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ABSTRACT 

The HERESY III computer code is a general-purpose 
two-dimensional reactor code based on the diffusion 
theory source-sink formalism developed by S. M. Feinberg. 
The code is applicable to calculations of reactivity, 
control rod worth, power ratios, and other similar cal
culations for heavy-water- and graphite-moderated reactors. 
Options within the code permit a variety of criticality 
searches to be performed. This report contains a deriva
tion of the theory on which the code is based, a description 
of the features of the code and their use, and finally, the 
input and output required for use of the code. 
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1. INTRODUCTION 

The HERESY III code is based on the source-sink theory 
developed concurrently by Feinberg! and Galanin 2 for two
dimensional, heterogeneous reactor calculations. It assumes that 
reactor assemblies can be represented by line sources and line 
sinks, and further that lattice components that absorb a signifi: 
cant number of neutrons are separated from each other by a few 
mean free paths of moderator, so that diffusion theory may be 
used in the moderator region to compute interactions between com
ponents. This assumption is well satisfied in heterogeneous 
reactor lattices moderated by heavy water or graphite. Codes 
employing the Feinberg-Galanin (heterogeneous or source-sink) 
approach have been developed by numerous groups interested in 
these reactor types. 

The type of reactor calculation that must be considered as 
an alternative to heterogeneous calculations for heavy-water
moderated reacTors is two-dimensional diffusion theory. The 
preference between the two depends on the problem, or the reactor, 
being considered. The heterogeneous theory seems clearly prefer
able for reactors characterized by a small number of fuel and 
control assemblies in a rather irregular arrangement, such as 
engineering test reactors like the Heavy Water Components Test 
Reactor (HWCTR).3 Repeating "cells" required in diffusion theory 
calculations are impossible to define for such reactors. 

Several computer codes have been developed to take advantage 
of the attractive features of heterogeneous theory in practical 
reactor calculations. The HERESY III code has evolved from some 
of these. The HERESY I' and HERESY 115 codes were written by 
C. N. Klahr and associates. A rewritten version of HERESY I, 
called SRL - HERESY 1,6 was developed at the Savannah River 
Laboratory and contained a number of additional convenience 
features. HERESY II differed from the previous version primarily 
in permitting a more detailed treatment of epithermal events, 
including epithermal fission. HERESY III, developed at SRL, was 
based on the HERESY II equations, and added a number of features 
which increased its flexibility and ease of use. Furthermore, 
algorithms that convert the output of the HAMMER7 cell code to 
HERESY III input have been incorporated. The resulting system 
has been useful for a variety of design and analysis purposes. 
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2. SUMMARY 

The HERESY III code calculates two-dimensional reactor 
lattices by the use of the heterogeneous reactor theory developed 
by Feinberg l and Galanin. 2 The code will perform calculations on 
finite lattices, with or without reflector, or infinite lattices 
of repeating "supercells." The lattice size is limited to a 
maximum of 5000 lattice assemblies and to 50 types of lattice 
locations possessing unique geometrical or flux symmetry proper
ties. The allowed number of physically different lattice assem
blies is 20. 

The code solves for thermal and epithermal neutron absorptions 
in each lattice assembly. Both epithermal absorption and fission 
are allowed in all assemblies for an arbitrary number of resonance 
levels up to a maximum of nine. The edit of the solved problem 
produces lattice-averaged values of the resonance escape prob
ability p, heterogeneous thermal utilization f, fast fission 
factor E, average heterogeneous thermal n, epithermal nr , and the 
leakage-corrected static reactivity coefficient k. 

Options are available to use output from the HAMMER7 system 
as direct input to the heterogeneous lattice calculations. 

Four criticality searches permit variation of selected 
parameters in the calculation until criticality is achieved in 
the lattice. The variation may be made in the heterogeneous thermal 
utilization, heterogeneous thermal n, or all values of the hetero
geneous n parameter of a specified group of physically identical 
lattice assemblies. A criticality search may also be made on the 
axial buckling of the lattice. 
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3. THEORY 

3.1 GENERAL 

The heterogeneous theory in HERESY III is based on the source
sink method developed by Feinberg! and Galanin.2 The notation 
used in this report is that of Feinberg. 

The source-sink method separates the solution of the hetero
geneous reactor critical equation into three logically distinct 
steps: 

• Represent the reactor lattice as a set of axially infinite 
line sources and sinks of neutrons. 

• Specify the interaction between each line source-sink 
and all other line source-sinks in the lattice. 

• Assign suitable nuclear parameters to each line source-sink, 
combine these parameters with the specified interactions, 
and obtain from the heterogeneous critical equation the 
distribution of neutron absorptions in sinks and the static 
reactivity coefficient for the lattice. 

The assemblies of a real reactor lattice are assumed to be 
adequately represented by the line source-sinks described above. 
This approximation is plausible providing a few mean free paths 
of moderator separate the surfaces of the assemblies. The lat
tice itself is described by providing the X and Y coordinates of 
each rod relative to an arbitrary origin. 

The interactions between rods in the lattice are given by 
infinite medium, age-diffusion kernels. Corrections necessary to 
permit a reflector of finite thickness to be included will be 
discussed in Section 3.3. 

Absorptions in rods are assumed to occur only at discrete 
neutron energies specified by a series of neutron ages T!, T2, 
T3

, ••• , T from fission energy. Fission neutrons may be produced 
from an absorption at any of these discrete neutron energies 
(referred to as levels), and neutrons so produced appear at the 
source energy. 
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3.2 CRITICAL EQUATION 

The heterogeneous source-sink critical equation is obtained 
from neutron conservation by summing the contribution of neutrons 
from all rods in the lattice to each individual rod at thermal 
energy. For the moment, an infinite reflector will be assumed, 
although this restriction will be removed later. Two assumptions 
are involved in this summation: 

• The moderator and reflector properties are constant 
(independent of space). 

• The interaction between rods may be adequately described 
by infinite medium kernels dependent only on the separa
tion of the rod centers and the slowing down and diffusion 
parameters of the moderator. 

First, a set of spatial distributions (or kernels) will be 
defined which depend only on moderator properties. These are 
understood to be age-diffusion expressions for both thermal flux 
and slowing down density in infinite media, although their 
explicit form will not be given until later. Sources for these 
distributions are all infinite line sources. These distributions 
have two subscripts, the second referring to the source positions 
and the first to the field or receptor position; each implies an 
x-v coordinate. Superscripts represent epithermal energies. As 
implied by the dependence on moderator properties only, no absorp
tion in "rods" is taken into account. Next a set of rod properties 
will be defined. From the above two sets, a set of derived spatial 
distributions will be obtained-. Finally, the critical equation 
will be written in terms of the above quantities. 

Moderator Distributions 

slowing down density, at energy denoted by r, at 
rod j due to a unit (1 neutron/cm-sec) source of 
fission neutrons at rod k 

slowing down density, at energy denoted by s, at 
rod j due to a unit source of neutrons of energy 
denoted by r at rod k 

thermal flux at rod j due to a unit source of 
fission neutrons at rod k 

thermal flux at rod j due to a unit source of 
neutrons of energy denoted by r at rod k 

thermal flux at rod j due to a unit source of 
thermal neutrons at rod k 
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Rod Properties 

= ~ (R )/i Yn - ~n n n (3.1) 

where ¢n(Rn) is the total thermal flux at a distance Rn (the 
effective radius of the nth rod) from the center of the nth rod. t 
This is the flux that would be calculated at this location using 
source-sink distributions and taking all interactions into account. 
in is the number of thermal neutrons absorbed by the nth rod per 
second. 

(3.2) 

h 
or . 

were qn 1S the slowing down density, at energy denoted by r, at 
rod n. This is the value that would be calculated at this location 
using source-sink distributions and taking all interactions at 
higher energies into account . 

. r 
1 n 

number of neutrons absorbed at energy level r by 
the nth rod per second 

number of fission neutrons produced per thermal 
neutron absorbed in the nth rod 

number of fission neutrons produced per neutron 
absorbed at energy level r in the nth rod 

Methods of obtaining values for the above rod properties will be 
discussed in Section 3.4. 

Derived Moderator Distributions 

The intent here is to obtain expressions for both slowing 
down densities and the thermal fluxes which take into account 
absorptions in rods at all energies higher than the energy being 
considered. An expression for the slowing down density is obtained 
by assuming that the slowing down density at energy level r is a 
source contribution minus the sum of sink contributions from all 
levels higher in energy than r. Thus 

r-l N 

II (3.3) 

s=l t=l 

t This is the historical definition. It is shown in equation (3.19) 
that rod absorption properties may be cast into a form independ
ent of the rod radius or the assembly radius. 
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where q~f is the desired corrected distribution, and N is the 
total n6mber of rods in the lattice; and other quantities have 
already been defined. For the highest energy level (s ~ 1), 
q~f ~ q!k' From qj~, the corrected distribution qJR can be 
obtainea. By successively utilizing the corrected distributions 
for each of the higher levels, all corrected distributions can be 
obtained via equation (3.~. The q3~r term in equation (3.3) does 
not, and properly should not, account for interactions at levels 
between sand r, because the source term qjk from which the cor
rections are being subtracted ignores all lnteractions at levels 
wi th T < Tr. 

The second derived distribution that is required is an 
expression Fjk for the thermal flux which similarly accounts for 
all epithermal absorptions in rods. In analogy to equation (3.3). 

(3.4) 

where P is the total number of epithermal absorption levels. FIt 
does not (as is clear from its definition) and should not account 
for rod absorptions between the rth epithermal absorption and 
thermal levels. 

critical Equation 

From the parameters and distributions defined and discussed 
above, the critical equation is 

(3.5) 

where k is the eigenvalue or criticality factor, playing the same 
role in heterogeneous theory as it does in more conventional 
formulations. The left-hand side is the thermal flux at the radius 
of the nth rod; the first summation over j on the right-hand side 
is the contribution of sources to the thermal flux at the nth rod; 
the second summation is the contribution to depression of thermal 
flux at the nth rod by thermal neutron absorptions in all rods. 

Thus far no advantage has been taken of possible symmetry 
properties of the lattice. Many problems in practice have high 
degrees of symmetry, and the number of terms in the summations in 
equation (3.5) can be considerably reduced by taking advantage of 
that fact. Two terms applied to rods will be defined at this 
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pOint. Rods are of the same rod "kind" if they have identical 
physical properties. Rods are of the same rod "type" if they are 
of the same "kind" and have the same symmetry properties, such 
that it is known a priori that they will have the same reaction 
rates. Because all rods of the same type have the same i j and i~, 
a preliminary summation may be made over the source index j in J 
equation (3.5) for each rod type. Thus, the summation limit N is 
reduced to the number of rod types rather than the number of rods; 
equation (3.5) is solved by the HERESY III code. The matrix for
mulation used is described in Section 3.7. 

3.3 Moderator Spatial Distributions 

Specific 
distributions 
Age-diffusion 
for qh is 

functional forms will now 
discussed symbolically in 
theory is the model used. 

I 
-- exp -
47TT

r 

Ir.-rk I2 

- J -

be assigned to the spatial 
the previous section. 
The standard age solution 

(3.6) 

where ,r is the Fermi age from fission source ener5y (T = 0) to 
the rth energy level (at age Tr). The code, as discussed in 
Section 4, actually permits the flexibility of specifying a weighted 
sum of three such Gaussians. The remainder of the theory section 
will, however, ignore this because (a) it is a trivial extension 
of the single distributions, and (b) this flexibility has not proved 
particularly useful. 

The next defined moderator distribution is given in a similar 
fashion 

= (3.7) 

The next distribution, Fjk' was given by Galanin. 8 In infinite 
series form 

I 
2nD 

00 

1"(_I)n(T)n 
2 ~ nl 1:' 

n=O 
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where D is the moderator thermal diffusion coefficient, T is the 
Fermi age from source energy to thermal, L2 is the moderator dif
fusion area corrected for transverse leakage, Ko is the modified 
Bessel function of the second kind, and Em is the exponential 
integra1 9 function of order m. This series converges rapidly if 
T/L 2 is small (a condition met in heavy water and graphite moder
ators). Truncating terms higher than n = 1 gives 

[ 

l:j-rkI2 

1 T/L 2 (I:r:kl) T 4T 
F jk 2nD e Ko L + 2L2 e 

_ ~(l + 1 r ~~;k 12) E 1 C: j :~k 12 ) + ... J 

(3.9) 

r 
The Fjk distribution is identical to the above, with T replaced 
by (T - Tr), the age from the rth energy level to thermal. 

Finally, the fjk distribution is the standard diffusion 
theory solution 

(3.10) 

All of the above distributions are age-diffusion solutions 
for a line source in an infinite medium. 

Transverse leakage (i. e., leakage in the direction parallel 
to the line sources) is taken into account in a straightforward 
fashion. 10 All distributions which involve fast leakage (i.e., 
all but equation 3.10) are multiplied by exp(-DTBZ), where BZ is 
the transverse buckling, and DT is the age difference appropriate 
to the particular distribution. The correction factor 1ror 
equation (3.6) would have DT = Tr; for equation (3.7), DT = TS _ Tr; 
for equation (3.8), DT = T; and for Fjk, DT = T - Tr. In addition, 
in all expressions involving the moderator thermal diffusion area, 
L2, the standard diffusion theory substitution is made 

I' 
a (3.11) 

where La is the normal moderator macroscopic cross section, and 
I~ is the value used to obtain the corrected diffusion area: 
. L2 ' = L2/(1 + L2Bz

2 ). 1. e. , 
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The procedures above correct for transverse leakage, but it 
has still been assumed that the moderator is infinite in the radial 
direction. This is adequate for treating infinitely repeating 
supercells, the central regions of large reactors, and reactors 
with very thick reflectors. In order to treat finite lattices with 
thin reflectors, the approximate method used by Klahr"s in 
HERESY I and HERESY II has been used. This method employs an 
imaging technique in which each rod in the lattice is treated as 
having an image rod outside the reflector boundary. The image rod 
is located on a line passing through the center of the lattice 
and the real rod, and the image rod is located the same distance 
outside the reflector boundary as the real rod is inside the 
reflector boundary. The image rod is weighted by a negative 
source strength factor off Po/Pi' where p. is the distance of the 
image rod from the reactor center and polis the distance of the 
real rod from the reactor center. When the above technique is 
applied to one-region reactors with very thin reflectors, the 
flux does not extrapolate to zero at exactly the specified re
flector boundary. This simply reflects the approximate nature of 
the image technique. 

3.4 Rod Properties 

The procedure to be described assumes that multigroup cell 
calculations are available for each of the rod kinds, although 
the cell area may be somewhat arbitrary. The rod properties are 
then related to cell-averaged properties (such as the cell-averaged 
thermal absorption cross section) and the cell area. Such an 
approach may seem contrary to the spirit of the source-sink method. 
However, a number of advantages accrue to it: 

• Hundreds of man-years have gone into the development of 
sophisticated cell codes. It is only prudent to take 
advantage of this in the most natural fashion. 

