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ABSTRACT 

Methods are developed for the calculation of the factor of 
improvement in the reliability of pressure vessels that can be 
obtained from the inservice inspection. The factor of improve-
ment is the ratio of the probability of vessel failure with the 
preservice inspection only to the probability of vessel failure 
with preservice and inservice inspections. Failure of the vessel 
is defined as crack growth to the critical size or through the 
vessel wall as given by the theory of linear elastic fracture 
mechanics. The numerical results show that when all other condi
tions are held constant, the factor of improvement is nearly ex
ponential with the number of inservice inspections. The number 
of inservice inspections are those in addition to the initial 
inspection and repair of cracks before th., vessel is placed in 
service. When very conservative assumptions are made for all 
factors that affect the exponential relation, factors of improve
ment of approximately 8000 are expected for three inservice 
inspections, optimally spaced during the service life of the vesset. 

For more reasonably assumed values, the factor of improve
ment is much larger, even in excess of 10 13

• These large factors 
assume 100% inspection of the vessel and are attained only when 
the schedule of the inservice inspections is optimized. The 
optimum schedules show large deviations from those in which the 
inspections are equally spaced throughout the service life of the 
vessel. In a typical case of three inservice inspections, the 
optimum schedule shows inspections at 8, 27, and 52% of the service 
life rather than 25, 50, and 75%. In many instances, two inservice 
inspections, optimally placed, will produce a bigger factor of 
improvement than three inspections spaced at 25, 50 and 75% of the 
service life. 
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FOREWORD 

The work described in this report was performed while the 
author was temporarily assigned to the U.S. Atomic Energy Com
mission (later the u.s. Nuclear Regulatory Commission) in Beth
esda, Maryland, from June 1973 to June 1975. 

This material was also presented orally by the author at 
the conference on Nondestructive EValuation in the Nuclear In
dustry conducted by the American Society for Metals, Technical 
Divisions and Activities at the Marriott Inn, Denver, Colorado, 
Dec·ember 1-3, 1975. 
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OPTIMIZATION OF INSERVICE INSPECTION OF PRESSURE VESSELS 

INTRODUCTION 

The probability that a nuclear reactor vessel will fail 
during its service life from the growth of cracks due to fatigue 
cycling has been shown to be extremely small. ' ,2 The probabil
ities shown in References 1 and 2 are generally in the range (99% 
confidence) of no more than 10- 5 to 10- 6 for a disruptive failure 
during one vessel-year. The discovery and subsequent repair of 
cracks in the vessel by inservice inspections will lower the 
probability of failure or increase the integrity of the vessel. 
Nuclear reactor vessels are inspected throughout their service 
life to achieve even lower probabilities of failure. This report 
presents an analysis and a calculational method of the merits of 
the inservice inspections of pressure vessels. 

THEORY' 

The following mathematical model of a probabilistic system 
is couched in general terms so as to avoid limitations of appli
cability that might otherwise result from restrictions to specific 
systems. It was anticipated during the development of these the
ories and methods that they would be applied to the probability 
that cracks in a vessel would grow to the critical size or through 
the wall of the vessel by the mechanisms postulated in the theory 
of linear elastic fracture mechanics. 

A large number or large population of entltles are given. 
Each entity is characterized by a vector of attributes, X; each 
attribute is a continuous random variable defined as nonzero on 
the closed interval [XL, XU]. Furthermore, the number of attri
butes associated with each entity is no larger than a countable 
infinity and, in fact, has a Poisson dictribution with the param
eter value, rn. 

The original density function of the attributes, X, is 

XL ~ x ~ XU 

o otherwise 
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The density function is censored by a systematic removal of 
individual values of the attributes, X, before the system is 
altered. Censoring with the probability expression, g(x), which 
gives exactly the probability that a particular-valued attribute 
will escape removal, produces the following density function: 

f (x) 
s 

fa (x) g (x) 

XU J fo(x) g(x) dx 

XL 

The alteration of the system is such that the attribute, X, 
undergoes a transformation of value; that is, x is transformed 
to y by the function y = t(x). This transformation is entirely 
deterministic; it has no probabilistic character associated with 
it. 

The question of concern about this system is: Will a given 
entity possess a value, y, of the attribute, X, in excess of some 
critical value, C , or some maximum value, Cm' after a specified 
alteration? The ~nswer can only be expressed in probabilistic 
terms because the values of X are random variables. Thus, it is 
proper only to ask: What is the probability that an entity will 
possess a value, y, of X in excess of Cv or Cm? The critical 
value, Cv , or maximum value, Cm, is a property of the system and 
is independent of the transformation. 

