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ABSTRACT 

Several examples of probabilistic models often used to 
analyze fault trees, common mode failures, and decision trees 
are discussed to show that each is a special case of a general 
model. The general model is PAR (Probabilistic Analysis of 
Risks), and its use enhances the understanding and interpretation 
of this type of analysis. Experience with this method of anal
ysis over the past few years has shown that the generality 
originally incorporated in the method may have obscured its real 
usefulness. Many types of real life situations (fault trees, 
event trees, decision trees, and common mode failures) are 
special cases of the PAR method. The numerical answer that 
results from the analysis of anyone of these special cases is 
not likely to be as accurate as a single number implies. The 
content and extent of the analysis are more important than the 
single numerical answer. A broad range of meaning, significance, 
and implications can be reviewed by examining these problems 
through the generality of the PAR method. The PAR method was 
intentionally designed to provide a flexibility that would assist 
in easing the task of assembling and reviewing the input data, 
especially in those cases where the data must reflect primarily 
judgment factors. Greater generality will hopefully prevent the 
false sense of security provided by a single numerical answer 
and a restricted view of the problem. 
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QUANTITATIVE SAFETY ANALYSIS - II 

I NTRODUCTI ON 

The Research and Development Report, DP-1207, Quantitative 
Safety Ana~ysis> J. W. Croach and L. M. Arnett, April 1970, 
presented an analytical method and a computer program to assess 
the safety of an operation or of a mission.' Although the 
Probabilistic Analysis of Risk (PAR) method was recognized as 
being of considerable generality, some of the specific embodiments 
and special cases were not clearly delineated for the reader of 
the earlier report. This report is an attempt to present some 
further explanations and clarifications that have resulted from 
experience with the method. 

It is believed that the more general the framework of the 
analysis, the more likely will the analyst understand the results 
of the procedure. The restriction of attention to special cases 
may well produce valid numerical results, but some of the 
implications, extensions, and interpretations may be missed . 

Although the detailed examination of how and why the PAR 
method and its computer program works seems involved and intricate, 
the use of the procedures and the interpretation of the results 
are disarmingly routine. A little experience with this method 
soon reveals that the consideration of real probelms results in 
rather simple and easily understood logical structures. Various 
sets of restrictions on variables in the PAR method produce the 
special cases such as fault trees, event trees, decision trees, 
and common mode failures. 

The probabilistic problem is specified by listing a set of 
n declarative statements including one statement whose probability 
of truth or falsity answers the question of concern. The set of 
n declarative statements are ordered tro~ 1 to n. The order is 
completely arbitrary, but in an actual situation the order will 
be found to be ~'ery natural. The following set of conditional 
probabilities including the unconditional probability, pel), 
defines the entire problem: 
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P (1) 

P (211) 

p(ZI!) 

p(3I Z,1) 

p(3IZ,1) 

p(3IZ,1) 

p(3IZ,1) 

p(klk-l, k-Z, 2,1) 

p(klk-l, k-Z, 2,1) 

P(nln-l, n-2, Z,l) 

P(nln-l, n-2, 2,1) 

(nln-l, n-Z, 2,1) 

P(nln-l, n-2, Z,l) 

The input for the PAR computer program does not require any 
probabilities that equal zero. The large number of independencies 
and zero probabilities that are encountered naturally in real 
problems reduces most problems to a size much smaller than that 
implied by the theoretical statement. 
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REVIEW OF PROBABILITY THEOREMS 

This brief review of some theorems and axioms of probability 
is not complete nor necessarily rigorous, in a mathematical sense, 
but rather it contains some reminders of concepts that help to 
clarify the material that follows . All of the following material 
can be found in standard texts on probability (for example, 
Reference 2). 

A probabilistic experiment is a prescribed procedure that 
results in one of several mutually exclusive and exhaustive out
comes. For example, when three coins are tossed and allowed to 
fall at random , each coin must show either a head or a tail. 
This experiment can produce only eight outcomes when the three 
coins are distinguishable: 

HHH, THH, HTH, HHT, TTH, THT, HTT, TTT 

These outcomes are mutually exclusive because only one outcome 
can be the result of the experiment, and they are exhaustive 
because one of the outcomes in the list must be the result. The 
list of outcomes is said to constitute the sample space or the 
certain event. The list of outcomes is a set of outcomes. A 
subset of the sample space is an event. For n elements in the 
sample space, there are 2n subsets or events when the empty set 
containing no elements is counted. 