• Errors made in assigning values to the moderator proper
ties discussed in the previous section tend to cancel out 
if this approach is taken. ',II 

• The adequacy of the source-sink method for a given problem 
can be evaluated, to some extent, by examining the resulting 
variation in rod properties as a function of cell area. 
Ideally, they should be independent of this quantity. 

The general procedure is to write the source-sink equations 
being used, equation (3.5) in our case, for a uniform lattice 
infinite in all directions, evaluate the resulting equation, and 
make the proper identification of the result with the result of 
cell calculations. 
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3.5 Thermal Parameters y and n 

Klahr showed",l2 that for purposes of relating y to thermal 
cell parameters, epithermal events in equation (3.5) can be 
ignored, and the simpler equation used in the original papers,,2 
can be used without significant error. Physically this amounts 
to concluding that, for infinite uniform lattices, epithermal 
events do not significantly affect the source distribution 
entering the thermal group. Under these circumstances equation 
(3.5) reduces tol 

y iI 
j 

F . -
nJ 

00 

I 
j 

f . 
nJ 

(3.12) 

where f is the heterogeneous thermal utilization factor, i.e., 
absorption in rod divided by absorption in cell. The infinite 
sums have been evaluated analytically.,,'3 For L2jV > 3, where 
V = cell area 

00 

I 1 
F . 
nJ VLa j 

(3.l3) 

00 

_1_11 + _V_(ln -c) J L f . 
V 

nJ VEa L 4'T1L2 'TIR2 
J 

(3.14) 

where 

{ 1. 5 for a cylindrical ce1l 

C = 1.4975 for a hexagonal cell 

1.4763 for a square cell 

R is the rod radius, and other symbols are as defined before. 
Substituting equations (3.13) and (3.14) into (3.12) yields 

y 1 (1- f) 
VEa f 

(3.15) 

The above expression has been obtained previously. 2 The presence 
in this expression of the heterogeneous thermal utilization 
factor may seem ambiguous when the fuel assembly is complex, 
rather than a single rod. This ambiguity is removed by observing 
that in the reactor model, moderator fills the entire space and 
rod absorptions occur in a line. Hence 
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l-f La 
f = La(ef£) - La (3.16) 

where LaCeff) is the normally defined homogenized thermal absorp
tion cross section of the cell, and La is the moderator absorption 
cross section. Thus 

1 
y 

1 
4rrD - c) (3. 17) 

The above expression is the desired one for relating the rod 
properties y and R to the cell properties LaCeff) and V (and 
moderator properties). However, one may go further and eliminate 
the radius R from the formalism altogether. 

In equation (3.12), all terms on the right-hand side except 
fnn may be evaluated using center-to-center distances (Fnn is quite 
flat near r = 0). However, the Ko Bessel function is singular 
at r = O. It is this fact which led to the introduction of the 
radius R in the first place. If this term is taken to the left, 

00 00, 

""' ) f. 
y nJ 

C3.l8) = 

J 
where the prime denotes the absence of the j = n term. All of 
the equations for the general case, equation (3.5), can likewise 
be written this way, with all of the terms on the right-hand side 
being evaluated on the basis of center-to-center distances. 
Because y + f(R/L) always appears in this form, the combination 
may be regarded as a new rod parameter, 0, and evaluated accord
ingly. Adding and subtracting Cl/2rrO)[Ko(R/L)] to both sides of 
equation (3.15) and passing the right-hand side to the limit 
R-*O yi e ld 

0 1 1- f 
4;0 [n(\2) + c'J (3.19) 

VLa f + 

where 

C' = {2.874 for a hexagonal lattice 

2.853 for a square lattice 

If the transverse buckling is non-zero, La and L2 should be the 
primed values, as in equation (3.11). In the first term of 
equation (3.19), however, it is merely necessary to be consistent; 
i.e., the uncorrected value of La may be used provided (I-f) also 
corresponds to zero transverse buckling. 
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The production term n is obtained from 

n 
(nf) cell 

f (3.20) 

where f is obtained from equation (3.16). 

3.6 Epithermal Parameters A and nr 

Again it is assumed that cell calculations have been run for all 
rod kinds to be considered, and that the epithermal cell homogenized 
cross sections have been collapsed to a few group form. Specifi
cally, values of Ps = (Zr)Sj(Zr + Za)s and nS = (vLf)Sj(La)S are 
assumed available, where S indicates the energy group number. Then 
values of nS may be used directly in equation (3.5). However, a 
relationship must be demonstrated between Ps (and the cell area V) 
and the heterogeneous parameters AS. 

Figure 3-1 illustrates the epithermal energy structure for an 
example of three epithermal groups. 

Group 

p, 

Grou;o 2 

P, 

Group 3 

P3 

Cell Calculation Heterogeneous Calculation 

1 
1 
1 
1 

T" 1 I I 
1 1 I 

I 
1 I I 

I I I I 
t I I 1 

---1-1---- ___ .1 _____ _ 
I 1 
1 I 1 

T 2 I I I 

I 1 I 
1 1 I 

t : : 
- - - - -: - - - - - - - -I - - - - - -

13 I I 
I I 

I 
I 
1 

Source (T 0) 

Absorption Levell (T') 

Absorption Level 2 (T') 

Absorption Level 3 (T3) 

___ ...L , _____ I-____ ...L_ Thermal (T) 

FIGURE 3-1 Epithermal Energy Structure 
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The absorption levels in the heterogeneous calculation are 
discrete, in the sense of each being characterized by a single 
effective value of Tr. In the following discussion, it is assumed 
that single Gaussians with their associated Tr characterize the 
slowing down distributions. (The code permits a more general 
specification, but the complication in notation is unwarranted 
here.) On physical grounds, it is required that Tn-l < Tn < Tn+l , 
but no more stringent condition on Tn is required. 

The heterogeneous case to be considered is an infinite 
uniform lattice. Hence no question of interaction between fast 
leakage and epithermal capture arises. For this condition, the 
cell calculated values of Pn are related to the following quantity 
in heterogeneous terms: 

p, P2 ... Pn 

Number of neutrons slowing down to level 
n+l with absorptions in levels 1 to n 

Number of neutrons slowing down to level 
n+l without absorptions in levels 1 to n 

(3.21) 

When n is the lowest epithermal absorption level, it is convenient 
to modify the above identification to 

Thermal flux with absorptions 
in levels 1 to n 

Thermal flux without absorptions 
in levels 1 to n 

(3.22) 

The one-epithermal group case will be considered first because 
of its simplicity. Later three-epithermal groups will be considered. 
For one-epithermal group, equations (3.4) and (3.22) yield 

00 00 00 

I Fjk II r At 
r 

Fjt qtk 

p 
k k t 
00 

1 - 00 
(3.23) 

I ~k I Fjk 
k k 

00 00 

I Fjt I r 
qtk 

1 - A t k 
00 

or 

p (3.24) 

L Fjk 
k 
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The infinite sum L qik can be expressed conveniently in terms of a 
k 

dimensionless function T defined by 

00 

T (3.25) 

Since all rods are identical, equation (3.24) may be written 
using (3.25) as 

00 

L r 
Fj t 

1 - .AI t P 00 (3.26) V L Fjk 
k 

From equation (3.13), the summations over t and k cancel even 
though different values of T are used in the distributions, 
leaving 

p 

or 

A 

1 - ~ T 
V 

(1 - p)V!T 

(3.27) 

(3.28) 

This is the required connecting formula between cell properties 
and rod properties. The remaining problem is the evaluation of 
the infinite sum T. This is carried out by the use of the Poisson 
summation formula in the usual way. For rhombic cells with acute 
angle e, the result is 

L L exp 
41T2Tr(V2 + 2vA cos e + A2) (3.29) 

V sin 8 

This function is tabulated in Appendix A for square lattices 
(8 = 90°) and triangular lattices (8 = 60°). The dependence on 
e is weak, and this argument will be omitted as a notational con
venience. For values of Tr/V > 0.2, T is essentially unity. For 
smaller values it is >1 and plays the role of a "resonance advant
age factor," peaking the slowing down distribution at the source 
location. For a triangular lattice, the le'ading terms are 
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(3.30) 

For more than one epithermal energy group. capture at higher 
energies influences events at lower epithermal energies. and the 
equations become correspondingly more complex. For all but the 
lowest epithermal level, equation (3.21) gives 

00 

I *r+l 
qjk 

k (3.31) Pj P2··· Pr 00 

I r+l 
qjk 

k 

And for the lowest level, 

00 

I * 
Fjk 

k (3.32) Pj P2 
.• , P

r 00 

I Fjk 
k 

Substituting equations (3.3) and (3.4) into (3.31) and (3.32), 
respectively, yields 

1 -
k s=l t 

00 

'\' r+l 
Lqjk 
k 

where r is not the lowest epithermal level, and 

00 r 

III s AS *r 
Fjt t qtk 

1 -
k s=l t 

00 

I Fjk 
k 
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where r is the lowest epithermal level. Following the same methods 
used previously leads to the following equations 

r 

1 - I 
5=1 

T(+>T5)[r(~) - ~ ~ T(+) T(~ )J 
T(;l) 

where· r is not the lowest epithermal level, and 

(3.35) 

(3.36) 

(3.37) 

where r is the lowest epithermal level. The argument 8 has been 
omitted in the T function, because it is assumed all cells are 
the same type. 

For three epithermal groups, a common choice, the explicit 
results are 

(3.38) 

(3.39) 

3-14 



(l-p p p )V = Al g~ + A2g!+A3g~ I 2 3 

g! = TC: ) 
g! = T(T; ) _ -T -- T-Al C2

-T
I

) CI
) V V V 

3 
g4 T(T;) _ -T-- T-Al (T3_ TI) (TI) 

V V V 

--T-- T-A2 C3
_

T2
) C2

) 
V V V (3.40) 

3.7 Method of Solving the Heterogeneous Critical Equation 

Once moderator properties, rod properties, and geometry have 
been assigned, the problem is reduced to the solution of equation 
(3.5), a set of N linear equations in N unknowns, where N is the 
number of "rod types." The equations are cast in the form of a 
matrix eigenvalue problem for numerical solution. Equations (3.3) 
and (3.4) in matrix form are 

g*r 

and 

T 

where 

r-l 
gY I Q 

s+y AS Q*s 

s=l 

p 

G I Gr 
Ar Q*r 

r=l 

G =: {F .}, Gr = {Fr .}, and T =: {F* .} = nJ = nJ = nJ . 

(3.41) 

(3.42) 

are all square matrices and ~r =: {A~j} is a diagonal matrix, all 

of order N. In terms of these the initial equation, (3.5), becomes 
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p 

r i !..T . {~ . i + I r . .r} D i k = 11 1 - (3.43) 

r=l 

where 

0 - {fnj} is a square matrix; £ = {yjJ, 
1 = {11 j J and 11

r = {n r
.} are diagonal matrices; 

= J J 

i = {i J and ~ r = {i ~ } are column vectors; and 

k is a scalar (the eigenvalue). 

In solving equation (3.43), the following expression for the 
epithermal absorption in level r is used: 

P 

i r i L s 
+ Q 

. s} • 1 

s=l 

r Multiply equation (3.44) by Q and sum over r to yield 

p p 

L r .r 1 L Q 1 k 
r=l r=l 

1 
+ -

k 

Solving this equation for 

.r 
1 

T 
Q 

p 

L 
r=l 

p 

L 
r=l 

Ar *r i g 'J. = 

·{t r AT g*r s g 11 

11T i r yields 
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where! is the identity matrix. 

Defining now the matrix R as 

R 
1 

- k 

so that 

P 

L 
r~l 

nr 

.r 
1 

A
r ~*r 

R i 

Substituting this sum into equation (3.43) gives 

r i lr .{~ . i + (~ ~)-1 R . Q k ~ -

or 

{[ + 8}· i lr • {! + (! ~)-1 . d· k ~ 

But 

I + (! - ~) - 1 R (! - ~) - 1 

so that 

{[ + d· i lr (~ ~rl 11 i 
k 

Rewri ting this gives 

k i r i 

Define a new matrix 

A r (~ 

so that 

k i A i 
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(3.47) 

(3.48) 



Equation (3.48) is a standard eigenvalue problem from which the 
eigenvector i may be found to an arbitrary normalization, and k 
may be found-as the largest eigenvalue of the matrix~. However, 
it may be noted that the definition of the matrix ~ gIven in 
equation (3.45) contains k in each element of the matrix. To 
obtain the solution an iterative procedure is used. An initial 
guess is used for k and matrix 8 is formed using it. The solution 
is then carried through equation (3.48) where a new k is obtained. 
The new k is used to re-form matrix B and the process is repeated. 
An inner eigenvalue iteration is defIned to be the iteration 
necessary to solve equation (3.48) for a given 8 matrix. An outer 
eigenvalue iteration is defined to be the sequence of steps from 
the formation of matrix R to the next formation of matrix R for 

= = a new k. 

The steps necessary to perform the solution are shown in the 
following list: 

1. Form the T matrix. 

2. Initialize k and i. 

3. Form (~ + ~) matrix and invert. 

4. Form B matrix, (~ - ~) matrix, and invert to get 
(~ _ ~)-l. 

5. Form A matrix. 

6. Solve eigenvalue problem for k and i. 

7. Repeat steps 4, 5, and 6 until k and i have converged. 
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4. CODE DESCRIPTION 

4.1 GENERAL 

The HERESY III code is divided into three major parts. The 
first part contains an executive routine that 

• Assigns parameter values where called for 

• Performs rod parameter conversion 

• Directs the code to the proper sequence of computation 

The second part contains the lattice geometry and matrix generators 
that 

• Generate lattice rod coordinates from simplified input 

• Optionally plot, print, or punch cards containing the lattice 
rod coordinates 

• Generate all necessary matrices 

The third part contains the routines necessary to 

• Solve the heterogeneous source-sink critical equation (3.43) 

• Perform criticality searches on specified parameters 

• Edit the results of the problem to provide lattice averaged 
parameters. The edit routine is discussed in Section 5. 

In the operation of the code, data are read in the first part 
as described above. These data are stored in memory and are avail
able for use by all parts of the code. If these data are altered 
in any part of the calculation (as would happen in a criticality 
search) the data are updated to reflect these changes. Because 
of this storage feature, it is only necessary to enter changes 
to the current data for problems after the initial problem. In
formation on how to enter data is given in Section 6. 
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The size limitations on problems that may be solved by 
HERESY III are the following: 

Maximum number of "rod types" 

Maximum number of "rod kinds" 

Maximum number of rods in lattice 

Maximum number of epithermal levels 

4.2 LATTICE GEOMETRY GENERATORS 

50 

20 

5000 

9 

The lattice rod coordinate generators in HERESY III contain 
provisions for both radially finite and radially infinite lattices. 
They are designed to accept a minimum amount of information about 
the desired lattice and to produce the X and Y coordinates (in 
centimeters) of each rod in the lattice. 