The concern is with the entity rather than the attribute; 
therefore it is necessary to form the density function of the 
maximum-valued attribute in each entity. This density function 
is given by 

where 

am 

and 

I 

f (x) - am- exp [ -am (1- I) 1 s 

fa (x) g (x) dx 

f (x) dx s 
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Two alternative ways to calculate the desired probability 
are: 

• Form the density function of the maximum-valued attribute 
after transformation; i.e., 

h (y) = f (x) IddXI 
m m y 

and integrate for y ~ Cv ' Or y ~ Cm' or what is equivalent. 

• Integrate f (x) as follows: 
m 

where 

Xc = t -1 (C
v

) 
v 

and 

Xc t -1 (C ) 
m m 

A further question of possible interest is how is the prob
ability that an entity possesses a value of the attribute, X, in 
excess of the critical or maximum value affected by an interrup
tion and censoring of the density function of the attribute, X, 
at some intermediate point during this alteration? 

This latter question is approached by exactly the same process 
as the original question. The density function f (y) is set equal 
to qO(y), and this series of "q" density function~ is carried through 
the same set of manipulations as the set uf "f" density functions. 
This two-step transformation will yield two probabilities, P and 
P2 , that are cor.,bined to yield the overall probability for t~e total 
transformation as follows: 

P
T 

will in general be less than that for the equivalent transforma
tIon without the intermediate censoring. 
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The system can be transformed and censored any number of 
intermediate times: 

P = I - ITCI-P.) 
T n 1 

PROBABILITY OF CRACK GROWTH THROUGH THE VESSEL WALL 

The theory developed in the preceding section is now applied 
to calculate the probability that a crack initially present will 
grow to or beyond the critical size or through the thickness of 
the wall by the mechanisms postulated by linear elastic fracture 
mechanics. Further, the calculation is extended to the improved 
probability or benefit obtained when the vessel is inspected and 
repaired at intermediate times during its service life. 

The first task is to select a specific expression for ~OCx), 
the density function of cracks in the reactor vessel as it IS 
manufactured. The number of cracks is assumed to decrease as 
the size of the crack increases. That is, there are more small 
cracks than there are large cracks. A simple density function 
that possesses this characteristic is the exponential density. 
However, this density has a domain from zero to infinity whose 
upper bound is surely beyond reality. No crack can be deeper 
than the wall thickness of the vessel. Although for calculational 
purposes, such an assumption might not be too bad, it is intui
tively more satisfying to select a beta density function for 
fO(x). The beta density has finite upper and lower bounds. The 
upper limit is selected as 10 inches, the assumed thickness of 
the vessel. The lower bound need be only low enough so that the 
smaller crack never grows to critical or maximum size during 
any of the postulated service of the vessel. In this instance, 
the lower bound is selected as 0.2 inch. This selection avoids 
the necessity of having to jUdge how many cracks have sizes be
low the lower bound. The expression for fO(x) is taken to be 

I y-l T)-l 1 
= B( ) (x-0.2) (IO-x) I 

T),y 9.8T)+Y-

where 

B(T).Y) = beta function of eta and gamma 

This expression satisfies the requirement of a density 
function that its integral over the interval [0.2, 10] equals 
unity for all values of T) and y. The beta density is rendered 
specific by the selection of values for T) and y to fit the 
assumed known distribution of cracks in the manufactured vessel. 
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The next step is to select an expression for g(x), which is 
the probability that a crack will escape detection during the 
nondestructive examination procedure. Again, this selection is 
arbitrary, needing only to fill the requirement that it be reason
able. The selection in this instance was 

g (x) 

where 

PXW exp[-GF(x-ALL) ] 

ALL 

GF ,PXW 

lower limit of detection method 

parameters 

Because the average number of cracks, "m," i.e., those greater 
than 0.2 inch, is small for a given vessel, it is possible to sim
plify the equation presented in the previous section of theory. 
In particular, 

am·exp[-am(l-I)] 

in the expression for f (x) can be set equal to "am." This is 
possible because exp[-aill(l-I)] is very nearly equal to unity for 
a small value of "am." Further, 

and 

10 

am m f fO(x) g(x) dx 

0.2 

The transformatinn mentioned in the section on theory is now 
taken to be the growth of cracks during the stress cycling that 
the vessel undergoes during service. Small cracks get larger, 
and possibly some cracks grow to sizes larger than critical or 
maximum. The amount of growth is given by the theory of linear 
elastic fracture mechanics. The relation used here is given by 

dN 
da 
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where 

a = maximum stress during cycle 

Krc fracture toughness 

a = crack depth 

N number of cycles 

R = ratio, a(min)/a(max) 

c,n,a parameters 

The integration of the above differential equation yields 

N ~( (2-n)/2 (2-n)/2] B [C3-n)/2 (3-n)/2] 
2 a -a --- a -a -n 0 3-n 0 

where 

depth of original crack • 
a = depth of grown crack 

A 
2Krc = 

C(l_R)n-l an Crra)n/2 

B = 2a(rra)l:i 

C(l_R)n-l crn (rra)n/2 

The critical size of the crack is given by 

a =( Krc)2 ~ 
carra 

This is the value of "a" for which the numerator of dN/da 
equals zero or for which the rate of growth of the crack is in
finite. 