To each event or subset, a number is assigned in the closed 
interval zero to unity. This assigned number is called the 
probability. These numbers must satisfy three axioms; viz. 

• Axiom I: 

• Axiom II: P (S) = 1 

The probability of the sample space, S, 

which means some element in the space, is equal to unity. 

• Axiom III: If Eln Ez= jl (empty), then 

If events EJ and Ez are mutually exclusive, i.e., the intersection 
of the two sets that define the events contain no elements in 
common, then the probability of E, or Ez is the sum of the prob
abilities of E, and Ez separately. It can be shown that all the 
theory of probability can be deduced from these three axioms. 
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A physical interpretation of probability i s likely to be 
more meani ngful or more effective in establishing the concept in 
one's technical thinking. If the given experiment were to be 
repeated a large ~umber of times, eventually approaching infinity, 
then the probability of the event £ is the ratio of the number 
of times the event E occurs, nE, to the total number of repe
titions, nT, of the experiment: 

peEl lim nE 
nT-- nT 

The selection of subsets to be considered as events is arbitrary 
and needs to be only sufficient to answer the questions in a 
specific instance. For example, when three coins are tossed and 
there are eight outcomes in the sampl e space, the interest may 
be only in how many heads are showing. Thus, there are only four 
events; viz., 

Event Out aomes 

0 - heads TTT 

1 heads HTT, THT, TTH 

2 - heads HHT, HTH, THH 

3 - heads HHH 

There equally well might have been only two events if the interes t 
were confined to some heads and no heads. 

Sometimes two events may include outcomes in common. For 
example, when a die is rolled, the face showing may be both even, 
E1, and larger than three, £2 . In set notation, this is shown by 

£2 = {4,S,6} 

Both the outcomes 4 and 6 appear in the subsets that define EI and 
E2, and if either of these outcomes occurs, then both events occur. 
In thi s situation, the events are said to be joint. Otherwise, 
when the two events cannot both occur, then the two events are 
said to be disjoint, and 

When two events are joint, i.e . , they could both occur, th e prob
ability that they will both occur is defi ned as 
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P(EIE2) = p(E 2 IE 1 )'P(El) 

= P(EIIE2)'P(E2) 

where P(E2IEl) is the conditional probability of E2 given that 
E, has occurred. These conditional probabilities are probabilities 
in a restricted sample space because it is given or known that a 
specified event has already happened. For example, the probability 
that the face of a die is greater than 3 given that the face is 
even is 

P(>3Ieven) P(>3 and even) 
P(even) 

The correctness of this result is readily seen by examining the 
structure of the subsets of the events: 

Even {2,4,6} 

>3 {4,S,6} 

Two times in three trials the face will be greater than 3 given 
that the face is either 2, 4, or 6. This theorem can be 
extended to any number of events as follows: 

P(EIE2E3) = P(E3IE zEl)'P(EzIE1)'P(El) 

= p(EzIE3El)'P(E3IEl)'P(El) 

= P(EIIE3 EZ)·P(E3IEz)·P(E2) 

The various relationships between juint and conditional 
probabilities can be summarized in the expressions: 

= P(X_ :X.)·P(x. ) 
1 J J 

P (X . I x. ) • P (X. ) 
J 1 1 

= P(XjIXk)'P(XiIXjXk) 

p(xilxk) 'P(X j Ix,xk) 

Xi' Xj ' and Xk repre~ent set.s such as {abc ... i}, where a, b, c, 
... • i arc simple l~n.' llt~. 
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By De Morgan's law, the complement of an intersection, AB, 
is not equal to the intersection of the complements but rather 
is the union of all sets that contain at least one complementary 
set; e.g. 

From Axiom II I, 

P(AS) # peAS) 

~ P(AB) + P(AB) + P(AB) 

Sometimes , the probability of an event is not conditional 
upon another event, i.e. 

When this is true, the two events are said to be independent, and 
may also be expressed by the probability that both will occur 

~~en the experiment is the tossing of two coins, the prob
ability that the second coin falls head is independent of the 
result of the first toss. With two coins, the probability of a 
head is 

P (H) 1/2, and 

P(HH) ~ 1/2 • 1/2 ~ 1/4 

However, when two cards are drawn, without replacement, from a 
deck of the usual 52 playing cards, the probabilities for the 
second drawing are conditional upon the result of the first 
drawing. For example, what is the probability that both cards 
will be hearts? The probability of a heart on the first draw is 

P(Hll = 13/52 = 1/4 

There are 13 hearts in 52 cards, and each card has the same 
probability of being selected. Now what is the probability that 
the second card will be a heart given that the first card was a 
heart? Obviously, it is 
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After the first card is drawn and found to be a heart, there are 
now only 12 hearts left in 51 cards. Finally 

P(H2Hl) = P(H2I Hl)oP(Hl) 

12/51 0 13/52 = 1/17 

The two events .are not independent because 

It is important to note that events are dependent or independent 
in groups, e.g. pairwise. Dependency is meaningless when applied 
to a single event. 

