prompt neutron persisting mode) 
was to be computed with the assistance of a static reactor code. 
In the a/v method, a specific calculation of Ao is not necessary 
because a static reactor code can easily be altered to provide a 
solution to the prompt-neutron eigenequation. 

The static keffs calculated by a code is the eigenvalue of 
the static eigenequation which may be expressed as 

(11) 

For subcritical systems, t~e calculated eigenvalue, keffs' is just 
the uniform adjustment of P necessary to force the right side to 
zero. The same code is used to solve the prompt neutron eigen­
equation. This may be done if the following. transformations are 
used: 

IT + aN replaces IT 

(l-Sr) P replaces P 

kp replaces keff 

and ~ replaces XT 

D, P, and XT are transformed by changing the input cross 
sections of the reactor problem. The transformed eigenequation 
solved by the reactor code is 

o (12) 
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where kp is a scale factor which forces neutron balance; ¢g is 
the shape function of the fundamental mode of the prompt-neutron 
distribution; and Xp is the prompt-neutron energy distribution 
from fission. Since Om is a measured quantity, the eigenvalue 
of the problem is kp . Though Equation 12 is derived in numerous 
sources,4 it is derlved in the Appendix C for the sake of complete­
ness. 

If the material properties of the reactor were precisely 
known, the cross sections of all materials were free of error, 
the geometrical representation were exact, and no solution approx­
imations were made, kp would always be computed as exactly unity 
(assuming that Om was precisely measured). In practice, kp will 
usually deviate slightly from unity because the above condltions 
generally are not precisely met. The effective multiplication 
constant determined by the experiment is then 

k ff e s 
(exp) = 

keff 
s 

-k-
p 

(13) 

where keffs is the eigenvalue of the untransformed static solution. 
The corresponding static reactivity determined by the measurement 
is found from 

Ps (exp) (14) 

However, ~ cannot be determined without error. The errors 
due to statistical variation of the decaying counting rates may 
be quantitatively estimated; but an absence of bias from failure 
to completely establish a fundamental mode without any higher 
order harmonic contamination is difficult to prove. 

Tests of the a/v Method 

The same data developed for the tests of the Generalized 
Area Method were used for tests of the a/v Method. The delayed­
neutron tails were subtracted from the delayed equilibrium response 
constructed from the WIGLE calculation. A persisting prompt­
neutron decay constant (identified as the fundamental mode decay 
constant) was determined from the resulting prompt-neutron decay. 
For the small H20-moderated and reflected reactor, the fundamental 
decay constant appeared to be -3500 ±80 sec-I. The uncertainty in 
~ was related primarily to the different prompt-neutron harmonic 
distortions associated with the two-source positions. When the 
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cross sections (Table 1) were altered by the transformations of 
the a/v Method, the eigenvalue of the prompt.neutron eigenequation 
(kp) was 1.001. Therefore, keff~ (exp) = 0.8991. The source of 
the deviation from the true stat1c reactivity (0.9000) is the 
uncertainty in ~. 

A fundamental·mode decay constant, reasonably independent 
of both source and detector positions, could not be defined 
cleanly from the simulated data for the large D20.moderated and 
reflected reactor. The reason is that the harmonic distortion 
was very severe due to the very loose coupling of this hypothetical 
reactor. The prompt harmonics had not died a~ay before the delayed 
neutrons became the dominant portion of the total flux. Ultimately, 
a spatially independent decay mode for the prompt neutrons would have 
been established and observed if delayed neutrons had been removed 
from the mockup calculations. This mockup is similar to, but larger 
than, the loosely coupled, D20 moderated and reflected reactors at 
the Savannah River Plant. Pulsing measurements on a shutdown SRP 
reactor mockup were performed recently and the fundamental mode 
decay constant could not be identified experimentally for the 
above reasons. However, three·dimensional, pulsed source re· 
sponse calculations without delayed neutrons show that the prompt· 
neutron decay eventually becomes a fundamental mode decay. 