The equation for the crack size as a function of the number 
of cycles and the original size is nonlinear in crack size. Con
sequently, it cannot be solved by the usual finite methods. Spe
cificallY, no finite method will provide a value of "a" when aO and N are given. However, in this instance, a Newton-Raphson 
method is used to obtain the desired solution. 
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Figure 1 shows how all the formulas, assumed to fit a real 
case, are put together to yield the required result. The line 
at the top of XL to XU, or from 0.2 to 10, is the domain of the 
original density function, fO(x). The inspection or censoring 
with subsequent repair does not change the domain nor does it 
change the sizes of any of the cracks. All that is changed is 
the number of cracks. The censored function is 

f (x) 
s 10 f fO(x) g(x) dx 

0.2 

The denominator is just the fraction of cracks that remain after 
inspection and repair. The number of cracks that remain after 
inspection and repair is 

m J fO(x) g (x) dx 

0.2 

When this latter quantity is put into the expression for f (x) 
s and the exponential factor is set equal to unity, 

XL C(I,3) C{I,3)C(I,n xu 
to (xl iii t 

I Censor I I I 

fo (xl ~ \ '\ '\ t,"-. 
1\ \ \ \ I~ ......... 

fs (x) I \ Transform 300 \ \ \ C(2,1) I "-.... '-.... 

_ I' \. ___________ ~C{'_=2"',3~)\_\_\I-.:\'i'C, ~(2o:,2,,)\__'\.;_:,CG(1I-1,- _____ "_'::: ~ 
fs (y)- qs (y) I 

Censor I I I I 
( ) I , I I I I qs Y I (,,, ___ 

I 
\ '\ '", ---I ......... 
\ '\ '" 1-____ 

I \ Transform 500 \ "", IC(3,2) "-...-.... 

I \ '\ C(3,2}"-,ICGJ..2l ____ ---':::-...:0.. 
qs(z)",s(z), I I I 

I I Censor i! 
's (z) I \ \ I ' 

I \ \ I', 
I \ Transform 700 \ C{4,3)j "'" 
I \ >(;G{3)1 "-

rs{w) J \ ') -I------~ 
I I I 

I I 

FIGURE 1. Scheme of Calculations 
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Now, the fracture mechanics equation is solved for CG(I), 
which is the critical size crack for the material and stress 
level. If this value is larger than the thickness of the vessel 
wall, CG(l) is set equal to the wall thickness. Also, the equa
tions are solved to obtain the size crack, C(l,l), that will just 
grow to the critical size in the specified number of cycles. 
Thus, the probability that a given vessel will fail during this 
period is just 

CG(I) 

P {vessel failure} = m ~ fm(x) dx 

C(l,l) 

CG (1) 

P {vessel failure} = m r fo(x) g(x) dx 

d(l,l) 

If the vessel is inspected and repaired at the end of this 
first period and is followed by a second period of stress cycling, 
there is a second probability of failure due to cracks smaller 
than C(l,l) growing to critical. Solution of the fracture mechan
ics equation yields a size, C (1, Z), for cracks that will grow 'to 
critical in two prescribed cycling periods. Likewise, cracks be
tween sizes C(I,3) and C(l,Z) will grow to critical in a third 
period. 

The transformation due to crack growth short of critical in 
any period is treated by making the mathematical change of vari
able. For example, a crack size, x, in the interval [C(I,Z), 
C(l,ll] grows during the first period to a size, y, in the inter
val [C(Z,Z), C(Z,l)]. Consequently, the probability of failure 
during the second period is 

CG (Z) 

P {vessel failure} = m r fO (x) g (x) I ~~ I g (y) dy tcz, Z) 

This expression is more easily evaluated by calculation of its 
equivalent, 

cel,l) 

m r fO (x) g (x) g (y) dx 

del, Z) 

If the second transformation produces a change from y to z 
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in crack size, then the probability of failure during the third 
period is 

P {vessel failure} 

Again, 

P {vessel failure} 

CG (3) 

f fO(x) g(x) 1~~lg(y) l;ifl g(z) de 

C (3,3) 

C(I,2) 

m f falx) g(x) g(y) g(z) dx 

C (1 ,3) 

Each of the probabilities for each interval between inspections 
can be calculated. The fa and all of the g functions are assumed 
to fit known data. The C and CG crack sizes are given by the 
theory of linear elastic fracture mechanics. 