Options are available to plot the rods on a rectangular grid, 
to list the rods by "rod type," and, for finite lattices, to punch 
out a set of cards containing the rod coordinates which may be 
reloaded with the normal input data. 

4.2.1 Finite Lattices 

Three generators are used to generate lattices of finite 
radial extent having respectively 60° rotational symmetry, 90° 
rotational symmetry, or patterns of rods equally spaced on circles 
about the center axis of the reactor. These will be described 
separately. 

Hexagona~ Lattices 

A lattice having 60° rotational symmetry requires for input 
the X and Y coordinates of each rod with angles (with respect to 
the positive X axis) in the range 0 ( e <60°. The generator then 
supplies the coordinates of the remaining five rods equally spaced 
at 60° angular intervals from the original rod. In large hexagonal 
lattices, however, 12 rods of the same "rod type" may occur at the 
same radius. To allow for this the hexagonal generator will option
ally accept up to three rods in the range 0 4 e <60° as being of 
the same "rod type." 
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Square Lattices 

A lattice having 90° rotational symmetry and reflection 
symmetry about 45° requires for input the X and Y coordinates of 
each rod with angles (with respect to the positive X axis) in the 
range 0"" 8 < 45°. The generator then supplies the coordinates of 
the remaining rods at the same radius from the center of the re
actor located at angles e, n/2 - e, n/2 + e, n - e, n + e, 
3n/2 - e, 3n/2 + 8, and 2n - 8. (Rods falling at multiples of 
45° are induded only once.) A similar option is included for 
square lattices as for hexagonal lattices to allow up to three 
rods in the sector 0 "" 8 < 45° to be of the same "rod type." 

Patterns of Rods on Circles About Axis of Reactor 

This generator allows a pattern of rods on circles about the 
axis of a cylindrical reactor to be produced. Three initial co
ordinates are required for each "rod type" in the lattice. These 
coordinates are the X and Y coordinates of the first rod encountered 
at a particular radius as one proceeds counterclockwise from the 
positive X axis, and the angular separation between rods at that 
radius. Coordinates of rods are generated from the initial po
sition (at angle 8) to an angle equal to the initial angle plus 
360 degrees. Single rods may be generated by making the angular 
separation between rods greater than 360 degrees. Up to three 
sets of initial X, Y, and ~8 coordinates may be input for a given 
"rod type" in the same manner as for hexagonal and square lattices. 

4.2.2 Infinite Lattices 

The infinite lattice generator in HERESY III generates a 
lattice that extends to a radially large distance such that the 
rods in the center of this large circle effectively "see" an in
finite lattice. 

The term "rod type" takes on a different meaning in this lat
tice than in the finite lattice considered above. The infinite 
lattice representation in HERESY III requires that a group of rods 
be found that are repeated over and over as the entire group is 
translated along a set of axes which mayor may not be perpendicular. 
Each rod contained in this repeating group becomes a "rod type." 

The data required for each "rod type" in the group are the 
distance in the X direction to the same rod in the next repeating 
group; the distance in the Y direction to the same rod in the next 
repeating group, the X and Y coordinates of the "rod type" relative 
to the coordinate origin; the outer radial limit of the "infinite" 
lattice; and the acute angle between the X and Y axes. 
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4.2.3 Plot, Print, Punch, and Scale Options 

Four optional features are available for use with the geometry 
generators in HERESY III and are described in the paragraphs below. 

Scaling 

The option is available to input all coordinates in arbitrary 
units and to scale these coordinates by arbitrary scale factors. 
A scale factor is input for the X coordinates and for the Y co
ordinates separately. These factors scale the coordinates, and, 
for infinite lattices, also the distances between repeating groups 
of rods. If the scale factors are not entered, they are assumed 
uni ty. 

Plotting 

The plot option is available to obtain a visual display of 
the lattice used in the problem. It is made on a rectangular grid 
allowing up to 25 intervals along the positive and negative X and 
Y axes. The incremental distance between grid points is specified 
by scale factors along the X and Y axes. Rods are assigned to the 
closest grid point in the plot, and the "rod type" number appears 
at these positions. 

Printing 

The print option is available to list all of the coordinates 
of each "rod type." The list breaks the rods down by "rod type," 
and gives the X and Y coordinates (in centimeters) for each rod 
of that type. 

Punching 

The punch option is available for finite lattices only. The 
option will produce two decks of cards that may be reloaded directly 
back into another problem in the input data. The first deck con
tains the number of rods in the lattice for each "rod type," which 
is reloaded with fixed point data, and the second deck contains the 
X and Y coordinates for all rods in the lattice. 

4.3 MODERATOR DISTRIBUTION GENERATORS 

The interaction between two rods in the lattice depends only 
on the separation between the rod centers and the effective 
properties of the moderator material between the rods. Because 
the moderator properties are constant for a given problem, the 
distributions may be tabulated as a function of rod separation. 
A tabular procedure with interpolation has been found to be less 
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time consuming than calculating values for each rod separation. 

The matrices are formed by summing up the contributions to 
a "rod type" in the lattice from all rods in the lattice (including 
itself) . 

A more general form is permitted for specifying the moderator 
distributions than the single distribution functions discussed in 
Section 3. Instead of the single Gaussian [equation (3.6)], the 
slowing down density may be given as 

3 1!:.- r k I2 
r I Bm - J - (4.1) qj k --r exp - r 

m~l 
41TT m 4Tm 

where 

3 

I Bm 1 (4.2) 

m=l 

The effective neutron age is then 

3 

Teff I Bm Tr 
m (4.3) 

m=l 

All other distributions that depend on equation (4.1) ,(i.e., 
all but the diffusion solution, equation (3.10)), follow the three 
component weighting of equation (4.1). These reduce back to the 
standard solutiDns, when Bl = 1 and B2 = B3 = O. 

4.4 AUTOMATIC PARAMETER CONVERSION 

Although HERESY III may be used with all card input, it was 
designed to be used in connection with cell calculations per
formed by the HAMMER? system. The results of HAMMER cell calcu
lations may be retained on tape (called a lattice library tape). 
This tape may then be mounted prior to HERESY III runs. A 
routine is included in the executive section of HERESY III, which 
may read this tape and automatically generate much of the input 
required. This may be done for either one epithermal group (level) 
or three epithermal groups (levels) corresponding to the two- or 
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four-group parameters provided by the HAMMER system. Moderator 
properties (thermal diffusion coefficient, thermal absorption 
cross section, and Fermi age(s)) are computed based on a weighted 
average of these properties, the weighting factors being the 
number of rods of each rod "kind" present. With these properties 
established, the "cell-rod" relations discussed in Section 3 are 
used to compute rod properties. Details are discussed below. 

4.4.1 Moderator Properties 

Thermal moderator properties are computed from the following: 

kinds 

L Ni l:~ 

kinds 
(4.4) 

kinds 

L Ni Oi 

o kinds 
(4.5) 

(4.6) 

where Ni is the number of rods of each "rod kind." Equation 
(3.11) is used to modify these quantities to account for trans
verse leakage. 

Several options are available for specifying the neutron 
ages for the resonance and thermal levels in a problem. Some of 
these options are historical in origin and are included in 
HERESY III only to maintain compatibility with previous versions 
of the code. A parameter (mnemonic NTAU) is used to specify 
six options. 

• (NTAU ~ 1 or 5) Internally stored ages for one epithermal 
level are to be used. These ages are semi-empirical and 
are adequate for most survey problems, particularly if used 
with scale factors as described below. The first of these 
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two options (NTAU = 1) 
bution, and the second 
Gaussian distribution. 

uses a one-term Gaussian distri
(NTAU = 5) uses a three-term 
(Appendix B.) 

• (NTAU = 2 and 6) Internally stored ages for three epithermal 
levels are to be used. All comments relating to the one 
resonance level set of ages apply also here (Appendix B). 

• (NTAU = 3) Neutron ages will be computed from the HAMMER 
System output as part of the automatic conversion feature. 
These ages will be the average of the HAMMER ages for the 
different assemblies in the lattice weighted by the rela
tive numbers of each assembly in the lattice. The number 
of epithermal levels (mnemonic N0TAU) must be specified 
for this option. The relations used to obtain these ages 
are shown in Appendix B. 

• (NTAU = 4) Neutron ages will be entered by card input 
allowing any arbitrary set of ages to be available to the 
user. The number of epithermal levels (mnemonic N0TAU) 
must be specified for this option. 

Any set of neutron ages specified by the options NTAU = 1, 2, 5, 
or 6 may be scaled by an arbitrary input copstant (mnemon;c CQ). 
For the option NTAU = 3, this scaling constant (mnemonic CQ) is 
used as an arbitrary multiplier on the lowest epithermal level 
above the thermal level (Appendix B). 

If an external set of neutron ages is input (NTAU = 4), the 
parameter conversion uses this set for all assemblies, and no 
scaling is done for any assembly. 

It is not required that all rod parameters be taken from a 
HAMMER system output. A sequence of numbers [mnemonics NCASE(I) , 
1 ~ I ;S NKINDj are entered, one for each "rod kind," when the 
conversion feature is desired. These numbers are the case Identi
fication Numbers on the HAMMER lattice library. If a number is 
zero, the conversion is not performed for that "rod kind." It is 
important to note that if the moderator L2 and La parameters are 
obtained from the conversion, then the process of not converting 
a "rod kind" by this feature will omit the effect of that "rod 
kind" on the moderator parameters. 

The data necessary to perform the automatic parameter con
version include a signal (mnemonic NHAM) , which specifies the 
number of resonance levels (lor 3), series of case Identification 
Numbers [mnemonics NCASE(I) , 1;S I;S NKINDj, a number giving the 
relative weight of this assembly in computing moderator properties 
[mnemonics NLB (I), 1 ~ I ~ NKINDj, a library number for each "rod 
kind" telling the library from which the data are to be taken 
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[mnemonics NTAPE(I) , I ~ I ~ NKINDj, and a signal (mnemonic NTHER) 
indicating which option for the heterogeneous f parameter is to be 
used (see below). 

HERESY III can use up to three lattice libraries in a single 
problem. These are referred to as libraries 17, 18, and 19. If 
no library is specified, 17 is assumed. The three libraries are 
assigned at execution time using suitable Data Definition (DO) 
control cards. 

4.4.2 Rod Parameters 

The relations used in the automatic parameter conversion to 
obtain the nuclear parameters for each "rod kind" are discussed 
in the following paragraphs. 

Thermal Utilization 

Four options are available for obtaining the heterogeneous 
thermal uti li zation for each "rod kind" from a HAMMER sys tern ce 11 
calculation. A signal (mnemonic NTHER) specifies the options as 
follows. -

• (NTHER;O, default case) 

f het 1. 0 -
La(mod) + La(mod) ) 

2 x 
La(cel)) 

C 4.7) 

• (NTHER;l) 

fhet 1. 0 -
La(mod) 
La (cell) 

(4.8) 

• (NTHER;2) 

fhet 1. 0 -
LaCmod) 
La (cell) 

(4.9) 

• CNTHER;3) 

f het 1. 0 - M C 4.10) 
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where 

Ea(mod) = moderator thermal ~a based on the weighted 
average of all "rod kinds" 

moderator thermal ~a for this "rod kind" 

cell average thermal ~a for this "rod kind" 

M = fraction of total thermal neutrons absorbed 
in the outermost material in the cell 

Options 0, 1, and 2 give somewhat different results when thermal 
spectrum mismatch between cells is significant. Option 3 is 
included for historical reasons only. A discussion of the physical 
bases of these options is given in Appendix D. 

Whichever choice of f is made is used together with the cell 
area in equation (3.19) to obtain the thermal absorption parame
ter O. 

n PcuameteY'8 

The heterogeneous thermal eta parameter is computed using 
the (nf) product from the THERMOS part of HAMMER and the hetero
geneous f parameter computed by the algorithms in the previous 
section. 

11thermal (4.11) 

The resonance 11 parameters are computed from the four-group macro
scopic cross sections in the HAMLET part of HAMMER. For the three 
epithermal level conversion, they are given by 

(4.12) 
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where r indexes the resonance level. 
conversion, the groups are condensed 
resonance n parameter is given by 

S4 

L <Pi vE i 
f 

rl i=l 

S4 

L <Pi );i 
a 

i=l 

For the one epithermal level 
by flux weighting and the 

(4.13) 

where the <Pi are the cell averaged fluxes for the fifty-four 
micro-groups in the HAMLET part of HAMMER. 

Resonance Absopption Coefficients 

For one epithermal level, the epithermal absorption coeffi
cient is computed from equation (3.28). For three epithermal 
levels, the coefficients are computed from equations (3.38 to 3.4~. 

In the lists of input data in Section 6, the parameters that 
may be obtained from the automatic parameter conversion feature 
appear with an asterisk after the mnemonic. 
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4.5 CRITICALITY SEARCHES 

Four criticality searches are available that enable the user 
to obtain a specified static reactivity coefficient (mnemonic 
EIGEN) as a function of the 6 parameter, thermal n parameter, or 
all resonance n parameters for a specified "rod kind"; or as a 
function of the axial buckling 82. 

Searches over the 6 parameter, thermal n parameter, or all 
n parameters (specified by mnemonic LCRIT ~ I, 2, or 3, respec
tively) require that a "rod kind" (mnemonic KSERCH) be specified 
for which the appropriate parameter will be varied. Searches 
over B~ (specified by mnemonic LCRIT = 4) do not require further 
specifIcations. 

A short summary of the progress of the criticality search 
is output after each iteration of the search. A limit 
(mnemonic NS) is placed on the number of iterations that may take 
place in a search, since some cases may take an inordinate amount 
of time to achieve convergence. 

At the completion of a 6 parameter search the heterogeneous 
thermal utilization [mnemonic THERU(KSERCH)] is recomputed for the 
converged 0 parameter for the "rod kind" searched over. This thermal 
utilization, as well as the n parameters or buckling in the other 
searches, is stored in the data array at the end of a solved 
problem. Thus the data will contain the results of the criticality 
search in all cases. 
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5. OUTPUT 

5.1 GENERAL 

Two output formats are available as user selected options 
from the HERESY III code. They are called "long form" or "short 
form" edits. The long form edit gives a detailed breakdown, level
by-level, of rod absorptions, average absorptions, and average eta 
parameter. The short form edit lumps all epithermal absorptions 
and production into single parameters averaged over all epithermal 
levels. Selection of the edit format is specified by the mnemonic 
variable NEDIT. If NEDIT is not specified, the long form edit will 
be output. 

The information is divided into data summary, criticality 
search summary, and edit of solved problems. 