The independency criteria may be summarized as follows: 

• If P(abc •.• n) = P(a)oP(b)oP(c) ... P(n) 
then the set {abc .•. n} is independent as a group. 

• If P(XiXj) = P(Xi)oP(Xj) 
then any subset of Xi 1S independent of any subset of Xj' 

• If the set {abc •.• n} is independent as a group, then they are 
all independent pairwise. However, the converse is not 
necessarily true. The group may be independent pairwise but 
dependent as a group. 

In experiments whose outcomes consist of combinations of 
trials, as in the tossing of three coins with its eight outcomes, 
the event of interest may be the result of a specific trial. For 
example, the event may be head on the third toss. What is the 
probability of this event? 

where 

E = head on third toss 

The unconditional probability o£ tp~ event is the sum of all 
the probabilities of the separate outcomes for which the event is 
true. In this instance, each outcome is equally likely and equals 
1/8 so that peE) = 4 0 1/8 = 1/2 as expected. As pointed out 
earlier, each of the probabilities of the outcomes may be expressed 
in terms of conditional probabilities. 
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SOME ELEMENTARY MODELS 

A simple or elementary probabilistic experiment might be one 
that possesses the following characteristics. Before the experiment, 
three statements might be formulated such that after the conclusion 
of the experiment the truth or falsity of each of the three state
ments could be determined. For example, the experiment might 
consist of drawing three cards from a deck, and the three statements 
might be 

1. The first card is a heart. 

2. The second card is a spade. 

3. The third card is a club. 

Sur'ely, after the experiment is concluded, it is a simple matter 
to determine the truth or falsity of each of the three statements: 
nothing beyond these simple conditions is implied in defining a 
probabilistic experiment in these terms. 

The eight outcomes may be designated as 

123 
-
123 

-
123 

123 

123 

123 

123 

123 

where x stands for x being true, x stands for x being false. 
Because the eight outcomes are exhaustive, the sum of their 
probabilities must add to unity: 

- -
P(123) + P(123) + P(123) + •• , ~ 1 

Therefore, there are only seven independent probabilities, because 
given any seven probabilities, the eighth probability can be 
readily calculated. Everything of a probabilistic nature about 
this experiment can be answered, given the knowledge of the prob
abilities of any seven of these outcomes. 
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There are many other sets of seven independent probabilities 
from which the probabilities of the seven outcomes may be calcu
lated. This situation becomes very advantageous if there exists 
some set of probabilities that is easier to obtain or estimate 
than the final set for the seven outcomes; e.g. 

P (1) ; a 

p(2il) b 

p(2ii) ; c 

p(3i21) d 

p(3i21) ; e 

P(3iZl) f 

p(3iZl) g 

are seven independent probabilities from which the probabilities 
of the seven outcomes listed above can be calculated. 

The word "independent" is used in two senses in the preceding ' 
material. Independent probabilities mean arbitrary probabilities 
such that no subset of the given set is sufficient to determine 
the values of the· whole set. This is the usual mathematical 
meaning. Independent events, however, are events such that the 
outcome of one trial does not affect the outcome of a succeeding 
trial. 

There is no restriction other than 

o ~ a, b, c, d, e, fJ g ~ 1 

placed on the seven probabilities listed above. An example of 
the calculational procedure is 

P(123) ; p(3i21)"P(2il)"P(I) 

All of the probabilities of the eight outcomes can be calcu
lated from the seven given probabilities: 

P(123) 

P(123) 
-

P(l23) 

P(123) 

(l-a)'c'e 

a' (l-b)·f 

a'b' (I-d) 
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P(123) = (l-a)·(l-c)·g 

P(123) = (l-a)'c'(l-e) 

P(123) = a'(l-b) ' (l-f) 

P(123) (l - a)'l-c)'(l-g) 

The sum of these eight probabilities equals unity as required. 