If P. is the probabllity of failure during the ith period, 
then the probability of failure during some period is 

P {vessel failure sometime} = 1 - ITCI-P.) 
n 1 

When the Pi are all small, as is normally the case, the above 
expression reduces to approximately 

Finally, this last quantity is compared to the probability of 
failure when there are no intermediate inspections but only the 
preservice inspection to obtain a value for the factor of improve
ment that results from the periodic inspections. 

SOME NUMERICAL RESULTS 

Four computer programs were 'Hi tten in FORTRAN for the compu
tations described in the previous sectioll. 

Computer Program I is used to calculate eta and gamma in the 
beta function of the cracks as they occur in the as-manufactured 
vessel. The function is always assumed to be of the form 

1 y-l 11-1 1 
fa (x) = B(n ,y) (x-a. 2) (la-x) --=---~ 

" 9.s 11 +Y- 1 
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This function says that the cracks are all equal to or greater 
than 0.2 inch and equal to or less than 10 inches. The upper limit 
is the assumed wall thickness of the vessel. If the vessel under 
consideration has a wall thickness other than 10 inches, the density 
function must be altered accordingly. The lower limit of 0.2 inch 
is arbitrary, only small enough so that no smaller cracks can grow 
to the critical or maximum size during the service life of the ves
sel. The parameters, nand y, are shape parameters that determine 
how much of the density falls in specific areas. For example, when 
it is assumed that there are IS cracks larger than 0.2 inch in 1000 
vessels distributed as follows: 

IS cracks ~0.2 inch 
S cracks ~0.5 inch 
3 cracks ~1.0 inch 

Then 

1.0 

ols 
fo ex) dx 

5 0.2778 -= IS 

and 

10 f fo ex) dx 3 0.1667 IS = 
1.0 

The computer program produces values of these two integrals for 
various combinations of nand y. If n = 14.7 and y = 0.66, the 
integrals are 0.2794 and 0.1671. Two sets of nand y were selec
ted for illustrative calculations. These two choices are desig
nated as follows: 

Density 

1 

2 

n 
14.7 

9.S 

Y 

0.66 

0.60 

Integral 1 

0.2794 

0.2649 

Integral 2 

0.1671 

0.2486 

Thus, density 2 is more conservative than density 1 because a 
larger fraction of cracks are in the interval [1.0 to 10.OJ. 

Two choices were also made for the mean number of cracks 
larger than 0.2 inch in the manufactured vessels. They are, re
spectively, 0.018 and 0.050. This means that 1000 vessels have, 
respectively, 18 and 50 cracks larger than 0.2 inch. The follow
ing table shows the distributions for these assumptions: 
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Crack (x), 
inch 

;::0.2 
)0.5 
)1. 0 

18 Cracks/l000 Vessels 
Density 1 Density 2 

18 
8.04 
3.01 

18 
9.24 
4.47 

50 Cracks/1000 Vessels 
Density 1 Density 2 

50 50 
22.33 25.68 
8.36 12.43 

Figure 2 shows the characteristics of these two density 
functions. Also, the censored density function after the initial 
preservice inspection of the vessel is shown in Figure 2. 

1.0 

0.1 

f (xl 

0.01 

o 

10(x) = S--(I l(x-O.2)y-1 (10-x)~-I_-'-+~_1 
~,Y 9.8~ Y 

Censored 

1.0 

'7 = 14.7 
y= 0.66 

2.0 
Crack Depth, inches 

3.0 

FIGURE 2. Density Functions of Cracks in Vessel 
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The inspection of the vessel for cracks is not likely to be 
perfect. There is some probability that a crack, no matter how 
large, will escape detection and will not be repaired. This situ
ation is expressed as 

PXW g(x) = exp[-GF(x-AAL) 1 

where 

ALL = lower limit of detection 

GF parameter 

PXW = parameter 

The quantity g(x) is the probability that a crack of size x will 
escape detection. 