5.1.1 Data Summary 

This summary is the same for both edit forms. All data used 
in the solution to the problem are shown whether input from cards 
or by the automatic nuclear data conversion feature. The summary 
is output before the problem is solved and will not show changes 
to parameters that occur in criticality searches. 

5.1. 2 eriti cal ity Search Summary 

In the event a criticality search is performed, a section is 
output following data summary, which summarizes the progress of 
the search after each iteration. Contained in this summary are 
the current reactivity coefficient, the rod kind being searched 
over, and the current value of the parameter being varied. 

5.1.3 Edit of Solved Problems 

Solving the heterogeneous lattice problems yields the thermal 
absorptions normalized to the most highly absorbing rod in the 
lattice, and the static reactivity coefficient. From these and 
the input information, the resonance absorption and a variety of 
other parameters are obtained and output in the edit of solved 
problems. This edit is divided into the following parts: 
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This part lists the last two successive inner and outer 
eigenvalues as a check of the convergence of the problem. If the 
problem does not coverge, a line is produced here stating the con
ditions under which the edit is being performed. 

Part 2 

Thermal and resonance absorptions for each "rod type" are 
summarized in a table. The long form edit lists resonance ab
sorptions by individual resonance level and as a sum of all levels. 
The short form edit lists only the total resonance absorption for 
a given rod type. 

Part ;3 

This part provides the lattice averaged resonance and thermal 
rod absorptions for each rod type. The long form edit provides 
averages for each resonance level, and the short form edit lists 
only the average total resonance absorptions for a rod type. 

Part 4 

This part provides the lattice averaged resonance and thermal 
eta parameters. The long form edit provides averages for each 
resonance level, and the short form edit lists only the averages 
over all resonance levels and lattice rods. 

Part 5 

This part gives the lattice averaged thermal eta parameter, 
resonance escape probability, thermal utilization, a nonleakage 
probability, total-to-thermal fission ratio, static reactivity 
coefficient, moderator absorptions, and total leakage. Under 
suitable conditions, the lattice material buckling is calculated. 

Part 6 

This part provides the lattice averaged resonances and thermal 
absorptions for each "rod kind." The long form edit provides aver
ages for each resonance level, and the short form edit lists only 
the average total resonance absorptions for a rod kind. 
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Part ? 

In the event a criticality search has been performed as part 
of the calculations, a line is printed out in this part glvlng 
the value of the parameter being varied when the search reached 
convergence. 

5.2 EQUATIDNS USED IN EDIT 

The edit routine begins with a knowledge of the thermal ab
sorptions, the static reactivity coefficient, and the input data. 
The following equations are used to obtain the remainder of the 
information in the output. 

5.2.1 Epi therma 1 Absorpti ons 

From equations (3.44, 3.45, and 3.46), 

i (5.1) 

where the matrices are defined at the end of Section 3. Equation 
(5.1) is used to compute epithermal absorption. 

5.2.2 Average Absorptions 

Average absorptions for any epithermal level, thermal level, 
or total epithermal absorption are obtained from 

~ (r) 
1 

!Y • i(r) 
w 

where W diagonal matrix of number of rods per rod type 

w = total number of rods 

5.2.3 Lattice Parameters 

Average lattice parameters are defined to satisfy the 
basic equation 

k = ii E: P fX 
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where 

k 
-n 
E: 

p 

f 

X 

static reactivity coefficient (kef f) 

average thermal eta parameter 

ratio of total fissions to thermal fissions 

resonance escape probability 

thermal utilization 

nonleakage probability 

The following terms are defined as 

Pt - total 
1 

W - k 
. 

-

neutron production from thermal sources 

P - total neutron production from epithermal sources 
r 

2. w - k -
.r 
I 

T _ total thermal neutron absorptions in rods = W i 

R _ total 
P 

=LW 
r=l-

epithermal neutron absorptions in rods 

.r 
I 

M _ total thermal neutron absorptions In moderator 

K 

=L 
n=l 

NT(l-f ) n n n 
f 

n 

L = total neutron leakage - P
t 

+ Pr - T - R - M 

where 

K number of rod kinds in lattice 

NT n n total thermal neutron absorption in all rods of kind n 

f = heterogeneous thermal utilization of rod kind n (input) 
n 
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In terms of these quantities, the lattice parameters are: 

- kP
t W !J i 

11 -- = T W i -
P 

W . l: kP )J 
il --E. = r=l p 

R W 'l: 
r=l 

p (T+M+L)/(P +P ) 
t r 

f T/ (T+M) 

x = (T+M)/(T+M+L) 

(P +P ) /P t t r 

r .r 
1 

.r 
1 

(5.3) 

The separation between "moderator absorption" and "leakage" is 
somewhat arbitrary, and only the sum M+L or the product fX is 
unambiguous. 
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5.2.4 Lattice Material Buckling 

If the problem calls for the solution of an infinite lattice 
with zero axial buckling, then the static reactivity obtained in 
the solution of the problem is koo • The lattice averaged parameters 
are used in the two-group diffusion theory critical equation to 
obtain the material buckling of the lattice. This equation is 

x 

where 

-res 
-'.(::.-1-4P:Ll _1l__ + 

I+TB' 
m 

pf~ 

(l+TB') (l+L 'B2) 
m m 

T = lattice effective thermal age 

L2 lattice thermal diffusion area 

B2 lattice material buckling 
m 

-res -
p, f, 1l , 1l, and X defined in equation (5.3) 

(5.4) 

The material buckling is calculated using a common approxi
mation for the thermal diffusion area. This approximation relates 
the moderator thermal diffusion area to the lattice thermal 
diffusion area by 

L'(lattice) = (1-xflL2(mod) (5.5) 

For an infinite lattice, X should be unity. The code 
computes a value different from unity due to the finite convergence 
criterion on fluxes and keff' The actual value computed is included 
in the equation (5.4) for numerical consistency. 
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6. INPUT 

Data are broken into three types and input in the following 
order: 

1. Alphanumeric data (1 card only) 

2. Fixed point data 

3. Floating point data 

For each problem, there must be at least one card of each type in 
the input data deck. The three types of data are described sepa
rately in the following paragraphs. 

6.1 ALPHANUMERIC DATA 

These data consist of one card of alphanumeric symbols con
tained in columns 1-72 of the input card. This information is 
printed out as a page subheading in the output from the code. 

6.2 FIXED POINT DATA 

Fixed point data are entered in a fixed card format that 
allows any number of individual data up to five to be read from a 
single card. The card format is shown below: 

Card Columns 

1 5 6-12 13-24 25-36 37-48 49-60 61-72 --- --- --- ---
Last card Number of Relative Datum Datum Datum Datum Datum 
indicator data on location 1 2 3 4 

this card of Datum 
(if blank 1 on this 
or zero card (see 
is assumed following 
to be 5) list 

All fixed point data are stored in a large singly indexed 
array JJ in core. Each datum is assigned a relative location in 
this array, and a list of these locations follows. The relative 
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location of datum 1 on the card is punched into columns 6-12. 
Data 2-5 are stored in sequential relative locations in the array. 

If it is not desirable to input a full card of data (five 
data), it is only necessary to place the number of data actually 
appearing on the card in column 5 (a blank or a zero will cause 
five data to be read). For instance, if it is necessary to change 
one property of one rod type in a list of fifty rod types, the 
relative location of the datum may be determined from the list 
below and placed in columns 6-12, a number 1 placed in column 5, 
and the new datum placed in the datum 1 field as defined above. 

All fixed point data are entered to the extreme right of the 
defined field, blank columns being read as zeros. 

The last card of fixed point data must have a 1 punched in 
column 1 to indicate it is the last card. 

Relative locations for fixed point data are contained in 
the following list. 

1. JJ(l) 

2. JJ(2) 

3. JJ(3) 

K9191R 

o 

1 
= 2 

KERN 

o 

I 

INF 

o 
1 

4. JJ(4) = LAT 

o 
= I 
= 2 

Control and Geometry Data 

Geometry Generator Control 

Use the geometry of the previous 
problem. 
Generate a new lattice geometry. 
Read lattice geometry from cards. 

Kernel Generator ControZ 

Use moderator spatial distributions 
from previous problem. 
Generate new moderator spatial 
distributions. 

NOTE: If either the transverse 
buckling or the moderator physical 
properties are changed, KERN = 1 
should be used. 

~obZem Geometry Control 

Finite lattice geometry. 
Infinite lattice geometry. 

Lattice Geometry Control 

Hexagonal lattice. 
Square lattice. 
Pattern of rods on circles about 
axis of reactor. 
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5. JJ(5) ... 

6. JJ(55) ... 

7. JJ (105) 

8. JJ (lU6) 

9. JJ(107) 

NICPRT (I) 

NRPRT(I) 

KPL0T 

o 
1 

KPRINT 

o 
1 

KPUNCH 

o 
1 

Number of rotationally symmetric 
typical lattice locations to be l\sed 
in geometry generator for each 
rod type. For example, in a hex
agonal lattice in which some rod 
types contain 12 rods, NICPRT(I) 
would be set equal to 2 for those 
types: two sets of coordinates 
would (later) be specified which, by 
60° rotation, would generate the full 
12 rods. If any NICPRT(I) are zero, 
they are internally set equal to one 
(enter for finite lattices only; 
1 .; I .; NTYPE). 

Number of rods in lattice of each 
rod type (enter only if K00R = 2; 
1.; I (: NTYPE). 

Geometry plot Option 

Do not plot geometry. 
Plot geometry. 

Geometry List Option 

Do not list lattice coordinates. 
List lattice coordinates. 

Geometry Punch Option 

Do not punch lattice coordinate deck. 
Punch lattice coordinate deck. 

Moderator Control Data 

10. JJ(109) NTAU 

1 
2 
3 

4 

= 5 
6 

11. JJ(llO) NOTAU 

Resonance Level Scheme Option 

Single Gaussian stored 2-group levels. 
Single Gaussian stored 4-group levels. 
Single Gaussian levels are computed 
from HAMMER output (must supply value 
of N0TAU below) (recommend for auto
matic parameter conversion). 
Arbitrary levels input from cards 
(must supply value of N0TAU below). 
Triple Gaussian 2-group stored levels. 
Triple Gaussian 4-group stored levels. 

Number of resonance levels (enter 
only if NTAU = 3 or 4). 
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Rod Specification Data 

12. JJ (111) NTYPE 

13. JJ(112) NKIND 

14. JJ (113) NHAM 

0 

1 

2 

15. JJ (114) = NTHER 

0 

1 

2 

3 

16. JJ(1l5) ... = NCASE(I) 
(omit if NHAM = 0) 

17. JJ(135) ... = NLB(I) 
(omit if NHAM = 0) 

Number of rod types in lattice (~50) . 

Number of rod kinds in lattice (~20) • 

Automatic Papametep Convepsion ContY'ol 

No parameters will be obtained from 
a HAMMER lattice library tape. 
Some or all rod parameters will be 
obtained from a HAMMER lattice 
library tape in 2 groups. 
Some or a 11 rod parameters wi 11 be 
obtained from a HAMMER lattice 
library tape in 4 groups. 

ThePmal Utilization Option ContY'ol 

Standard f computation (numeri cal 
average of options 1 and 2) 

f 1 -
[a (mod) 

L (cell) a 

f 1 -
La(mod) 

La(cell) 

f = 1 - absorption in outermost 
material region. 

HAMMER Case Identification number 
from which rod parameters are to be 
derived for each rod kind 
(1 ~ I ~ NKIND) (enter zero if con
version is not to be performed for 
a rod kind I). 

Relative number of rods of each rod 
kind in lattice (1 ~ I < NKIND). 

18. JJ(155) ... = NTAPE (I) Library number of HAMMER lattice 
(omit if NHAM = 0) library for each rod kind (if zero, 

assumes library 17). 

19. JJ(175) •.. KIND (I) Rod kind associated with each rod 
type (1 .( I ~ NTYPE). 
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20. JJ(225) 

21. JJ(226) 

22. JJ (228) 

23. JJ(229) 

24. JJ(23l) 

25. JJ (232) 

26. JJ(233) 

Criticality Search Control Data 

LCRIT 

o 
1 

2 

3 

4 

KSERCH 

Criticality Search Control 

No criticality search. 
Search for criticality over thermal 
n parameter. 
Search for criticality over thermal 
f parameter. 
Search for criticality over all n 
parameters. 
Search for cri ticali ty over axial 
buckling. 

Rod kind to be searched over in 
criticality search. 

Miscellaneous Control Data 

NEDIT 

o 
1 

LAST 

o 
1 

N2 

N3 

N5 

Edit Option Control 

Long form edi t. 
Short form edit. 

Last Problem Control 

More problems follow. 
This is the last problem. 

Maximum number of iterations on 
eigenvalues and eigenvectors (set 
equal to 100 if left blank). 

Maximum number of iterations for 
outer eigenvalue iterations 
(set equal to 10 if left blank). 

Maximum number of iterations for 
criticality searches (set equal to 
10 if left blank). 

6.3 FLOATING POINT DATA 

Floating point data are also input in a fixed card format 
that enables any number of individual datum up to five to be read 
from a single card. The card format is identical to that dis
cussed for fixed point data; the only change made for floating 
point data is for the data to be read in FORTRAN FIXED DECIMAL 
FLOATING POINT notation (standard FORTRAN F type conversion). 
The number 10- 6 would thus appear as .000001 on an input card. 
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A floating point datum may be entered anywhere within the defined 
field on the card so long as the decimal point is assigned the 
correct position in the number. If no decimal point is entered, 
it is automatically assigned as following the character appearing 
in the last column of the datum field. Blank columns are read as 
zeros. 

All floating point data are stored in a singly indexed array 
BB in core, each datum being assigned a relative location in this 
array. A list of these relative locations follows. 

The relative location of datum I on the card must be punched 
into columns 6-12, and provision for reading less than five data 
is identical to that for fixed pOint data. 

The last card of floating point data must have a I punched 
in column 1 to indicate it is the last. 

Relative locations for floating point data are given in the 
following list. Items with asterisks by the mnemonic may be 
omitted if automatic parameter conversion is used. 
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Data for Geometry Generators 

(Items 1-5 refer to finite lattices only) 

l. BB(l) . .. ~ X(il CI, 1) 
BB (51) ... ~ XyJCI,2) 
BB(lOl) ... ~ X(ilCI,3) 

2. BB(15l) Y(il (I , I) 
BB(201) Y(il(I,2) 
88(251) Y(ilCI,3) 

3. B8(30l) THETA(I,l) 
BB(35l) THETA (I , 2) 
B8(40l) THETA (I ,3) 

4. BB(452) RyJUT 

5. 8B(403) RIN 

Initial values of X coordinates 
for rods in finite geometry 
generators (1 ~ I ~ NTYPE). See 
Notes 1 and 2. 

Initial values of Y coordinates 
for rods in finite geometry gener
ators (1 ~ I ~ NTYPE). See Notes 
1 and 2. 