Nothing is implied about the independence relations among 
these three statements nor about the chronological sequence of 
the three statements. Although the original input to the problems 
contained pel) = a, this does not imply that p(113) is necessarily 
pel), In fact, in general p(lI3) will be some finite value 
different from pel). This merely means that 1 and 3 are not 
independent. The practical implication of these observations is 
that the envisioned experiment is very general and thus can 
represent a tree, net, web, or chain depending upon the specific 
embodiment. This versatility will become more evident with 
further examples and discussion . 

After all the probabilities of the eight exhaustive outcomes 
have ' been calculated, ot her probabilities of interest can be 
readily calculated as illustrated in the following examples: 

P(123) + P(123) + P(123) + P(iZ3) 

-
P(123) + P(123) + P(123) + P(123) 

P(23) = P(123) + P(123) 

I 
- P(23) _ 'P(123) + P(123) 

P(2 3) -~ - P(l23) + P(123) + P(123) + P(I23) 

The list of possible probabilities becomes lengthy even for only 
three statements when all the possible joint and conditional 
probabilities are considered. Norma lly, very few of this large 
number of probabilities are of interest in a practical problem. 
In a particular instance in which one of these unusual possi
bilities is of concern, an additional statement can be added to 
the list of original statements to define any joint possibility . 
The conditional probabilities are each just a ratio of joint 
probabilities. 

The great merit in specifying a problem in terms of con
ditional probabilities is that there is nothing absolute about 
the conditionalities. This means that no statement is true 
and all others are false, but rather that all statements are 
true and the convenient ones can be chosen for use; e . g . 
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Pic) P(cb) + P(cb) 

= P(clb)'P(b) + P(clb)'P(b) 

Pic) P(cba) + P(cba) + P(cba) + P(cha) 

P(clba)'P(bla)'P(a) + P(clba)'P(bla)'P(a) 

+ P(clba)'P(bla)'P(a) + p(clba)'P(bla)'P(~) 
are both correct and numerically the same . The choice in an 
actual problem is dictated merely by what is known about the 
systems. The relationship between independence and condition
ality is an abstruse one and of no concern when the problem is 
stated entirely in terms of conditional probabilities . 

The example of the three statements listed in the illus
tration of drawing three cards i s interesting to carry further 
because, it is a case in which all three statements are depend
ent. The input for this problem is 

pel) = 13/52 = 1/4 

P (211) 13/51 

p(21!) 38/153 

p(312l) 13/50 

p(3121) 481/1900 

p(3IZl) 481/1900 

p(31 2i) 1419/5750 

When these values are substituted in the proper formulas, the 
results are as follows: 

P (1 23) 0.016569 

P (123) 0.047157 

P (123) 0.047157 

P (123) 0.047157 

P (123) 0.139118 

P(123) 0.139118 

P (123) 0.139118 

P(123) 0.424608 

Total 1.000002 
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From these results, 

pel) 0.250001 

P (2) 0.250061 

P (3) 0.250001 

These values should be exactly 0.25 and would be except for the 
round-off error. The unconditional values are just what one 
would expect, for no matter how many cards are drawn, there is 
no preference for selecting anyone suit, so that the uncon
ditional probability of the truth of each of "the statements is 
just 1/4. 

To show the dependence between the statements, p(113) can 
be .compared with pel). If the two probabilities are not equal, 
then the two events are dependent: 

p(113) = P(13) = 0.063726 = 0 254904 
P(3) 0.25 . 

ConsequentlY, as stated above, the truth of the two statements 
are dependent. Likewise 

P(12) _ 0.063726 = 0.254904 
P(2) - 0.25 

shows that the truth of statements 1 and 2 are dependent. 

Finally, P(ll3) = 0.016569 ~ P(I)·P(2)·P(3) = 1/64 = 0.015625; 
therefore the truth of the three statements in the group are 
dependenl:. 

PROBABILISTIC ANALYSIS OF RISK (PAR) 

Many of the problems of the real world are just the concern 
about the uncertainty of the outcome of a venture. All sorts of 
examples can be conceived: 

1. A piece of equipment fails and a number of undesirable 
consequences result. 

2. A new product fails to win public acceptance. 

3. The stock market goes in the unexpected direction. 
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The uncertainty would be removed if the truth or falsity of 
correctly phrased statements were known. For example, the truth 
or falsity of the statement "The stock market rose in the past 
three months" would completely remove the uncertainty about the 
direction of the stock market during the past three months. It 
is obviously impossible to establish with certainty the truth or 
falsity of such statements about the future, but there might be 
some ways of estimating the probability of the truth or falsity. 
The prudent man will make a "good" decision if he has a valid 
estimate of the probability of success . By "good" is meant that 
the measure of his success is greater than the measure of his 
failure. 