Two sets of parameters with the following designations were 
used for the calculations: 

Set 1 ALL 
GF 

PXW 

0.1 
2.0 
0.5 

Set 2 ALL 0.1 
GF = 2.7 

PXW 0.8 

The following table shows values of g(x) for these two sets' 
and various values of x, the crack depth: 

Crack (x) , eJx) 
inch Procedure 1 Procedure 2 

0.1 1.000 1. 000 
0.2 0.531 0.652 
0.5 0.282 0.273 
1.0 0.150 0.084 
2.0 0.063 0.0110 
5.0 O. 0119 6.59E-05 

10.0 0.00185 4.58E-08 

The inspection procedure 2 is obviously better in detecting large 
cracks that could possibly grow through the wall of the vessel. 
In fact, procedure 1 is rather "poor" because it presumes that 
large cracks can very easily be missed. Figure 3 shows each of 
these two functions. 
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l.or:;:-----,-----.,-------r----::J 

0.1 

9 (x) 

g(x)=exp [-2.7(x-O.1)0.8] 

0.01 

0.001 

a ).0 2.0 3.0 
Crack Depth, inches 

'FIGURE 3. Efficiency of Detection of Cracks 

Two sets of parameters were used for the fracture mechanics 
equation. Set 1 is taken from Reference 4, and the rate of crack 
growth is everywhere larger than the data of Section XI of the 
ASME, BSPV Code. Set 2 is identical with the first except that 
the fracture toughness is 150 rather than 200. This incorporates 
some conservatism for the possibility that the fracture toughness 
may decrease during the service life of the vessel as a result 
of neutron irradiation. The two sets are: 

Set 1 KIC = 200 Set 2 KIC 150 

C = 9.372E-06 C = 9.372E-06 
n = 2.342 n = 2.342 
(J 26.7 a = 26.7 
ct = 1.0 ct = 1.0 
R 0.0 R 0.0 
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The service life of the vessel as used here is expressed in cycles, 
for example, 600 and 1000, rather than in units of time. Again, 
these values are presumed to be very long and conservative. For 
example, in the studies given in Reference 5, the 40-year service 
life of the reactor system consists of 360 stress cycles. 

computer Program II is used to calculate the probability of 
vessel failure during its service life with only a preservice in
spection and repair. The calculation is made in exact accordance 
with the equations and theory developed in the previous sections. 
No assumption is made concerning the proportionality of the proba
bility of failure to the mean number of cracks larger than 0.2 
inch per vessel. This program does indeed show that the propor
tionality holds when the mean number of cracks greater than 0.2 
inch is less than about 5. Because the assumption is a good one 
for all cases of interest, it is used in Computer Programs III 
and. IV. Computer Program II shows that the probability of failure 
approaches unity when the mean number of cracks per vessel approaches 
infini ty. 

Computer Program III is used to calculate the factor of im
provement in the failure probability when an arbitrary inspection 
schedUle is entered as input. The factor of improvement is de
fined as the ratio of the probability of failure when the only 
inspection is the preservice one before the vessel is placed in 
service to the probability of failure when one or more inservice 
inspections are made. 

The data obtained by the use of this program show that the 
factor of improvement is very sensitive to the times of the in
service inspections. In general, much larger factors of improve
ment are obtained when the inspections are conducted during the 
early parts of the service life. This is in marked contrast to 
spacing the inspection uniformly over the service life. 

Figure 4 shows an example of the dependence of the factor of 
improvement upon the time of the inspection. This graph is for 
one inservice inspection only, because it is difficult to show 
graphically more than two dimensions. However, the same general 
characteristics apply to two or more inservice inspections. The 
notable features are the sharpness of the peak or maximum and the 
rapid decline beyond the peak. The factor of improvement of 64 at 
zero cycles is what would result from two inspections rather than 
one just before placing the vessel in service. At the halfway 
point of 500 cycles, the factor of improvement has fallen from a 
maximum of 234 to 80. A schedule that spaces the inservice in
spections uniformly over the service life wastes time and is very 
inefficient. In many cases, it would be better to make only two 
inservice inspections, optimally spaced, rather than three in
service inspections spaced at 25, 50, and 75% of the service life. 
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FIGURE 4. Factor of Improvement as Function of Inspection Time 

The discovery that the factor of improvement is so strongly 
dependent upon the inspection schedule pointed out the need for 
an optimization method, preferably a computer program. It is 
relatively easy to optimize the schedule when there is only one 
inservice inspection as shown in Figure 3. But when two or more 
inspections are involved, the multidimensional task of trial and 
error becomes too time-consuming and inefficient. 

Computer Program IV is used to calculate the optimum schedule 
for any number of inservice inspections. The program operates to 
find the one schedule that will result in the largest factor of 
improvement. The program is an iterative one. 