CONCLUSIONS 

The Generalized Area Method is successful due to the use of 
data from multiple neutron detectors and, to a lesser extent, the 
use of static adjoint weighting of that data. Unit weighting ef 
the data causes somewhat larger inaccuracies for large reacters. 
The Generalized Area Method copes with difficulties introduced 
by both harmonic and kinetic distortion of the pulsed source response, 
whereas the Sjostrand Method is incapable Of acceunting fOr these 
distortions. 

The a/v Method was more accurate (where applicable) than the 
Generalized Area Method. To apply the a/v Method, the decay 
constant of the fundamental mode must be determined accurately. 
This task was possible with the small· reactor simulated data, but 
was impossible for the large·reactor simulated data. 

When a fundamental·mode decay can be identified accurately, 
the a/v Method should be the preferred method of analysis. One 
can examine closely the data from multiple detectors and determine 
a reasonable upper bound on the remaining bias in any am measure' 
ment caused by higher order harmonics. Alternatively, the Generalized 
Area Method suffers from an error in approximating certain integrals 
by discrete sums, an error which is difficult to quantify. Another 
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error arises from trying to equate PA/SeffA (defined by the Gen­
eralized Area Method) with Ps/Beff (the static dollar reactivity). 
This latter error is proportional fo the amount of delayed-neutron 
harmonic distortion. 

The a/v method is preferred, but some situations warrant the 
use of the Generalized Area Method. There are many situations 
where numerical solutions of the eigenvalue equation are not 
possible. Field situations often involve complex geometries be­
yond the scope of reactor codes or involve unknown material com­
positions. Also, a clean measurement of the fundamental decay 
may not be possible, as shown in the pulsing simulations for the 
large, loosely coupled reactor. For these cases, only the Gen­
eralized Area Method with unit weighting is recommended as a simple, 
yet accurate way of deducing the subcritical reactivity. 

If geometric and material modeling is possible, but ~ is not 
determined, the Space-Time Method may yield a more accurate assess­
ment of the subcritical reactivity than is possible with the Gen­
eralized Area Method. However, a large computational effort 
is required to implement the Space-Time Method. This additional 
effort is warranted only if the increased accuracy of the Space_ 
Time Method is necessary. 
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APPENDICES 

A. Derivation of the Generalized Area Method Equation 

Equation 1 is derived by first breaking up the continuous­
energy diffusion equations into separate equations describing the 
behavior of prompt- and delayed-neutron fluxes. Henry's concepts 
of the time dependent shape function and amplitude function are 
introduced along with the time independent weighting function.!O 
The special properties of these functions allow one to derive 
"point reactor" kinetics equations for prompt and delayed neutron 
amplitude functions. These equations may then be integrated over 
one pulse period and the Generalized Area Method equation is ob­
tained. 

The continuous energy diffusion equations in the stationary 
fuel form are 

.,. 
1 d <p (r,E,t) .,. .,. -- .,. 

veE) = (l-ST(r) Xp(r,E) P-D <p(r,E,t) 
d t 

M (AI) 
.,. .,. .,. .,. 

+ L: X (r, E) A. (r,E) Ci(r,t) + S(r,E,t) 
i=l i 1 

.,. 
d C. (r,t) .,. .,. 
-....;~~t-- = Si (r) P <p (r,E,t) 

.,. .,. 
A. (r) C. (r, t) (A2) 

where cp 

1 1 

Cf',E,t) scalar flux density (or simply flux) 

veE) neutron speed 
.,. 

l3y(r) total delayed fraction 

~(t,E) = prompt energy distribution from fission 

P = production operator 

D= 

.,. 
l3i (r) 

\ (t) 

loss operator 

i'th family delayed neutron energy distri­
bution 

i'th family delayed neutron fraction 

i'th family decay constant 
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Ci (1, t) i'th family precursor concentration 

+ and S (r,E,t) = rate of change of neutron density from the 
pulsed source 

The production and loss operators are defined in diffusion theory 
for pulsed source problems through their operation on ¢ by 

P ¢ - I: V(;,E') LfC;,E') ¢(;,E',t) dE' 

and If ¢ - Lt(;,E) ¢(;,E,t) - I: Ls(;,E'+E) ¢(;,E',t) dE' 

+ V'D (r,E) V¢(r,E,t) 

where D is the diffusion coefficient. 