Sometimes the group of analysts will have a store of 
information about the situation of interest, and all of this 
information can be used to produce the answer of greatest validity 
about the probability of the truth of the final statement. All 
of this information, conceivably, can be expressed in the form 
of declarative statements,each of which is either true or false. 
The truth or falsity of any statement may not be known with 
certainty, but the probability of the truth of a statement may 
be estimated. A natural way for the analysts to organize all of 
their information would be to order the statements that contain 
all of the information in such a way that the probability of the 
truth of any statement is conditional only upon the truth of 
preceding statements. A trivial example may clarify the structure 
of the analysis. Statement 3, "The automobile in which Mr. A is a 
passenger has a serious accident during the next 10 minutes," is of 
primary concern. There may be many other statements that affect 
the probability of the truth of this statement. For example, state 
ment 1, "The automobile in which Mr. A is a passenger is in motion 
on a public thoroughfare." I f the probability of the truth of 
statement I is low, then the probability of the truth of statement 
3 is also low. The automobile is less likely to have an accident 
if it is standing still. The analysts might like to consider the 
truth of statement 2, "The automobile in which Mr . A is a passenger 
has an average speed of 80 mph during the next 10 minutes." The 
probability of the truth of statement 3 is larger, presumably, if 
the probability of truth of statement 2 is large. The analysts 
might express all of their information in probability s·tatements 
such as the fol1owing;* 

* The notation "1" means statement 1 i s true, and "1" means 
statement 1 is false. Similar notation applies to the other 
s tatements. 
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p (1) ~ 0.4 

P (2 11) 0.2 

p(2li) 0 . 0 

p(312l) 0 . 5 

p(3121) 0.0 

p(3IZl) 0.2 

p(3IZ1) 0.0 

In instances where the conditional probabilities are_zero, the 
events are considered impossible. For example, p(2 .l l) ~ 0.0 
implies that the average speed cannot be 80 mph when the automobile 
is not in motion. 

Another example may provide additional clarification because 
of different phraSing. "An airplane has three motors and can fly 
as long as two are operational. Each of the three motors may 
fail because of faults inherent within the individual motors. 
Additionally, all three motors may fail simultaneously from a 
common cause such as exhaustion of the fuel. What is the 
probability that the plane will complete a mission from New York 
to Los Angeles without failure?" The analysts may formulate the 
problem as follows: 

1. The common mode event' occurs 

2. Engine No. I fails. 

3. Engine No. 2 fails. 

4. Engine No . 3 fails. 

5 . The plane fails. 

P (1) ~ O.IS 

P (211) 1.0 

p(2Ii) 0 . 4 

p(3ll ) 1.0 

*A common mode failure is the occurrence of a single event that 
produces all of another set of failure events. 
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p(3Ii) 0.3 

P (411) 1.0 

p(4Ii) 0.2 

P(SI234) = 1.0 

P(SI234) 1.0 

P(SI234) 1.0 

P(SI234) = 1.0 

If statement 1 is true, then statements 2, 3, and 4 are true with 
probability of 1.0. If any two or more of statements 2, 3, and 4 
are true, then statement 5 is true with probability of 1.0. 
Although there are 25 = 32 possible outcomes or combinations of 
true and false conditions for five statements, for the conceptual 
experiment of the plane flight, it can be demonstrated that the 
eleven values listed above are sufficient to specify the prob
ability of any event that can be formed as a subset of the 32 
outcomes. 

The analysis of this situation does not specify any order 
for the events that might occur. For example, the plane might 
fail from failure of any two or more engines in any order, or 
the common mode failure event mjght occur either before ot after 
a single motor failed. The analysis contains several possible 
chronological sequences of events, and the single analysis includes 
all of them. The common mode failure event was included very 
naturally and produced no unusual complication in the analysis. 

Fault Trees 

The subject of fault trees is treated in some detail because 
it is currently a popular type of analysis. This treatment has 
the objective of showing that fault trees are merely special 
cases of the PAR method of analysis. 

Fault trees consist of chains of events linked together by 
logical "and" and "or" gates. The "and" gate is represented by 
the following symbolism: 
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3 

A 

I 2 

which means that event 3 occurs when both 1 and 2 occur. The 
generalized specification for a set of three decl arative state
ments in the PAR analysis now becomes 

P (1) = a 

P (211) b 

P (21 i ) = b 

p(312l) = 1 

p(3121) 0 

p(3 Izl) = 0 

p(3IZ1) 0 

Thus, rather than seven different values for this set of prob
abilities, there are only two, a and b, that are other than unity 
or zero. 