Angular separation between rods on 
same radius about axes of reactor 
(enter only if LAT ~ 2) (1 ~ I ~ 
NTYPE). See Note 1. 

Reflector outer radius (em). If 
left blank, an 00 reflector will be 
assumed. 

Radius within which image rod 
effects may be ignored (cm). If 
left blank, image contributions 
will be computed for all rods. 

(Items 6-11 refer to infinite lattices only) 

6. BB(45l) ~ ANGLE 

7. BB(454) RADII 

8. BB(455) ... XPITCH(I) 

9. BB(505) ... = YPITCH(I) 

10. BB(555)... XICI) 

Acute angle 
(degrees). 
equal to 90 

between X and Y axes 
If left blank is set 
degrees. 

Practical outer radius of infinite 
lattice (cm). A suitable way to 
choose this parameter is to specify 
a radius within which the total 
number of rods is slightly less 
than 5000, the upper limit. 

X pitch for Ith overlapping lattice 
(1 ~ I ~ NTYPE). See Note 2. 

Y pitch for 1th overlapping lattice 
(1 ~ I ~ NTYPE). See Note 2. 

X coordinate of rod nearest origin 
in Ith overlapping lattice 
(1 ~ I ~ NTYPE). See Note 2. 
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11. BB(605) ... = YI(I) 

12. BB(655) XC!2lR 

13. BB(656) YC!2lR 

14. BB(657) XSCALE 

15. BB (658) YSCALE 

Y coordinate of rod nearest origin 
in Ith overlapping lattice. 
(I ~ I ~ NTYPE). See Note 2. 

Arbitrary scale factor on all X 
coordinates. See Note 2. 

Arbitrary scale factor on all Y 
coordinates. See Note 2. 

Plotting interval along X axis in 
geometry plotter (if zero is set 
equal to XC!2lR). 

Plotting interval along Y axis in 
geometry plotter (if zero is set 
equal to YC!2lR). 

(Items 16 and 17 refer to the K~~R = 2 option on~y) 

16. BB(115l) ... = XCI) 

17. BB(6l5l) ... = Y(I) 

X coordinates for all rods (em). 

NTYPE 

I NRPRT(I) values 

1=1 

See Note 3. 

Y coordinates for all rods (cm). 

NTYPE 

I NRPRT(I) values 

I-I 
See Note 3. 

Data for Moderator Spatial Distribution Generators 

18. BB(659) = XLSQ* 

19. B8(660) SIGA* 

20. BB(661) BSQ 

Moderator thermal diffusion area 
(cm 2

) • 

Moderator thermal macroscopic 
absorption cross section (l/cm). 

Axial geometrical buckling (1/cm 2
). 
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21. BB(663) ... B(I,J)* 

22. BB(693) ... TAU(I,J)* 

Weighting factors for each component 
of triple Gaussian slowing down 
density. See Note 4. 
(1 ~ I ~ NQJTAU+l; 1 .; J ~ 3) 
(B(NQJTAU+l,J) are thermal values) 
(enter only if NTAU = 4). 

Neutron age from fission to resonance 
energy for each resonance level and 
each component of triple Gaussian 
slowing down density. See Note 4. 
(1 ~ I", NeITAU+l; 1", J ,; 3) 
(TAU(N0TAU+l, J) are thermal values) 
(enter only if NTAU = 4). 

23. BB(724) = CQ* Arbitrary multiplicative factor for 
TAU(I,J) values. See Appendix B. 

24. 88(725) ... AR(I,J)* Resonance absorption parameter for 
each rod kind and each resonance 
level. See Note 4. 
(1 " I " NKIND; 1 ~ J " NQJTAU). 

Nuclear Data for Individual Rods 

25. BB(905) ... = TIIERU(I)* Thermal utilization for each rod 
kind (1 ~ I ~ NKIND). 

26. BB(925) ... ETAIN(I,J)* Eta value for each rod kind and 
each resonance level. See Note 4 
(1"" I ~ NKIND; 1 ~ J ~ N0TAU+l). 

(ETAIN (I,N0TAU+l) values are 
thermal values). 

27. BB(1125) ... VCELL (I) * Cell volume for each rod kind 
(1 .( I ,; NKIND). 

28. BB(1145) 

29. BB(1l46) 

Data for Criticality Searches 

EIGEN 

CRl 

Eigenvalue to be searched for 
(if zero is set equal to 1.0). 

Convergence limit on matrix 
inversion (if zero is set equal 
to .000001). 

6-9 



30. BB(1147) = CR2 

31. BB(1148) CR3 

32. 88(1149) CR4 

Note 1 

Convergence limit on inner eigen
value and eigenvector iterations 
(if zero is set equal to .001). 

Convergence limit on outer eigen
value iterations (if zero is set 
to .001). 

Convergence limit on criticality 
searches (if zero is set equal to 
.001) . 

Entering the ini ti al coordi na tes X91 (I ,J), Y91 (I ,J), and THETA (I ,J) 
for the finite lattice generator must be done in the following 
order. The matrices for these quantities are 50 by 3 (50 rows 
and 3 columns). Data are entered column-wise, which implies that 
for each value of J the index I runs through its full range. 
Hence, using X91 as an example, the values would be entered as 
follows: 

X~(l,l) ... , X91(I,l) ... , X91(50,1), X91(1,2) ... , X91(I,2) ... , 

X91(50,2) , X91(1,3) ... , X91(I,3) ... , X91(50,3). 

Relative locations associ ated with these coordinates are: 

BB(l) = X91(l,l) B8(15l) Y91(1,l) 88(301) THETA(l,l) 

B8(Sl) = X91(1,2) 88(201) Y0(l,2) 88(351) THETA (1,2) 

BB(lOl) = X91(l,3) 88(251) Y91(1,3) 88 (401) THETA(1,3) 

Note 2 

The scale factors XC91R and YC91R are used as arbitrary non-zero, 
non-negative multiplication factors to modify coordinate values 
input. These factors do not multiply all values, but only those 
indicated below: 

XC91R multiplies the values of X91(I,J), XPITCH(I), XI(I). 

YC91R mUltiplies the values of Y91(I,J), YPITCH(I), YI(I). 

If XC0R and/or YC91R is left blank or is entered negative, it 
is automatically set equal to 1.0. 
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Note 3 

Coordinates are input in sequence starting with rod type 1 and 
running over all rods of that type. These are followed by rod 
types 2, 3, 4, ... , where, for each rod type, the coordinates 
of all rods of that type are successively entered. 

Note 4 

Entering the doubly indexed rod parameters and age parameters 
must be done in the correct order, else a programmed error 
message will occur. Matrices for these parameters are dimen
sioned at 10 rows and 3 columns for age parameters, and 20 rows 
and 10 columns for rod parameters. Data are always entered 
column-wise, which implies that the first index runs through 
its full range before the second index is incremented. If the 
ETAIN array is used as an example, the parameters are entered 
as follows: 

HAIN(I,I) 

HAIN(I,2) 

... , ETAIN(I,I) ... , ETAIN(20, I) , ETAIN(l,2) 

... , ETAIN(I,IO) ... , ETAIN(20,10). 

Relative locations for these parameters are shown oelow: 

HAIN(l,I) 88(925) AR (I, I) B8(725) TAU(1,I) 8B(693) 
ETAIN (l, 2) 88(945) AR(I,2) 8B(745) TAU(I,2) B8(603) 
ETAIN (l ,3) 8B(965) AR(I,3) B8 (765) TAU (1 ,3) BB (713). 
HAIN(1,4) 88 (985) AR(I,4) ; 88 (785) 
ETAIN(I,5) 88(1005) AR(I,5) B8(805) 8 (l, I) 8B(663) 
ETAIN (l ,6) 8B (1025) AR (1,6) BB(825) 8(1,2) BB(673) 
ETAIN(1,7) BB(1045) AR(1,7) ; B8 (845) B(1,3) ; B8(683). 
ETAIN (l, 8) 88(1065) AR(I,8) 8B(865) 
ETAIN (1,9) 8B(1085) AR(I,9) BB(885) . 
ETAIN(I,IO) ; B8(1105). 

6.4 ERROR CONDITIONS 

There are a number of tests built into the code to detect 
error conditions at different points in the computational sequence. 
These conditions mayor may not produce a termination of the run 
depending on whether the condition is recoverable or not. At 
the occurrence of any such error condition, a number is printed 
out that indicates the condition and what action will be taken. 
The error condition codes are shown in the following list. 
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Error Condition 
Number 

100 

110 

210 

220 

230 

240 

310 

320 

330 

340 

350 

Reason for Error Condition 
Action to be 
Taken by Code 

HAMMER conversion is requested for Attempt next 
a number of resonance levels not problem. 
equal to 1 or 3. 

A HAMMER case is not in the 
designated library. 

The number of rods in the 
lattice exceeds 5000. 

A machine branching error has 
occurred. Re-submit problem. 

The initial coordinates to the 
hexagonal lattice generator are 
in the wrong sector. 

The initial coordinates to the 
square lattice generator are in 
the wrong sector. 

A negative radial distance was 
found in tabulating the slowing 
down kernel. Check geometry. 

An error condition was found in 
the Bessel's function subroutine 
in the epithermal slowing down 
kernel tabulation. Check geometry 
and/or moderator parameters. 

A negative radial distance was 
encountered in tabulating the 
epithermal slowing down kernel. 
Check geometry. 

An error condition was found in 
the Bessel's function subroutine 
in tabulating the thermal dif
fusion distribution. Check 
geometry and/or moderator parame
ters. 

A negative radial distance was 
encountered in tabulating the 
thermal diffusion distribution. 
Check geometry. 
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Attempt next 
problem. 

Exit machine 

Exit machine. 

Exit machine. 

Exit machine 

Exit machine. 

Exit machine. 

Exit machine. 

Exit machine. 

Exit machine. 



Error Condition 
Number Reason for Error Condition 

360 The mesh spacing is too large. 
Check geometry. 

370 The mesh spacing is too small. 
Check geometry. 

380 Argument of exponential is 
>174.0 in KERG2 

410 The (r+D) matrix failed to invert 
to the ~ccuracy specified by CRI. 

420 The ([+Q) matrix is singular. 

430 

440 

450 

460 

510 

520 

The (I-B) matrix failed to 
invert to the accuracy specified 
by CRl. 

The (£-~) matrix is singular. 

The inner eigenvalue iterations 
have exceeded N2 iterations 

The outer eigenvalue iterations 
have exceeded N3 iterations. 

The cri ti cali ty search i tera
tions have exceeded N5 itera
tions. 

Criticality cannot be achieved 
with a positive axial buckling. 
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Action to be 
Taken by Code 

Exit machine. 

Exit machine. 

Exit machine. 

Attempt next 
problem. 

Attempt next 
problem. 

Attempt next 
problem. 

Attempt next 
problem. 

Attempt next 
problem. 

Attempt next 
problem. 

Attempt next 
problem 

Attempt next 
problem. 
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APPENDIX A 

TABULATION OF T(T/v,O) FUNCTIONS 

The TeT/V,e) functions defined in equation (3.29) and used 
to compute the resonance flux advantage factors are tabulated in 
the following list. Figure A-I is a plot of these functions to 
obtain approximate values. 
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FIGURE A-l T{T/V} Versus T/V for Square or Hex Lattices 
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Argument 
(,IV) 

0.001 
0.002 
0.003 
0.004 
0.005 
0.006 
0.007 
0.008 
0.009 
0.010 
0.011 
0.012 
0.013 
0.014 
0.015 
0.016 
0.017 
0.018 
0.019 
0.020 
0.021 
0.022 
0.023 
0.024 
0.025 
0.026 
0.027 
0.028 
0.029 
0.030 
0.031 
0.032 
0.033 
0.034 
0.035 
0.036 
0.037 
0.038 
0.039 
0.040 
0.041 
0.042 
0.043 
0.044 
0.045 
0.046 
0.047 
0.048 
0.049 
0.050 

TABULATION OF T(,/V,S) FUNCTION FOR 
ARGUMENTS BETWEEN 0.001 AND 0.050 

No. of Terms in Function Sum = 2601 

Square Lattice 
(S = 90') 

79.577184 
39.788655 
26.525795 
19.894349 
15.915486 
13.262906 
11 .368205 
9.947179 
8.841938 
7.957745 
7.234314 
6.631455 
6.121342 
5.684104 
5.305165 
4.973595 
4.681035 
4.420987 
4.188320 
3.378933 
3.789506 
3.617325 
3.460153 
3.316125 
3.183677 
3.061488 
2.948436 
2.843559 
2.746030 
2.655133 
2.570246 
2.490823 
2.416387 
2.346516 
2.280837 
2.219017 
2.160759 
2.105798 
2.053893 
2.004829 
1.958409 
1.914455 
1.872806 
1.833313 
1 . 795840 
1 . 760262 
1.726465 
1.694342 
1.663795 
1.634734 

A-2 

Hexagonal Lattice 
(e = 60') 

79.574860 
39.787501 
26.525021 
19.893764 
15.915018 
13.262517 
11. 367873 
9.946888 
8.841679 
7.957512 
7.234102 
6.631260 
6.121164 
5.683938 
5.305008 
4.973446 
4.680891 
4.420843 
4.188171 
3.578770 
3.789317 
3.617095 
3.459862 
3.315750 
3.183190 
3.060859 
2.947629 
2.842537 
2.744753 
2.653559 
2.568331 
2.488526 
2.413666 
2.343331 
2.277148 
2.214788 
2.155957 
2.100393 
2.047859 
1.998143 
1.951053 
1 .906416 
1.864073 
1.823881 
1.785706 
1.749430 
1.714939 
1.682131 
1.650913 
1.621195 



Argumen t 
(T IV) 

0.050 
0.051 
0.052 
0.053 
0.054 
0.055 
0.056 
0.057 
0.058 
0.059 
0.060 
0.061 
0.062 
0.063 
0.064 
0.065 
0.066 
0.067 
0.068 
0.069 
0.070 
0.071 
0.072 
0.073 
0.074 
0.075 
0.076 
0.077 
0.078 
0.079 
0.080 
0.081 
0.082 
0.083 
0.084 
0.085 
0.086 
0.087 
0.088 
0.089 
0.090 
0.091 
0.092 
0.093 
0.094 
0.095 
0.096 
0.097 
0.098 
0.099 
o. 100 

TABULATION OF T(T/V,a) FUNCTION FOR 
ARGUMENTS BETWEEN 0.050 AND 0.100 

No. of Terms in Function Sum = 961 

Square Lattice 
(a = 90') 