A complete listing of calculatiorls for all combinations of 
assumptions is given in Tables 1-4. The features mentioned in 
the earlier discussion are all apparent from these results. Table 
4 is not complete because some of the optimum schedules are not 
listed; however, values have been filled in for the probabilities 
of failure and the factors of improvement for all cases. These 
latter quantities were all estimated by the methods described in 
the following paragraphs. These estimates are all expected to be 
slightly on the low side; they were in all instances when the 
exact calculations were made. 
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When all other conditions are held constant, the factor 
of improvement is nearly exponential with the number of inser
vice inspections. This empirical observation is expressed as: 
Factor of improvement (FI) ~ exp[a x number of inspections (N!)]. 

The following data are derived from Tables 1-4: 

Factor of Number of 
Improvement (FI) Inspeotions (NI) 

" 
135 1 4.91 

14700 2 4.80 
1.33E+06 3 4.73 

41321 1 10.63 
1.04E+09 2 10.38 
2.16E+13 3 10.23 

4501 1 8.41 
1.57E+07 2 8.28 
5.10E+I0 3 8.22 

1004 1 6.91 
8.10E+05 2 6.80 
6.18E+08 3 6.75 

36 1 3.58 
1180 2 3.54 

37100 3 3.51 

24 1 3.18 
495 2 3.10 

9670 3 3.06 

243 1 5.49 
50500 2 5.41 
9.96E+06 3 5.37 

22 1 3.09 
422 2 3.02 

7930 3 2.99 

The above data show that even conservative assumptions 
about the materials and the operating conditions lead to tKe 
result that a is 3.0 or greater. This conservative value for 
a corresponds to sizable factors of improvement as a result of 
inservice inspection. For example, typical factors of improve
ment should be in excess of: 

Number of Faotor of 
Inspections (NI) Improvement (PI) 

1 20 
2 400 
3 8100 
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TABLE 1" 

Some Numerical Examples 

Mean Size 
Number Fraction That 
of C:racks of Cpacks G1"OWS Pvobabi Zi t'!i at Failure 

Fracture Beta Inspeation per TotaZ After' ThX'Ough No Preseroice 
Mechanics Density Funotion Vessel Cydes Inspeetion Wall Inspeotion In8pection 

0,018 bUU 0.308 4.35 2.06E-06 2.55E-08 

0.0$0 bOO 0.308 4.35 5.72E-06 7,93£-08 

0,018 600 0.322 4.35 2.06E-06 2.41£-10 

0,050 600 0.322 4.35 5.72E-06 6.70E-I0 

0,018 600 0.283 4.35 2.90E-05 3,79E-07 

0,050 600 0.283 4.35 8.07E-05 1.05£-06 

D.018 600 0.290 4.35 2.90E-05 2.91£-09 

D,050 600 0.290 4.35 8.07E-05 8.10£-09 

0.018 1000 0.308 3.05 4.92E-05 1. 28E-06 

0.050 10DD 0.308 3.05 1. 37E-04 3,56£-06 

2 0,018 1000 0.322 3.05 4.92£-04 4.63£-08 

0,050 1000 0.322 3.05 1.37£-04 1.29E-07 

0,018 1000 0.283 3.05 2.53£-04 6.09E-06 

0.050 1000 0.283 3.05 7.01E-04 1. 69E-05 

2 0.018 1000 0.290 3.05 2.53£-04 2.00E-07 

2 0.050 1000 0.290 3.05 7.01E-04 5.55E-07 

0.018 600 0.308 2.45 1.74£-04 6.31E-06 

0.050 600 0.308 2.45 4.84E-04 1.75E-05 

2 0.018 600 0.322 2.45 1.74E-04 4.47E-07 

0.050 600 0.322 2.45 ~ 4~84E-04 1.24E-06 

0.018 600 0.283 2.45 6.04E-04 2.012-05 

0.050 600 0.283 2.45 1.68E-03 5.57E-OS 

0.018 600 0.290 2.45 6.04E-04 1.29E-06 

0.050 600 0.290 2.45 1. 68E-03 3.59E-06 

0.018 1000 0.308 1. 60 9.44E-04 5.9IE-OS 

0.050 1000 0.308 1.60 2.62E-08 1. 04£-04 

2 0.018 1000 0.322 1. 60 9.44E-04 1. 12E-OS 

0.050 1000 0.322 1.60 2.62£-03 3.12£-05 

2 0.018 1000 0.2G:i 1. 60 1,96E-03 l.IlE-04 

0.050 1000 0.283 1. 60 S.43E-03 3. 09E-04 

0.018 1000 0.290 1. 60 1.96E-03 . 93E- U;:, 

0.050 1000 0.290 1. 60 5.43E-03 5.37£-05 

a. Tables 1 through 4 are intended to be continuous when plac~d ~ide by side. The nth line i, 
continued from table to table to represent a Single case. 
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TABLE 2 