Likewi se , the "or" gate is represented by the following 
symbol i sm: 

3 

A 
I 1 

I 2. 
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which means that event 3 occurs when either or both 1 and 2 occur. 
The generalized specification for a set of three declarative 
statements in the PAR analysis now becomes 

pel) = a 

p(2Il) b 

P (211) b 

p(312l) 1 

p(3121 ) 1 

p(3121) 1 

p(312l) 0 

Again there are only two probabilities, a and b, that are different 
from zero or unity rather than seven. 

When the number of events connected to an "()r" gate become 
large, the number of entries that equal unity also becomes large. 
Actually, when k is the number of events, the number of entries 
is 2k-l, which may be inco~veniently large. This problem of a 
large number of entries can be avoided if the top event is re
defined as "not-or" or the negation of the otherwise declarative 
statement. With this redefinition, the only data entry needed is 

P (k I k l' k 2'" kl ) = 0 n n- n-

In this fashion , either the "and" or the "or" gate requires only 
one data entry. 

Every chain of "and" and "or" gates can be strung together to 
form the required fault tree, and the PAR analysis will produce the 
probabilities of all the constituent events. The actual computer 
program for the PAR analysis does not require any of the zero 
probabilities as input. 

Common Mode Failures 

Common mode failures may be important in a reliability 
analysis but appear to create computational difficulties when 
included in the usual analyses. A common mode failure occurs 
when t he occurrence of a specified event results in the occur
rence of each of several other events. For example, a power 
failure would cause the failure of all amplifiers on that power 
line. 
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The example discussed earlier of the airplane with three 
motors contained a common mode failure. The exhaustion of fuel 
caused each of the three motors to fail because of a common 
external cause . Thi·s and similar problems cause no special 
problems in the PAR anal ysis because the i nput is readily 
specified. The ease with which the PAR analysis handles thi s 
problem may result from the fact that all chronological sequence s 
are handled simultaneously without explicit specification. 

When the data listed earlier for the "airplane" problem 
were used as input to the PAR computer program, the results were: 

P (1) 0.15 

P (2) 0.490 

P(3) 0.405 

P (4) 0.320 

P (5) 0.3302 

The question asked was, "What is the probability that this given 
airplane would successfully complete the trip from New York to 
Los Angeles?" The answer for the probability of failure for the 
specified input is peS) = 0.3302. The common mode failure caused 
no special difficulty in the analysis because the input contained 
no features of a special nature. 

Decision Trees 

The PAR method of analysis and its computer program can be 
used to calculate the merits of alternative decisions that are 
the choice of an individual. This feature is possible because 
a value designated "RUE" (relative undesirability of the event) 
is assigned to each outcome of a probabilistic experiment. The 
product of the RUE and the probability of the event is a measure 
of the risk of that event. When a person has alternative choices 
about his future action he can evaluate the risks by the PAR 
analysis. The person will prudently choose the decisions that 
produce the smallest risk. A simple example will illustrate the 
type of analysis possible with PAR. A person i s offered the 
choice of playing a game in which a coin is to be tossed. If 
the coin falls "head, the player receives 5 units. However, if 
the coin falls "tail," the player must pay 7 unit s . This much 
of the game is a poor one from the viewpoint of the player 
because on the average he will lose one unit for each play of 
the game. However, if the player loses the 7 units because the 
coin falls "tail," he is offered the choice of playing again 
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with a new set of pay-offs. 
"head" produces a gain of 10 
produces a loss of 3 units. 
player make? The player has 

1 . Don't play first time. 

2. Play first. time and quit. 

This second time , the fall of a 
uni ts and the fall of a "tail" 
What sort of decision should the 
three choices : 

3 . Play first time and if he loses play second time. 

When the necessary input is provided to the PAR computer program, 
the expected risks are as follows: 

E (Rd 0.000 

E(R2J ~ 1.00 

E(R3J -0.75 

These values show what are fair and favorable wagers for each 
choice. Decision 3 is most favorable and indicates that a fair 
wager for the game is 0 . 75 unit. Any wager less than 0.75 unit 
is favorable, and larger wagers are unfavorable. If the player 
were forced to make decision 2, he should expect to be paid at 
least 1 unit to play or otherwise he can expect to come out a 
loser. 
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