1.634734 
1.607073 
1.580735 
1.555647 
1.531740 
1.508951 
1.48)220 
I .466492 
I. 4467 I 5 
1.427838 
I .4098 17 
I .392608 
1.376 I 71 
1.360467 
1.345459 
1.33 I I 15 
1.317401 
1.304287 
1.291745 
1.279747 
1.268269 
1.257284 
1.246771 
1.236707 
I. 22)072 
1.217847 
1.209012 
1.200549 
1.192443 
I. 184677 
1.177235 
I. I 70 I 04 
1.163270 
1.156719 
1.150439 
I. 1444 I 9 
I. 138647 
I. 133 I 12 
1.127804 
1.122714 
I. I 1783 I 
I. I 13 I 47 
1.108655 
1.104344 
I . 100209 
1.096240 
1.092433 
1.088778 
1.085272 
1.081906 
1.078675 

A-3 

Hexagonal Lattice 
(8=60') 

1.62 I 194 
1.592895 
I .565940 
I. 540256 
1.515778 
I .492444 
1.470197 
I .448980 
1.428744 
I. 409439 
I. 39 I 02 I 
1.273447 
1.356675 
1.340667 
1.325388 
I. 3 I 0802 
1.296878 
1.283583 
1.270890 
1.258769 
1.247195 
1.236142 
1.225587 
1.215506 
1.205878 
1.196682 
1.187899 
1.179510 
1.171496 
1.163842 
I. 156530 
1.149545 
1.142873 
1.136499 
I. 1304 I 0 
1.124593 
I. I 19036 
I. I 13727 
1.108656 
I. 1038 I I 
1.099182 
1.094760 
1.090535 
I .086498 
I .082642 
1.078958 
1.075438 
1.072075 
1.068863 
1.065793 
1.062860 



Argument 
(T/V) 

0.100 
O. 101 
0.102 
0.103 
0.104 
0.105 
0.106 
0.107 
0.108 
0.109 
0.110 
O. III 
0.112 
0.113 
0.114 
0.115 
0.116 
0.117 
0.118 
0.119 
0.120 
0.121 
0.122 
0.123 
0.124 
0.125 
0.126 
0.127 
0.128 
0.129 
0.130 
0.131 
0.132 
0.133 
0.134 
0.135 
0.136 
0.137 
0.138 
0.139 
0.140 
0.141 
0.142 
0.143 
0.144 
0.145 
0.146 
0.147 
0.148 
0.149 
0.150 

TABULATION OF T(T/V,e) FUNCTION FOR 
ARGUMENTS BETWEEN 0.100 AND 0.150 

No. of Terms in Function Sum = 441 

Square Lattice 
(e = 90') 

1.078675 
1.075574 
1.072597 
1.069740 
1.066997 
1.064363 
1.061834 
I .059406 
1.057074 
1.054836 
1.052686 
1.050621 
1.048638 
1.046734 
1.044905 
I .043149 
1.041461 
1.039841 
1.038284 
1.036789 
1.035352 
1.033972 
1.032647 
1.031373 
1.030150 
1.028974 
1.027845 
1.026760 
1.025718 
1.024716 
1.023754 
I .022829 
1.021941 
1.021087 
1.020267 
1.019478 
1.018721 
1.017993 
1.017293 
1.016621 
1.015975 
1.015355 
1.014758 
1.014185 
1.013634 
1.013104 
1.012595 
1.012106 
1.011636 
1.011185 
1.010751 
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Hexagonal Lattice 
(e = 60') 

I .062860 
I .060058 
I .057382 
I .054824 
1.052380 
1.050046 
1.047815 
1.045684 
1.043648 
1.041703 
1.039844 
1.038069 
1.036372 
1.034751 
1.033202 
1.031723 
1.030309 
1.028958 
1.027667 
1.026434 
1.025256 
1.024131 
1.023055 
1.022028 
I .021046 
1.020108 
1.019212 
1.018356 
1.017538 
1.016757 
1.016010 
1.015296 
1.014615 
1.013963 
1.013341 
1.012747 
1.012179 
1.011636 
1.011117 
1.010622 
1.010148 
1.009696 
1.009264 
1.008851 
1.008457 
I .008080 
1.007720 
1.007376 
1.007047 
1.006733 
1.006433 



Argument 
(,IV) 

0.150 
0.151 
0.152 
0.153 
0.154 
0.155 
0.156 
0.157 
0.158 
0.159 
0.160 
0.161 
0.162 
0.163 
0.164 
0.165 
0.166 
0.167 
0.168 
0.169 
0.170 
0.171 
0.172 
0.173 
0.174 
0.175 
0.176 
0.177 
0.178 
0.179 
0.180 
0.181 
0.182 
0.183 
0.184 
0.185 
0.186 
0.187 
0.188 
o. 189 
0.190 
0.191 
0.192 
0.193 
0.194 
0.195 
0.196 
0.197 
0.198 
0.199 
0.200 

TABULATION OF T(,/V,9) FUNCTION FOR 
ARGUMENTS BETWEEN 0.150 AND 0.200 

No. of Terms in Function Sum = 441 

Square Lattice 
(9 = 90') 

1.010751 
1.010333 
1.009932 
1.009547 
1.009177 
1.008821 
1.008478 
1.008150 
1.007833 
1.007530 
1.007238 
1.006957 
I .006687 
I .006428 
I .006179 
1.005939 
1.005709 
1.005488 
1.005275 
I .005071 
1.004874 
1.004685 
1.004504 
1.004329 
1.004161 
1.004000 
I .003845 
1.003696 
1.003553 
1.003415 
I .003283 
I .003156 
1.003034 
1.002916 
1.002803 
I .002694 
1.002590 
1.002490 
1.002393 
1.002301 
1.002212 
1.002126 
I .002044 
1.001964 
I. 00 1888 
1.001815 
1.001745 
1.001677 
1.001612 
1.001550 
I .001490 

A-S 

Hexagonal Lattice 
(9 = 60') 

1.006433 
I. 006146 
1.005872 
1.005611 
1.005361 
1.005122 
I .004894 
1.004675 
1.004467 
1.004268 
1.004078 
I. 003896 
I. 003722 
I .003557 
1.003398 
1.003247 
1.003102 
I .002964 
1.002832 
1.002705 
I .002585 
1.002470 
1.002360 
I .002255 
I .002154 
1.002058 
I. 001966 
1.001879 
I .001795 
1.001715 
I .001639 
1.001566 
1.001496 
1.001429 
I .001365 
1.001305 
1.001246 
1.001191 
1.001138 
1.001087 
I. 00 I 039 
1.000992 
I .000948 
I .000906 
1.000866 
1.000827 
1.000790 
1.000755 
1.000721 
1.000689 
1.000658 



TABULATION OF T(T/V,e) FUNCTION FOR 
ARGUMENTS BETWEEN 0.200 AND 0.250 

No. of Terms in Function Sum = 441 

Argument Square Lattice Hexagonal Lattice 
(T/V) (8 = 90°) (e = 60°) 

0.200 1. 001490 1.000658 
0.201 1.001432 I .000629 
0.202 1.001377 I .00060 I 
0.203 1.001323 1. 000574 
0.204 1.001272 1.000549 
0.205 1. 001223 I .000524 
0.206 1.001176 1. 00050 I 
0.207 1.001130 1.000479 
0.208 1.00 I 086 1.000457 
0.209 1.001044 1. 0004 37 
0.210 1.001004 1. 000417 
0.211 I .000965 1.000399 
0.212 1.000928 ],000381 
0.213 I .000892 1.000364 
0.214 1.000857 1.000348 
0.215 I .000824 I .000332 
0.216 1.000792 1.000317 
0.217 1.000761 1.000303 
0.218 1.000732 1.000290 
0.219 I.OC0701; 1.000277 
0.220 1.000676 1.000265 
0.221 I .000650 1.000253 
0.222 1.000625 1.000241 
0.223 1. 00060 I 1.000231 
0.224 1.000578 1. 000220 
0.225 1.000555 1.000211 
0.226 1.000534 1.000201 
0.227 1. 000513 1.000192 
0.228 1.000493 I .000184 
0.229 1.000474 1.000176 
0.230 1.000456 1.000168 
0.231 1.000438 I .000160 
0.232 1.000421 1.000153 
0.233 1.000405 1.000146 
0.234 1.000389 I .000140 
0.235 1.000374 1.000133 
0.236 1.000360 1.000128 
0.237 1.000346 1.000122 
0.238 I .000332 1.000116 
0.239 1.000319 1.000 III 
0.240 1.000307 1.000106 
0.241 1.000295 1.000102 
0.242 I .000284 I .000097 
0.243 1.000273 1.000093 
0.244 1.000262 I .000089 
0.245 1.000252 1.000085 
0.2116 I .000242 1.000081 
0.247 1.000233 1.000077 
0.248 1.000224 ],000074 
0.249 I .000215 1.000070 
0.250 1.000207 1.000067 
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APPENDIX B 

NEUTRON AGES AND WEIGHTING FACTORS 

Two sets of neutron ages and weighting factors are stored 
internal to the HERESY III code. These sets are given below plus 
a third set suitable for a nine resonance level treatment of 
natural uranium systems. This latter set is from work by Nuclear 
Development Corporation of America* (now United Nuclear). In each 
set, the highest numbered level is the thermal level. 

Resonance 
Level 

2 

Resonance 
Level 

2 

3 

4 

SET 1 

2-Group HAMMER Conversion Set 

eNTAU = 1 and 5) 

Fission Fission Fission 
Source 1 Source 2 Source 3 

_ B_l_ _T_l_ _B_,_ T, _B_, _ T, 

0.726 61. 53 0.002 53(;.70 0.272 166.00 

0.654 82.70 0.003 543.00 0.343 184.50 

SET 2 

4-Group HAMMER Conversion Set 

eNTAU = 2 and 6) 

Fission Fission Fission 
Source 1 Source 2 Source 3 

_B_l_ .2L .-!l.L. _ T_,_ _B,_ _T_, _ 
1.0 12.6 0.000 131. 5 0.0 525.5 

0.888 47.0 U. III 150.0 0.001 528.0 

0.726 72.5 0.272 170.0 0.002 536.7 

0.654 82.70 0.343 184.0 0.003 543.0 

Effective 
Fission to 

Resonance Age 

90.896 

118.998 

Effective 
Fission to 

Resonance Age 

12.60 

58.914 

99.948 

118.998 

* W. L. Brooks and H. Soodak. Resonance AbsoY'ption in D2 0 Lattice 
Reacto~s. USAEC Report NDA-2131-19, Nuclear Development Corp. 
of America, White Plains, N. Y. (1960). 
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SET 3 

NDA 9-Leve 1 Resonance Scheme 

3 
Effective L T i Bi Resonance Energy, Energy, ev MUFT 

Level ev 'I BI " B, ' , 8, i=l Max Min Groups ---
5.5 x 10" 526.0 0.00125 23.5 0.860 131. 5 0.150 22.4 10 6 10' 1- 23 

2 2.7 x 10' 527.5 0.00155 38.6 0.795 140. 1 0.202 48.3 10' 10' 24-28 

3 550 531. 2 0.00175 47.3 0.765 148.2 0.230 71. 2 10' 245 29-31 

4 190 534.0 0.00186 52.5 0.742 154.0 0.250 78.4 245 301 32- 33 

5 102.8 535.5 0.00193 55.8 0.730 157.5 0.262 83.0 130 86 34 

6 66.3 536.6 0.00198 58.1 0.723 159.5 0.269 86.5 86 48 35-36 

7 36.8 538.2 0.00205 61.4 0.714 162.5 0.279 90.3 48 29 .J7 - 39 

8 21. 0 539.5 0.00212 64.2 0.705 165.8 0.289 94.3 29 12 40-42 

9 6.68 542.3 0.00225 70.4 0.690 172.5 0.315 104. 1 12 5 47-54 

Thermal * 543.0 0.00253 82.7 0.654 184.5 O. 34,~ 118.7 0.625 0 

* Spectrum dependent. 
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APPENDIX C 

NEUTRON AGES AND RESONANCE ESCAPE PROBABILITIES 
COMPUTED FROM THE HAMMER SYSTEM 

One of the code options is to compute moderator ages directly 
from the data stored on a HAMMER7 system lattice library. Problems 
arise from this procedure due to differences in the fission 
spectrum used in the HAMMER and HERESY III calculations for four 
groups. The methods used, which are in part empirical, are 
described in the following paragraphs. 

trans
cell. 

The HAMLET section of the HAMMER system is a Fourier 
form slowing down calculation for the homogenized lattice 
Results are available for one or three epithermal groups. 
fission spectrum for the HAMMER system has fission neutrons 
in the three epithermal groups with the following groupwise 

The 
born 

spectrum. 

Xl =0.7532 X
2 

= 0.2466 X3 = 0.0002 0.0 

HERESY III assumes all neutrons are born at age T = O. 

For a HERESY II I calculation with one resonance level, the 
HAM~lER one epithermal group values may be utilized directly because 
there are no fission spectrum difficulties. Thus, the following 
definitions are used for the ages and resonance escape probability. 

p HAMMER one epithermal group resonance escape 
probabi li ty 

k x Tthermal 

Tthermal 

(k < 1.0 and set equal to 0.86 
if not specified) 

where Tthermal is the thermal age or age to the top of the thermal 
energy group. The constant k that appears in the equation for 
T, is in general lattice dependent, the default value being a 
number that has been found to be generally good for a large number 
of lattices. 

For a HERESY III problem using three resonance levels, the 
difference in fission spectrums has an appreciable effect on the 

C-l 



input parameters. The methods used for the three resonance level 
conversion are designed to produce p's that reproduce the proper 
absorption ratios of each epithermal group (or resonance level) 
to the thermal group (or level) for an infinite lattice of identi
cal rods. The ages are those necessary to produce the proper 
leakage in the same lattice. 

Assume a fission source of 1 neutron in a homogenized cell. 
The absorption reaction rate in each group may be written as 
follows for the HAMMER homogenized cell and the HERESY III infi
nite lattice. 