(A3) 

(M) 

The first step is to break up the total neutron flux into 
its prompt and delayed components 

(AS) 

Substitution of Equation AS into equations Al and A2 gives 

1 d¢P 
[Cl-ST) l1> P-IfJ ¢P + S vat= (A6) 

I d¢d 
[Cl-ST) l1> p-oJ ¢d + 

M 
vat= L i A. Ci i=l 1 (A7) 

dC. d 
't' = S. P ¢p + S. P ¢ - A. C. 
(J 1 1 1. 1. (AS) 

subject to the following constraints. 

For convenience, the space, energy, and time dependencies are 
no longer explicitly noted. Equation Al has been broken down into 
the separate Equations A6 and A7. This breakdown is permitted 
because of the nature of pulsed experiments. The extraneous source 
is only a short burst. After the burst, the resulting prompt 
neutrons decay quicklY leaving only delayed neutrons. Note that 
Equation A7 describing the delayed-neutron flux includes prompt­
neutron production from delayed-neutron absorption. These prompt 
neutrons are simply counted as additional delayed neutrons since 
their real-time behavior is determined by that of the delayed pre­
cursors. 

Equations AS-A8 are satisfactory for thermal reactor systems 
but, as Gozani has noted, caution should be used in treating fast 
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reactor system? with such a physical model. 12 -

The prompt and delayed-neutron fluxes are now defined in 
terms of shape functions and amplitude functions. 

p -+ ) P -+ <p (r,E,t - '¥ (r,E,t) 

d -+ d -+ 
and <p (r,E,t) - '¥ (r,E,t) 

(A9) 

The shape functions, ,¥p and ,¥d, are explicitly dependent on space, 
energy and time. It is assumed, however, that the time dependences 
of the shape functions are relatively weak compared to those of 
the amplitude functions, TP and Td. 

All the growth and subsequent decay of the total prompt- and 
delayed-neutron popvlations is to be contained in the amplitude 
functions, TP and tu. These amplitude functions are defined as 

p -+ 
TP(t) = foo fVoIW(;,E) <p (r,E,t) dV dE 

o veE) 

(AID) 
d ->-

<p (r,E,t) dV dE 
veE) 

->-
where W(r,E) is some weighting function which may have dependence 
on space and energy, but not time. Clearly, if W were unity, TP 
and Td would be exactly the total number of prompt and delayed 
neutrons in the reactor at any given time. For other choices of 
W, TP and Td may be thought of as the integral of the weighted 
neutron densities over the reactor volume. 

After substituting Equations A9 into Equations AID, it is 
found that W must have the useful properties that 

p -+ 
foo fVoIW(;,E) '¥ (r,E,t) dV dE = <W, V-I ,¥p> 

o 0 v (E) 

(All) 
d ->-

foo fVOI W(; E) '¥ (r,E,t) dV dE 
o 0 ' v (E) 

where bra-ket notation implies integration of the contained 
function convolutions over space and eneagy. Thus, the time 
derlvatlves of <W, V-I ,¥p> and <W, V-I '¥ > must also be zero 

The anticipated behavior of the shape functions may be ex­
plained in terms of the following analogy. The shape functions 
will change as a function of time in the same manner that water 
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in a bowl changes its distribution when the bowl is rocked. The 
distribution of water may chan~e but the total amount of water 
does not. Similarly, *p and wa may change with time but <W, 
v-I *p> and <W, V-I *d> do not. 