NUMERICAL EXAMPLES FOR ONE INSERVICE INSPECTION 

Probability Factor- of Probability PaatoY' of 
:;ycles of FaiZure Improvement Cyoles of Failure Improvement 

300 2.28£-10 125 267 2.11E-10 135 

300 6.33E-10 125 267 5.86E-10 135 

300 7.35£-14 3281 212 5.83£-15 41321 

300 2.04E-13 3281 212 1.62E-14 41321 

300 6. 64E- 09 57 201 3.24E-09 Il7 

300 1.84£-08 57 201 8.98£-09 117 

300· 5.44£-12 536 162 1.06£-13 27357 

300 1.51£-11 536 162 2.96E-13 27357 

500 1. 85£-08 69 434 1.64E-08 78 

500 5.13£-08 69 434 4.SSE-08 78 

500 3,35£-11 1382 382 6.97E-12 6641 

500 9.30£-11 1382 382 1.94E-11 6641 

500 l.80E-07 34 334 9.IDE-OB 67 

500 5.00E-07 34 334 2.53£-07 67 

500 5.93E-I0 337 314 4,44E-11 4501 

500 1.65E-09 337 314 1.23E-I0 4501 

300 2.77£-07 23 194 1.58E-07 40 

300 7.70E-07 23 194 4.38E-07 40 

300 3,13E-09 143 187 4.45E-10 1004 

300 8.09E-09 143 187 1.24£-09 1004 

300 1.72£-06 12 132 5.35£-07 36 

300 4.78E-06 12 132 1.54£-06 36 

300 2.21E-08 58 147 1. 64£- 09 786 

300 6.15E-08 58 147 4.S7E-09 786 

500 4,01£-06 IS 329 2.47E-06 24 

500 1. lIE-OS 15 329 6,86E-06 24 

500 1.41£-07 80 352 4.61E-08 243 

500 3.91£-07 80 352 1. 28£-07 243 

500 1. 22E-05 9 236 S.14E-06 22 

500 3.52E-OS 9 236 1.43£-05 22 

500 4.79E-07 40 297 9.8SE-08 196 

500 1.33£-06 40 297 2.74E-07 196 
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TABLE 3 

Numerical Examples for Two Inservice Inspections 

Cycles 

200, 400 

200, 400 

200, 400 

200, 400 

200, 400 

200. 400' 

200, 400 

200. 400 

3.33. 666 

333, 666 

333, 666 

333, 666 

333, 666 

333, 666 

333, 666 

333, 666 

200, 400 

200, 400 

200, 400 

200, 400 

200, 400 

200, 400 

200, 400 

200, 400 

333, 666 

333. 666 

333, 666 

333, 666 

333, 666 

333, 666 

333, 666 

333, 666 

Pl'obabi Zi ty 
of FaiZu'I'e 

5.68E-12 

1.58E-11 

4.29E-16 

1.19E-15 

3.87E-1O 

1.07E-Qg 

1.17E-13 

3.24E-13 

6,98£-10 

1,94E-09 

2,66E-13 

7.39E-13 

1.39E-08 

3.86E-08 

1.44E-11 

4.01E-11 

2,89E-08 

8.03E-08 

1.33E-I0 

3.70E-1O 

3.22E-07 

8.95E-07 

1.81E-09 

5.03E-09 

5.22E-07 

1.45E-06 

6.95E-09 

1.93E-08 

2.07E-06 

7.42E-06 

4.19E-08 

1.16E-07 

Factor' of 
Impl'ovement 

5030 

5030 

5.02E ... 05 

5.02E.05 

979 

979 

2.50E+04 

2.50E+04 

1835 

1835 

1.74E+05 

1.74E+05 

439 

439 

13800 

13800 

218 

218 

3357 

3357 

62 

62 

714 

714 

113 

113 

1617 

1617 

42 

42 

461 

461 

Cyoles 

162, 294 

162. 294 

93. 271 

93. 271 

101. 234 

101, 234 

52, 232 

52. 232 

262. 495 

262, 495 

184, 499 

184. 499 

170, 408 

170, 408 

122, 450 

122, 450 

95, 238 

95, 238 

73, 265 

73, 265 

48, 183 

48, 183 

42. 236 

42. 236 

169, 419 

169, 419 

160, 491 

160, 491 

95. 340 

95, 340 

Ill, 453 

111. 453 
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Probability 
of Failure 