HAMMER HERESY III 

La 
I 

La + L* 
I r l 

La 2 Lrl .1/J I 

La2 + Lf2 

L p* a 2 I 
La + L* 

2 r 2 

La 
3 

L* r 2 
1/J 2 

La + L* 
3 r3 

La * * 
3 PI P2 

La3 + L* r3 

where the Lri and pi are modified values of Lr and p to account 
for the spectrum dlfferences. Equating each pair of equations 
yields the value for the E~ as 

E* [(l-P~)1/JI - IJ La r l I 

p* 
l:* I 

La = r 2 (l-p)(X+PX) 2 
2 2 1 1 

[(l-P3) (X 3 

* * 
- 1 J l:* PI P2 

La r3 + P2(X 2 + PI XI)) 3 
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These values for the modified cross sections then may be used to 
compute the modified resonance escape probabilities and ages in 
the HERESY III fission spectrum as follows: 

DI D D 
T* 2 * , 

= T, = 
Ial + I* 2 

Ia2 + I* I a , + I* rl r 2 r, 

r* I* I* uri 
p~ 

r 2 p; 
r, 

Ia + I* Ia + I* Ia + I* 
I r l 2 r 2 , r, 

The modified ages now are the ages from the highest to the lowest 
energy in each of the epithermal groups. The age to the effective 
resonance level within these groups, however, is less than this 
value. The level ages are assigned by an empirical algorithm 
based on studies of a range of lattices as follows: 

TI O.S T* 1 

* O.S(T; Tt) T2 Tl + -

* * + k(T; T, Tl + T2 - T;) (k < 1.0 and is set equal to 
0.8 if not specified) 

where T4 is the thermal age for the three resonance level prcblem. 
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APPENDIX D 

THERMAL ABSORPTION PARAMETER OPTIONS 

In Feinberg's initial paper,l it was shown that the hetero
geneous thermal utilization satisfied the relationship 

(D-l) 

Because thermal diffusion coefficients are assumed to be equal 
to that of the moderator throughout the reactor, this leads 
immediately to 

l-f 
L (mod) 

a 
L (lattice) a 

(D- 2) 

where La(mod) is a constant throughout the reactor. If La(lattice) 
is identified with La(cell) obtained from some thermal cell 
calculation (such as THERM0S), then equation (D-l) may be taken 
to be the defining equation for f. 

If the thermal spectra of the various cells representing 
components of the mixed lattice do not agree with each other, 
then some suitable weighted value of La(mod) must be obtained. 
The automatic conversion algorithm in HERESY III simply weights 
the moderator absorption cross sections by the number of such 
components (cells) in the lattice. One is then left with the 
problem of whether or not to accept the cell homogenized thermal 
cross sections for the various cells, based as they are on 
different thermal spectra, or whether to try to make some kind of 
"correction" for the thermal spectra mismatch. Option 1 corres
ponds to accepting the THERM0S computed cell-averaged cross 
sections directly, even when spectral mismatch is present. In 
Option 2, the THERM0S cell-averaged cross sections are combined 
with the moderator cross section from the same cell to produce f, 
thus largely "canceling" out the inconsistency. Only qualitative 
arguments can be summoned to support either of these choices. 

Suich 14 has suggested that in order to avoid this difficulty, 
cell calculations can be rerun with altered cell boundaries for 
the various components until (in effect) a common thermal spectrum 
is obtained. Under this scheme, strongly absorbing components 
would be assigned large cell boundaries and weakly absorbing 
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components would be assigned small cell boundaries. He suggested 
a specific iterative scheme for achieving this. While some such 
approach seems justified for careful final design calculations, 
it would be somewhat laborious for survey calculations. His 
analysis emphasizes, however, the desirability of connecting the 
rod parameter 6 with the THERM0S cell-averaged La and its corres
ponding cell size by means of an algorithm which is insensitive 
to the cell size. 

Numerical examples are helpful in illustrating the sensitivity 
of results to the choice of the thermal absorption parameter option. 
THERM0S cell calculations were run for three different fuel assem
blies slightly enriched uranium metal rods with 0-, 2- and 3-inch
diameters in heavy water at various pitches). The THERM0S results 
are shown in Table 0-1. The corresponding rod parameters 6 from 
equation C3.l9) are plotted as a function of cell size in Figure 0-1 
for both Option 1 and Option 2. A constant value of LaCmod) of 
0.00007 cm- 1 was used in equation C3.l9), and in the case of 
Option 2 the spectrum in the 9-inch pitch lattice was chosen as 
"correct." In assessing the significance of dependence of 6 on 
cell size, it should be kept in mind that a given percent change 
in 6 will generally make a somewhat smaller percent change in 
absorption ratio in a mixed lattice. The shape of the curves in 
these examples suggests an obvious though inelegant algorithm for 
achieving insensitivity of the rod parameter 6 to the cell area. 
Delta can be computed both ways and averaged. This is Option 0, 
the default option for the thermal absorption parameter. Plots 
of 6 versus cell size using Option a are given in Figure 0-1. 

TABLE 0- 1 

Cell Homogenized Absorption Cross Sections 
by THERM0S (em-I) 

Diameter of Fuel Rod, inches 2 

Triangular Lattice Pitch, inches 
5 0.006836 0.018436 

7 0.003414 0.008695 

9 0.002033 0.004896 

II 0.001349 0.003090 

13 0.000967 0.002119 

0-2 

3 

0.034443 

0.015491 

0.008290 

0.005027 

0.003319 



1.80,---,..----,---,-----,---,---..., 

1.75 
0 One-inch-Diameter Fuel Rod 

0 • • " " ~ • " 0 

1.70 

1.65 
• Option 0 

o Option I 

6. Option 2 

- 1.10 , 
E 
u 0 Two·lnch·Diameter Fuel Rod 

GO 0 i " 1.05 • • II • 0 " " 
" 

1.00 

0.90 
0 Three-Inch-Diameter Fuel Rod 

• 0 i " • • 
0.85 

" 
0 0 

" 

0.80 
5 7 9 II 13 

Triangular Lattice Pitch, inches 

FIGURE 0-1 Variation of Del ta Versus Cell Size for 
So 1 i d Rod Examples 

D-3 



The same shapes and lack of sensitivity are exhibited when the 
moderator absorption cross section is much larger (0.0005 cm- I

, 

corresponding e.g., to large transverse leakage) although the 
magnitudes are different. It would appear that if this option is 
used, and if the examples are at all typical, cell sizes can be 
chosen on the basis of intuition and the ensuing mixed lattice 
results will probably be satisfactory without the necessity of an 
iterative procedure. 

As a check on the sensitivity of results to the choice of 
this option the experimental mixed-lattice results reported by 
Graves, et al. ls were calculated using HAMMER cell calculations, 
automatic parameter conversion, and HERESY III with all three 
thermal absorption options. Results (buckling values only) are 
given in Table D-2. The differences in buckling are small enough 
so that there is little incentive to argue for a preference on 
the basis of these results. 

TABLE 0-2 

Sensitivity of Buckling Results to Choice of 
Thermal Absorption Parameter Option 

Critical Vertical Buckling, ~1-2 

Lattice Number!S Experimental lS HERESY III, with NTHER= 

3 

4 

5 

0.97 

2.23 

3.41 

D-4 

o 2 

1.08 1.13 1.02 

1.92 1.86 1.99 

3.24 3.18 3.30 



APPENDIX E 

SAMPLE PROBLEMS 

PROBLEM 1 - INFINITE LATTICE 

A simple infinite lattice mixture (20-cm hexagonal cell) of 
two rod types is shown in Figure E-l. The lattice is generated 
by the internal generator using axes with an acute angle of 60° 
between them. Figure E-2 shows the input for this problem, and 
Figures E-3 and E-4 show the output from the code. 

Repeating Supercell --1-----..; 

/ 

/ 
/ 

./ 
/ 

--.-I 
/ 

/ 
/ 

/ 

I 

7 
/ 

o Assembly kind 

• Assembly kind 2 

FIGURE E-1 Hexagona 1 Ce 11 with 20-cm Pi tch 

E-l 



FIGURE E-2 

HERE SY III I NF IN ITE LATTICE TES T P~OBLFM - 20 CM P ITC H H,X LATTICE 
4 1 1 1 1 0 
2 105 1 1 
4 109 1 1 4 2 
4 175 1 2 2 1 

1 1 229 1 
4 451 60.0 900.0 
4 455 40.0 40.0 40.0 40.0 
4 505 40.0 40.0 40.0 40.0 
4 555 0.0 U.O 2e.0 2U.0 
4 605 0.0 20.0 0.0 2 0.0 
2 657 4.0 4.0 
2 65<; l?OUO. 0.0001 
3 724 1.03 100.0 75.0 
2 905 O. °9 5 0.985 
2 925 O. 55 0.65 
2 945 1.65 1.35 

1 2 1125 346.4 346.4 

E-2 



FIGURE E-3 

SUMMARY OF SLOwING DOwN PARAMETERS AND LATTICE INPUT OATA FOR HERESV III 

HERESY III INFINITE LATTICE TEST PROBLEM - 20 eM PITCH HEX LATTICE 

THIS IS AN INFINITE LATTICE PROBLEM 

NUMBER OF ROD TYPES"" 4 NUM8ER OF ROD KINDS 
*** **** ** ** '" "' ••••••••• * •••• *.*"' •• *** '" * •••••••• '" ••••• **.* ** •••• '" •• * ••• 

ITERATION MAXIMUM LIMITS 
I NNER EIGENVALUE'" 100 OUTER EIGENVALUE'" 10 CRITICALITY SEARCH 10 

CONVERGENCE CRITERIA 
INVERSION = 0.000001 INNER EIGEf>.IIAlUE .. 0.001000 OUTER EIGENVALUE 0.001000 CRITICAlITY = 0.001000 

MODERATOR PARAMETERS 
AXIAL BUCKLING 0.0 DIFFUSION AREA = 15000.00 MODERATOR ABSORPTION X$ECTION = 0.0001000000 

RESONANCE 
LEVEL 

RESONANCE LEVEL SCHEME 
••• "' •••••• ** ••• _.* ........... ** •••••• ** •••••••••••••• ** •••••••••• *** 

FISSION SOURCE 1 FISSION SOURCE 2: FISSION SOURCE 3 
FISSICN FISSION TO FISSION FISSION TO FISSION FISSION TO 
FRACTION RESONANCE AGE FRACTION RESONANCE AGE FRACT ION RESONANCE AGE 

1.000 
'* 2: 1.000 

93.623 
122.568 

0.0 
0.0 

1.030 
2.060 

0.0 
0.0 

1.030 
2.060 

* - THERMAL LEVEL 

THERMAL 
RESONANCE ETA 
RE SONANCE A 

THE RMAL 
RESONANCE ETA 
RE SONANC E A 

PARAMETERS FOR EACH ROD KINO 

*** **** "'''''''*''' '" "'* ** ** ** ** ** **"'* * "'* ***** "'''' *"'* "''''* '" * **. *.** ** ** **"'.* .** ••• 
00' KIND 1 "'* LATTI CE CASE a 

ET A .. 1.6500 DEL TA .. 0.497455 THERMAL UTILIZATION '" 0.995000 CELL VOLUME 
11 0.550 
11 = 100.0 

ROD KINO 2 •• LATTICE CASE a 
ETA "" 1.3500 OEL T A '" 0.792007 THERMAL UTILIZ.ATION ,. O. <;185000 CELL VOLUME 
11 0.650 
11 = 75.0 

PARAMETERS FOR EACH ROO TYPE 

*.* •••••••••••• * ..... * •• * ** >to* *"'''' ****"'**** •• *"'**** ** * "'''' **** ** ***** ** •• *. 
ROD TYPE ROD KI NO NO. RODS DELTA ETA F 1./DEL TA 

1 
2 
3 

• 

1207 
1207 
1207 
1207 

0.49745 
0.79201 
0.79201 
0.49745 

1.65000 
1.35000 
1.35000 
1.65000 

0.99500 
0.98500 
0.98500 
0.99500 

2: .01023 
1.26261 
1.26261 
2.01023 

*"' •• >to >to>to ***. * **. ** *'" ** ** "'* ***** **. "'*"'''' •• **'" *. *'" * ** * *'" ** ** >to* ** ** ***. '" * * 

E-3 

. 

. 

EFFECTIVE 
FISSION TO 

RESONANCE AGE 

93.623 
122.568 

346.400 

346.400 



FIGURE E-4 

HERESY III INFINITE LATTICE TEST PROBLEM - 20 eM PITCH HEX LATTICE 

NO OUTER ITERATIONS 3 CURRENT EIGENVAlUE 1.3009281 PREVIOUS EIGENVALUE 1.3019133 

NO I NNER ITER ATIONS CUPRENT EIGENVAlUE", 1.3009281 PREVIOUS EIGENVALUE 1.3009291 

ABSORPTIONS FOR EACH ROD TYPE 

••• **.*******.** ••••••••• ********* ••••••• *."' ••• *** •• ***.************* 
ROD TYPE ROO KIND NO RODS RESONANCE ASS THERMAL ASS 

1 1 1207 0.295094 0.999988 
2 2 1207 0.205026 0.456747 
3 2 1207 0.205025 0.456719 
4 1 1207 0.295094 1.000000 

AVERAGE RESONANCE ABSORPTION 0.250060 AVERAGE RESONANCE eTA 0.590995 

AvERAGE THERMAL ABSORPTION 0.728364 AVERAGE THERMAL ETA = 1.555938 

LATTICE AVERAGED PARAMETERS 

•• * .**.* •• ** ••• * ••••••• *. "'* ***.*. "'''' .. * "'* ******** "'* '" "'* ** ** ** ** ** *** **** 
AVERAGE THERMAL ETA = 1.555938 RESONANCE ESCAPE PROB: 0.146064 THERMAL UTILIZATION.a 0.9<;1843 

NON-LEAKACE PROB 0.999560 TOTAL FISSION/SLOW FISSION RATIO 1.130402 STATIC REACTIVITV IKI = 1.300928 

APPRDX MODERATOR AeSDRPTIONS = 28.920898 TOTAL LEAKAGE .: 1.560303 

LATTICE MATERIAL BUCKLING = 1202.6 MICROBUCKS 

AVERAGE ABSORPTIONS FOR EACH ROD KIND 

* ** **** * * *** "'** * ** >I< ** ** **** ********** ** ******** *** "'*** ** ** ***** ** "'* ** ROO NO AVG THERMAL AVG RESONANCE 
KIND ROOS ABSORPTIONS ABSORPTIONS 

1 
2 

2414 
2414 

0.999994 
0.456733 

E-4 

0.295093 
0.205026 



PROBLEM 2 - FINITE LATTICE WITH CONTROL ROD SEARCH 

A IO-inch pitch square cell finite lattice with interstitially 
located central rods is shown in Figure E-S. This lattice is gene
rated by the internal square lattice generator. The input cards 
are shown in Figure E-6, and the code output is shown in Figure E-7 
and E-S. 