Substitute Equation A9 into Equations A6 and A7. Multiply 
the resulting equations by W(~,E) and integrate over space and 
energy. Also substitute Equation AIO into Equation A8, but 
multiply by W(~,E) X· and integrate over all space and energy. 
Ih~ resulting equati~ns, after noting the constancy of <W, V-I ~p> 
and <W, v-I*d>, are simply a re-expression of the "point reactor 
kinetics equations." 

aTP <W, at= 

ard 
at = <W, 

[(l-ST) Xp P-D] *p > TP + <W, 

[(I-ST) Xp P-DJ *d > Td + 

- < W, Xl' A. C. > 
1 1 

M 
L: 

i=l 

S> 
(AI2) 

<W, X. A. C.> 
1 1 1 

(AI3) 

(A14 ) 

The usual pulsed-neutron experiment consists of repeatedly 
injecting short bursts of neutrons from the source into the 
reactor in a periodic fashion. Usually, the period, To, between 
bursts is sufficiently long that all the prompt neutrons from any 
single pulse decay before the next pulse. If the burst occurs at 
time t=O+, then 

TP(O) = TP(T ) =0 
o (AIS) 

On the other hand, the delayed neutrons resulting from any single 
burst decay very slowly. As a result, delayed-neutron equilibrium 
is established at some time after pulsing begins. If delayed­
neutron equilibrium has been established at time t=O, then 

(A16) 
and 

C. (0) 
1 

C. (T ) 
1 0 

(AI7) 
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Integrate Equations A13 and A14 over one pulse period. 
A12 is no longer of any interest in this derivation.) 
is 

+ ;T 0 Q - ,,8- > Td dt < W, X· .,. P 'Y-o 1 1 

- ;To W 'c d o < • Xi Ai i > t 

(Equation 
The result 

(AlB) 

(A19) 

Eliminate terms involving <W, Xi Ai Ci> between Equations 
AlB and A19. Also, use the definition of the total chi distribution 

and 

M 
+ L X. s.] 

i=l 1 1 

The result is 

= -

We will now identify two quantities 

<W, (XT 1>-5) 1/Jd> 
PA (t) -

X
T 

P 1/Jd> <W, 

M <W, X· S. 1>.pP> 
Seff (t) L 1 1 

-
A i=l <W, XT P 1/JP > 
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p~5) 1/Jd > Td dt 

(A20) 

(A2l) 

(A22) 



If these definitions are substituted in Equation A20, we obtain 

CA23) 

All the time dependence of PACt) is in ~d, which appears in both 
the numerator and denominator. In a repetitively pulsed thermal 
lattice which has reached delayed-neutron equilibrium, ~aCt,E,t) 
has only a weak dependence on time over the pulse period. Since 
~d, having an even weaker dependence on time, appears in both 
the numerator and denominator of PACt), whatever time dependence 
there is in both numerator and denominator must very nearly cancel. 
Thus, it is reasonable to treat PACt) as independent of time and 
factor it out of the time integral. 

Similarly, we can show that SeffACt) is to a good approxima­
tion independent of time. Therefore, 

/0 
o <W, XT P ~ > TP dt 

(A24) 

f~O <W, XT P ~p > dt 
= -=----~~--.----

f~o <W, XT P ~d > dt 

Equation A24 is the Generalized Area Method equation. 

The Generalized Area equation also appears in the work of 
Becker and Quisenberry (Reference 13, Equation 43); however, that 
equation was derived under the assumption that both ~p and ~d were 
independent of time. Figures 2-4 clearly show that this is a very 
poor assumption. Also, no use of the equation was suggested by 
Becker and Quisenberry as a means of determining the subcritical 
reactivity from data collected with distributed neutron detectors. 