1.94£-12 

5.39£-12 

2.32E-19 

6.44E-19 

3.32E-11 

9.21E-11 

5.31E-18 

1.48E-17 

2.63E-I0 

7.3lE-I0 

1.59E-15 

4.42E-15 

1.63E-09 

4.53E-09 

1.27£-14 

3.54£-14 

4.57E-09 

1. 27E-08 

5.52E-13 

1. 53E-12 

1.70E-08 

4.72E-08 

2.29E-12 

6.37E-12 

1.19E-07 

3.31E-07 

2.22£-10 

6.18E-I0 

2.03E-07 

7.32£-07 

5.76E-I0 

1.49E-09 

Fador of 
Improvement 

14700 

14700 

1.04£+09 

1.04E+09 

11400 

11400 

S.48E+08 

5.48£+08 

4810 

4810 

2.92E+07 

2.92E+07 

3730 

3730 

1.57E+07 

1.57£+07 

1380 

1380 

8.10E+05 

8.10£+05 

1180 

1180 

5.04£+05 

5.64£+05 

495 

495 

50500 

50500 

422 

422 

36000 

36000 



TABLE 4 

Numerical Examples for Three Inserv;ce Inspections 

Cyales 

150. 300, 450 

150, 300, 450 

ISO. 300. 450 

150, 300, 450 

150, 300, 450 

150, 300, 450 

150, 300, 450 

150, 300, 450 

250. 500, 750 

250, 500, 750 

250, 500, 750 

250, SOD, 750 

250, SOD, 750 

250. 500, 750 

250, 500, 750 

250, 500, 750 

150, 300, 450 

150, 300, 450 

ISO, 300, 450 

ISO. 300, 450 

ISO, 300, 450 

150. 300 J 450 

150, 300, 450 

150. 300, 450 

250, SOD, 750 

250. SOD. 750 

250, 500, 750 

250, 500. 750 

250, SOD, 750 

250, 500, 750 

250, 500, 750 

250, 500, 750 

ProbahiUty 
of Failure 

3.DSE-13 

S.47E-13 

9.84E-18 

2.74E-17 

4.46E-ll 

1.24E-lO 

7.36E-IS 

2.0SE-14 

S.OSE-ll 

1.41E-lO 

7.48E-IS 

2.08E-14 

1.94E-09 

S.88E-09 

9.76E-13 

2.71E-12 

S.lSE-09 

1.43E-08 

1. 86E-ll 

3.68E-ll 

9.31E-08 

2.59E-O? 

3.D3E-!a 

8.41E-I0 

1.06E-07 

2.96E-07 

7.66E-I0 

7.13E-09 

8.27E-07 

2.30£-06 

7.21£-09 

2.00£-08 

Factor of 
Improvement 

93600 

93600 

2.45E+07 

2.45E+07 

8505 

8505 

3.96E+06 

3.96E+06 

25200 

25200 

6.19£+06 

6.19E+06 

3146 

3146 

2.05E+06 

2.05E+06 

1227 

1227 

33000 

33000 

216 

216 

4269 

4269 

555 

555 

14700 

14700 

134 

13. 

2680 

2680 

Cycles 

104. 183. 316 

104, 183, 316 

43. 134, 315 

43. 134,315 

49, 219, 542 

49, 219, 542 

29, 130. 319 

29, 130, 319 

19, 76. 226 

19, 76. 226 

94. 233, 488 

94, 233, 488 

77. 274, 581 

77. 274, 581 

42, 158, 424 

42, 158, 421 
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Proobahi lity 
of Failure 

1.98E-14 

5.51E-14 

1.12£-23 

3.10E-23 

4.09E-13 

1.13£-12 

3.07E-22 

1.02E-21 

5.16E-12 

1. 44E-11 

5.59E-19 

1.56E-18 

3.52E-11 

9. 77E-11 

3.92E-18 

1.09E-17 

1.59E-I0 

4.41E-I0 

7.23E-16 

2.01E-15 

5.42E-I0 

1.50E-09 

3.55£-15 

9.89E-15 

6.11E-09 

1.70E-08 

1.12E-12 

3.13E-12 

1.40E-08 

3.90E-08 

3.05E-12 

8.50£-12 

Factor of 
Imp'f'oVement 

1.44ET06 

1.44E+06 

2.16£+13 

2.16E+13 

9.27E+05 

9.27E+05 

7.92E+12 

7.92E+12 

2.48E+05 

2.48E+05 

8.28E+I0 

8.20E+I0 

1.73E+05 

1.73£+05 

5.10E+I0 

5.10E+I0 

3.97E+04 

3.97E+01 

6.18E+08 

6.18E+08 

3.7lE+04 

3.71£+04 

3.63E+08 

3.63E+08 

9670 

9670 

9.96E+06 

9.96E+06 

7930 

7930 

6.32E+06 

6.32E+06 
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