0 0 0 0 0 0 0 

• • • 
0 0 0 0 0 0 46 

Y 

0 0 0 0 0 35 040 047 

• • 29 .41 

0 0 0 0 23 030 038 044 048 

0 0 0 14 020 025 031 037 0 45 

• ·11 -21 .33 

0 0 9 0,2 0,7 022 028 036 043 
---------- , , 

0 
, 

06 0,0 0,3 0'9 026 034 042 4 , , , .7 .,6 .27 2 , , , 
03 

, 
Os 08 0,5 0,8 024 032 039 , , 

center~ 
•• Control Rods 

Pile o . Fuel Rods 

EXAMPLE PROBLEM 

FIGURE E-5 Sector of Large Finite Lattice 

E-S 



FIGURE E-6 

HERESY III FINITE LATTICE TEST PROBL EM - 10 INCH SQUARE PITCH 
4 1 1 1 0 1 
2 105 1 1 
4 109 I 0 48 2 

175 1 2 1 1 1 
180 1 2 1 1 1 
185 2 1 1 1 1 
190 2 1 1 1 1 
195 2 1 1 1 1 
200 1 2 1 2 1 
205 1 1 2 1 1 
210 1 1 1 1 1 
215 2 1 1 1 1 

3 220 1 1 1 
1 225 2 2 1 

1 1.0 2.0 3.0 3.0 5.0 
6 5. 0 6.0 7.0 5.0 7.0 

11 6.0 7.0 t;.O 7.0 9.0 
16 10.0 9.0 1l.0 11.0 9.0 
21 10.0 11.0 <;.0 13.0 11 .0 
26 13.0 14.0 13.0 10.0 11.0 
31 13.0 15. 0 14. 0 15.0 11 • 0 
36 15.0 15.0 13.0 17.0 13.0 
41 14.0 17.0 17.0 15.0 !7.0 

3 46 13.0 15.0 17 .0 
151 1. 0 2.0 1.0 3.0 1.0 
156 3.0 2.0 1.0 5.0 3.0 
161 6. 0 5.0 3.0 7.0 1.0 
Ib6 2.0 5.0 1.0 3.0 7.0 
171 6. 0 5.0 q.O 1.0 7.0 
176 3.0 2.0 ~. Q 10.0 9.0 
181 7.0 1.0 6.U 3.0 11.0 
186 5.0 7.0 9.0 1.0 11.0 
191 10.0 3.0 5.0 9.0 1.0 

3 196 13 .0 11.0 CS.O 
4 655 12.7 12.7 12. , 12.7 
3 659 12 50 O. 0.00001 C. 00015 
2 725 58 .8 4.0 
2 905 O. 9t 6 0.93 
2 025 0.56 0.1 
2 945 1. 25 O.U 
2 1125 645.16 322.48 

E-6 



FIGURE E-7 

SUMMARY LlF ~LU .. IM> DC"N PARAMETERS ANll LATTI(.EdilWUl o.lATA FOR <1ERfS~ III 

HERESY [II ~I~ITE LATTICE H:ST PKIJ~LEM - 1'-' INCH ,JuARt PileI'! 

To1I5 15 A FINITE LAn ICE PROBLEM IN A~ INfiNITE S~A <.IF MGOEKATOk 

NUM~ER UF ROlJ TVPES ~ 48 i'oUM,,~R llF ROll "!N~S '" \ 2 *** .................... * .. " ................................... U' ••••••••••• 

I TEIIAriDN MAX [i'lU~ LI~!H 
.. WIER EIGEl'iVAU.lc ~ Iv CklTICAUTY SEAR'-H 

CC"vER~ENCE CklHPIA 
INVERSli.lr, ~ ".lJUWUl HIN~R tlGEfWALUE Y.LlIlIIlOlJ OUTER E["fNVUUE CRlT lCALITY lJ.,;lJWlU) 

MuuE RHUR PARHH EllS 
CIFFU~ION AREA'" 115<Ju.lllJ MOI)Et{ATIJR AdSGKPTIUN "~H"T10N '" U.1l00J1GUuDU 

KE~v"ANCE L~VtL :;Cl-tl1E 
................ n ... " .............................. u ............... * •••• ~ 

RESONAt;CE 
l~ vt L 

. , 
FI~SION $OUII(.£ 1 

FIS$ltN FlSSlU)I TO 
F~ACTIC~ ~ESCNA.~CE AGE 

1 ..... oJ~ 
l.uoJIJ 

T'k~MAl LhEL 

FISSION SUUkCE ~ 
FISSl<.J" FISSION TO 
F"ACT IUN kESu'IANCE AGE 

l.oJ(.ooJ 
l.OUO 

PA,UMETEll,S FO" EACH ku~ KINJ 

F ISSlui'l SOuKCE .. 
fIS~I;:'" FIS51wN TLl 
Fk .. CT Ill.. kI:'SU'~ANCE A~E 

....................... ** *', *'"" ............................................. *** •••• 

RUU KINO I ** LATTICE CAS~ 
ThERMAL ETA _ 1.~5oJL> THE,{MAL UrILllATlli'~ ~ U.$8600J 

RE5Llr..lA"C' ETA 11 C.5,,,.l 
R~~O~AiIIU: A 11 ~ .'>6.8 

RJO ",IND 2 •• LATTIC. CASE " 
T~oRMAL HA s u.;) O~LTA '" 3.113U42<1 THEKMAL .... TllILATIClN ~ c;.9~0L)U ... 

"ESONANC( ETA 11 U.L .... U 
KESONANCc ALI'" ~.(! 

PA~AMETUI.S FuR EACH ~CO TYPE 
••••• * •• ** •• ,~*~.** ••• *~ •••• ****** ••• **~ ••• ~*'.**q*' ••••• , ••• ******** 

~uu TYPE ~Ol) ~[~(; 1'10. "UDS uHTA nA 1./U~LTA 

lJ.747Jd 1.2 :iI.loJU u. ~d6Uv L. ;)aJl 
';.83J4l ,. , O.9JlJVU u.21>lv7 
lJ.7473~ 1.25UJO 0.986.)1) 1dHIU1 
I).7H3d 1. 2~uoJv U.98b.)IJ 1.HdOl 
u.1 .. 738 1. 25oJJ~ O. ~o6J ... I. 330U1 
.... 1"13d 1.25u ... u oJ.9116oJ,", l03Ja<Jl 
J.83oJ"l o. " ~. 930.)oJ 0.26101 
U.74131:1 1.25U",,, oJ.9<16.)" l.Bl:IlJl , u.14738 1.25Juu u. 'is,,Ju 1 •. ;13"11.11 

" u.741H 1.25 ...... U J.9S6oJU 1.3 )dU1 
U 3.113,",42 O. , u. ~lJoJlJ ",.l61(l1 

" U. 7413~ 1.25uJO 0.9d/>uJ 1.338vl 
U U.7473t1 1.25UUII ':.98boJu I.HaDi 

" .... 74738 1.25uoJU 1I.9d600 l.HSOl 

" ".1473b 1.250oJ'" C.9~600 1 d,;8u1 

" 3.~3U42 0.' u.9300<l 0.26l.01 

" u.74738 l.~~uu~ O.9d6"oJ I.HI:IOI 

" UoI4L;18 1.25oJOO C.986UO 1.Hd01 

" 0.747 Jti 1.25u,",0 ~.9t1bU,", 1.,U~Ol 

W .... 74138 1.2 ~OoJ~ O. gdbUU 1.338L>1 

" 3. d3oJ't2 .1.0 il.93UUJ oJ.c6l01 

" u.147H 1.2:>,,1<.1(; ~. 986"oJ 1.13801 

" u.747H 1.2 ~uoJoJ 0.986.1<1 1.33S01 

" 0.74738 1.2 SOU(. C.98"UU 1.33I1Ul 

" U.74138 1.2~uJU ".986JO 1.338U1 

" u.74738 1. 2j,",oJ~ G. 'l~b"U 1.BS1l1 

" 3.83U'o~ ,.c 0.9300L) " .201U7 

" il.74736 L.2 )"O~ C. 'ld6U<.I i.na<.ll 

" ~.830 .. l 0.' 0.93"OU U.~6107 

'" 0. 7~138 1.25<.1 .. 0 0.986,,0 IdJ601 

" U.74738 1.2, .. I.IU <I.'l8I>UU 1 .Jj~Ol 

" <1.14136 1.250" .... G. ~<l6<1<1 Id36Ul 
n 3.S3u'tZ 0.0 U.9;iOO .. U.261U1 

" U.7473d 1.2 sou ... 0.98()oJlJ 1.J3"UI 

" U.74138 1.250oJO 0.9<160<.1 1.HIHll 

" u. 1'07 36 1.250u() 0.981>UO 1.HI:I01 
n u. 7'07 30 1.2:>UOC 0.986<1U 1.BSU1 

" ". 7473~ 1.2;.UO .... 0.981>UU 1.H<lul 

" (J.74H8 1.25 .... uO U. ,6boJU 1.33B01 

" u.74738 1.~50oJO U.':I86"U 1.336Ul 

" .:1.630'0" 0.0 0.9';OUO 0.26107 

" \I.7'tl36 1.~5U<.IO O.98bUO 1.31801 

" u.747,;8 1.25oJUIi ..... 986 .... 0 1.33+:101 

" U. 7~73t1 1.23U\lU oJ.9d1>UJ I.nsvi 

" 0.74n8 1. 2'OoJ~ ~. 9<16UU 1.Hdl.ll 

" u.1413t1 l.i5000 0.9800U 1.331101 ., ".747~8 1.~ 5 ... "0 0.9d6UO 1.)3601 

" oJ.741)8 1.~5L)UO 0.9660U 1 •. H601 

•••• , .......... * .................................. u ••••••••• * •• * ••••••• 

Su .. MARY OF CRlilCALITY SEARLH UIIER THE~MAl LTiUlATIllN PARAMETER 
EIGENVAlue BEING SHu,ChEO FOR" 1. ... 00 

~FHCTlVE 
FISSIGN TO 

RE$O"'A/I,CE AGE 

'U.69& 
IltI.996 

ITERATWN NU CUIIREH EIl>ENVALUE PREVl(Ju~ EIGENVAluE 
1.0762491 
L.0996993 
C.~aO)d41 
1.0U42659 

CU ... RENT F VALUE 
".3619UO 
U.99Cl017 

ROO "'1010 ilEIN(; SEARCHEO 
I 1.0~98993 
~ U.9805847 
3 L.\,I042658 O. <J86U3 ~ 

C.9997435 .... 9868/,1 

E-7 



FIGURE E-8 
MERESt III FINITE LATTICE TEST PRo,lBLH' - I' INCI"< 51,1UARE PITCH 

NO OUTER ITER AT IONS CURRE"T EIGE,.,IIALUe \).9997435 PKE VlOUS EIGENVALUE 0.9997827 

NO INNER I Tel< AT IONS CUflRHT EIGENVALUE 0.99;11435 PRE'IIOU5 EIGENVALUE U.9997556 

At)$UI<PTluNS FUR EACH Ru/,J TYPE ...•••......•••..•.......•.....•.......•............................. 
ROD TYPE ROO KINO NO kODS KESCNANCE A,S HtERMAL .litiS 

I 1 • 0.119871 ! .UOUuUU 
2 2 • O.UQT6l4 0.4753.22 
3 I 8 0.1182'< 2 U.9S63S1 

• 1 4 O.ll&6SI:1 0.972536 
S 1 8 I,) • 1154.0u 0.963161 

• I 8 u.1l3747 U.9./t89U4 
1 2 , U.OU1429 0,) .<051 H8 , I , 00110912 O.9244J9 
9 1 4 0.110721 0.<')246)0 

10 1 8 0.1091 EI7 ;l.90'J554 
II 2 • O.0"7U09 0.425821 

" 1 , 0.lU602U 0.8&4U05 
13 1 , O.lUH&O .. loiH:6U72 

" 1 4 0.101101 u .841623 
1> 1 u.105597 0.881749 
16 2 0.vU6703 U .41.17205 
11 1 0.100444 0.839342 
18 1 0.098951 0.1124423 
19 1 , 0.091027 o. iHJ7774 
20 1 B 0.095250 v.794n4 
21 , , 0.()U62H u.:na7t19 

" 1 0.09)464 0.179013't 
23 1 V. (,I89U19 (J.745U15 ,. 1 0.092145 0.769715 

" 1 0.087905 O.1311V z. 1 0.09011.18 O.152111l 
Z1 Z , 0.005775 1l.35.;J<365 
2B 1 , 0.086313 0.1217313 

" 2 • 0.ov537U Q .J2622Z 

" 1 8 0.081300 0.677929 
Jl 1 , O.OSOEO o .6699U1 
32 1 8 U.084693 O.70Hl;\0 
33 2 , 0.005241 U .313440 
34 1 8 0.V82578 U.b85468 
35 1 4 0.013122 U .607U2d 
30 1 8 0.018534 1).653064 
31 1 , 0.072061 0.597126 

" 1 , 0.073U1 0.612196 

" 1 , 0.069820 0.665245 
40 1 , v.064Ubl 0.537219 
41 Z , 0.01.14197 0.255019 
42 1 , 0.067964 0.647485 .. 1 , 0.1)64231> u.611124 
44 1 , 0.063332 0.531.15]6 ., 1 , 0.0:'8433 J .5~54ao .. 1 • U.048603 1.1.5(431)0 ., 1 • 0.1,,145771 1l.459931 .. 1 , 0.04656 ... ... .48:'778 

AVERAGE RESONANCE AUSORPT [UN o.012d52 AVE RAG I: R t; SONANC E ETA V.553295 

AV ERAGE THERMAL AdSURPT1CN U.6755bu AVEI\AGE TrlERI'Al ETA = 1013u517 

LATTICE AVERA&EO PARAMETERS 
•• * ••••• *~ ••••••••• * ••••••••••••••••••••••••• **.* •••• * ••• * ••••••••••• 

AvERAGE THERMAL ETA .. 1.130577 RESCN.ilNCE ESCAPE P~08" .).90,.423 THERMAL UTlLllATION O.9il6082 

T01AL FISSICN/SLQ" FISSIOII! RATIO l.u52713 STATIC REACTIVJTY (I<., "" 0.999743 

APPROX MuDERATOR AfSORPT IONS = 3.21l.)142 TOT Al lE AKAt;E 15.94118Z 

AVEkA~E AdSuRPTIUNS FOR EACH ROD KINe 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• **** ••• 

RU~ NO AVG THERMAL AVG RESO~ANCE 
KINO RODS A8S0H.PT IONS AtiSURPTIONS 

1 
Z 

0.1401Z9 
0.370050 

U.086<;56 
O.UOo091 

THE VALUE OF THE HEItl'AL uTilflATIv'~ PARAMETER fOR ROO KINO 

E-8 

AT CRI TICAL [S 0.986862 



APPENDIX F 

COMPUTER ENVIRONMENT INFORMATION 

The HERESY III code was written in FORTRAN IV for operation 
on the IBM System/360-65 computer. It requires 180,000 bytes 
(45,000 single precision words) of high speed care, and up to 
420,000 bytes (105,000 single precision words) of disk or drum 
storage. The user may optionally call for up to three tapes to 
be mounted. 

The amount of disk or drum storage necessary will depend on 
the problem defined by the user. The following is a list of 
data set reference numbers, usage, device types, and volumes of 
data required for the maximum size problem that HERESY III will 
solve. 

Data 
Set Number Use Device Volume of Data 

5 Data input System imput 20 to 100 cards 

6 Data output System output 100 to 1000 lines 

17,18,19 Lattice libraries Tape 

20 

21 to 58 

Temporary storage Disk or drum 

Temporary storage Disk or drum 

F-l 

10,000 single pre
cision words 

2,500 single pre
cision words per 
data set 