Kosaly and Fischer8 also derived the Generalized Area equa~ 
tion, but under the assumption that the prompt and delayed fluxes 
were expanded in terms of the kinetic eigenfunction set 

'" 
~p (t,E,t) _ l: 

i=l 
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d .... "" p"" Cli t and <p (r,E,t). - l: 1/Ji (r,E) Ti e 
i=l 

Here, the 1/JiP and 1/Jid are the modal shape functions for the prompt 
and delayed neutrons respectively. Thus, the objection to Becker 
and Quisenberry's use of a totally time independent shape function 
was removed. However, the Kosaly-Fischer derivation leads to the 
Generalized Area Equation with only W = <p; weighting. Neverthe­
less, they do give numerical examples of data from several distri­
buted detectors where both unit weighting and static adjoint 
weighting are used to find the subcritical reactivity according 
to the Generalized Area equation. The results are in agreement 
with the conclusions of this report. 

B. Approximations to the Genera1ized Area Method 

In Becker and Quisenberry's development, the shape functions 
1/JP and 1/Jd are assumed to be time independent. 1 3 If 1/JP and 1/Jd 
are assumed independent of time, then Equation A24 becomes 

<W, XT P ~ > 
= 

<W, XT P 

po TP dt 
o 

Becker and Quisenberry identify a normalization constant 

Thus 

N c 

<W, 

<W, 

e N effBQ c 
= -

(Bl) 

(B2) 

This is called the Becker-Quisenberry approximation for single 
detector analysis. 

The development of the even simpler Sjoatrand approximation 
requires only the identification that 1/Jg = 1/J O •

1 Then 

Nc = 1 and 
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PSjo 
S effS '" 

JO 

= -
/0 
o 

</JP dt 

/0 
o 

</Jd dt 
(B3) 

Clearly, the Sjostrand approximation is strictly valid only for 
a homogeneous lattice which is very small so that higher order 
harmonics are not excited appreciably. 

C. Derivation of the Prompt Neutron Eigenequation 

rhe following derivation of the prompt neutron eigenequation 
follows Preskitt's treatment.' Preskitt also starts with the 
basic diffusion theory (Equations Al and A2). However, he 
immediately expands the total neutron flux and precursor concen­
trations into a series of harmonic terms in which the shape 
functions are explicitly time independent. 

H1',E,t) 

Substitute Equations Cl 
after completion of the 
result is 

Ct t 
n 

Ct t 
n 

(CI) 

in Al and A2; restrict attention to time 
source burst; and eliminate C .. rhe 

n1 

(C2) 

A quantity Xk is defined as 

X. A. 
1 1 

B. 
1 

(,\. + 
1 

and called the kinetic spectrum operator. Equations Al and A2 
have evolved to the much simpler form 
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The pulsed neutron experiment has two very distinct time 
domains. Just' after the source burst, the prompt neutrons are 
far more numerous than the delayed neutrons. Thus, ~ ; ~p in 
most of the prompt decay region. All the prbmpt mode decay con­
stants are very much larger than any of the Ai values, the pre­
cursor decay constants. Thus, in the prompt region 

and the time eigenequation for the prompt neutrons is approxi­
mated by 

(C4) 

The other time domain of importance is the delayed neutron 
region where ~ ; ~d. In this region, the flux is decaying very 
slowly, at rates similar to the precursor decay constants Ai. 
Thus, the delayed modes must have decay constants that cluster 
about the Ai values; therefore, au/v « D in the delayed region. 
The delayed eigenequation is approximated well by 

But in the limit that an is very small, the kinetic spectrum 
operator approaches the total fission spectrum operator defined 
by 

Thus, 

o = (-D + XTP) tjJ~ (C5) 

Equation C5 is the source of the often made assertion that the 
delayed neutron, harmonic eigenfunctions are very similar to the 
static harmonic eigenfunctions. This is true because static codes 
solve 

_ xT" 
o = (-D + -k-) ~s 

eff 

where keff is the scale factor which assures neutron balance. 

- 31 -



Clearly. however. ~~ # ~~ in reflected reactors even for the fun­
damental mode. The non-equivalence of the prompt and delayed har­

. monic eigenfunctions gives rise to the phrase "kinetic distortion." 
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