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ABSTRACT 

Dual stream functions were adapted to a description of strati­

fied flow, and a general vector equation for steady-state flow of 

a stratified liquid under gravity was developed. The stratified 

flow was required to be derivable from a static source fluid. A 

critical distribution of flow as a function of depth at the sour~e 

was obtained by a variational method based on an extremal hypothesis 

that the flow is confined to a minimum layer thickness. Solutions 

were obtained for both channel and axisymmetric flow for the case 

where the source fluid is linearly stratified. Several sink 

geometries were considered for axisymmetric flow, and typical stream­

line solutions are given. Comparison of theoretical results with 

published experiments for channel flow and axisymmetric flow revealed 

generally satisfactory agreement. 
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INTRODUCTION 

Selective withdrawal of a fluid of a desired density from a 

stably stratified source in a reservoir is a problem of considerable 

interest. Stratification may arise from temperature variations 

or concentration gradients of dissolved salts. Of greatest 

practical importance is the relationship between the draw-off 

rate and the density of the withdrawn fluid when the density 

distribution of the stably stratified source is known and the 

draw-off structure is specified. 

Early attention to this problem was reported by Craya l 

who considered selective withdrawal of one layer of a two-layer 

system; his predictions were later compared with experimental 

results obtained by Gariel. 2 Craya also developed a theory of a 

"Cri tical Regime" in stratified flow with hypotheses based on a 

condition of "minimum thrust" and "minimum energy flux.,,3 

Yih 4 ,S showed that inertial effects of density variations 

in a fluid could be conveniently handled by defining an associated 

flow of constant density through the velocity-density transformation 

~Cu' ,v' ,w') = /PCu,v,w). Yih s also solved the problem of two-
o 

dimensional flow to a line sink for an inviscid fluid that was 

presumed to have a uniform density gradient at the source. Yih 

showed that fluid separation would not be possible when the Froude 

number in the channel exceeds l. 
1T 

Debler 6 ,s conducted experiments with saltwater stratified to 

form a constant density gradient in a rectangular tank with flow 

to a line sink. These experiments led Debler to propose that the 

height of the flow region below a dividing streamline is 

characterized by a modified Froude number of I but no theoretical 11' 
basis was given. 
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Kao 7 ,5 developed an analysis for a two-dimensional flow 

with a velocity discontinuity between an underlying stream of 

moving fluid and an overlying stagnant region. 

Koh B,5 through a perturbation method analyzed two­

dimensional stratified flow with viscous effects when the 

Reynolds number is not large. Experimental data were obtained 

with both salt solutions and thermally stratified water. Velocity 

distributions were obtained and correlated well with the 

theoretical analysis. 

Harleman, Morgan, and Purple9 performed experiments with 

axisymmetric flow to a sink in a large tank containing two layers. 

Results were interpreted in terms of a critical Froude number for 

diSCharge of the lower layer such that the upper layer remains 

stagnant. 

Wood 10 reported analyses and experiments for selective 

withdrawal of stratified layers from a reservoir through a 

constriction. 

The objective of the work reported here is primarily to 

consider theoretically the steady-state gravity flow of a 

continuously stratified, inviscid fluid to a sink subject to 

two conditions: 

• The pressure and velocity of the moving stream are required 

to be continuous at the boundary with overlying or underlying 

stagnant regions. 

• The moving stream is confined to the minimum possible layer 

thickness consistent with reasonable physical constraints. 
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SUMMARY 

Dual stream functions were adapted to a description of 

stratified flow; W is associated with layers of constant density, 

and X represents an appropriate orthogonal set of surfaces. A 

general equation for steady-state flow of a stratified liquid 

under gravity was developed by vector methods with the dual 

stream functions. With appropriate selection of the X function 

for two-dimensional horizontal flow and for axisymmetric flow, 

the general equation was shown to reduce to the second order 

partial differential equations reported by Yih s for a single 

stream function. 

The governing steady-state equation of flow contains two 

arbitrary functions. One of these functions is determined if the 

static source fluid is specified (density versus depth) together 

with a designation of a "discharge elevation," which may be 

considered as an elevation of maximum potential energy in the 

source fluid. The second arbitrary function is determined if it 

is required that the flow be confined to a minimum layer thickness 

about the discharge elevation. The latter extremal condition 

yields a classical problem of Lagrange from the calculus of 

variations. The solution of the variational problem leads to 

critical flow equations that uniquely determine the distribution 

of flow as a function of density. For a source fluid with linear 

variation of density with depth, it is shown that equal flow is 

obtained from equal density intervals (or equal depth intervals) 

in the source; the equations for two-dimensional horizontal flow 

(channel flow) are analytically solved to yield density and 

velocity as a function of depth in the channel. In this case, it 

is shown that the velocity varies as the cosine-squared function 

of the depth in the channel; the flow is characterized by a 

modified Froude number of l. For any source distribution in 
1T 
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critical channel flow, Richardson's number may not be less 
1 

than '2' 

In the development of the general stratified flow by means 

of dual stream functions and in the derivation of the critical 

flow conditions from the extremal hypothesis, it was not necessary 

to assume any restrictions on the magnitude of density variation 

in the fluid. 

Solutions of the governing partial differential equations 

for steady gravity flow were obtained for both channel and 

axisymmetric flow; the source fluid was assumed to be linearly 

stratified. In these solutions, which were obtained by iterative 

computation of the finite difference equations, a satisfactory 

algorithm was found to represent the requirement that the fluid 

boundary bordering a stagnant region must have a zero velocity. 

This condition is a form of free boundary that leads to a Cauch~ 

or third boundary problem. A consequence of this boundary 

condition is that a region of constant density fluid (isopycnic 

wedge) must be postulated to exist between the flowing fluid 

and any contiguous region of stably stratified stagnant fluid. 

The solution for channel flow was for a line sink at the base 

of a vertical dam terminati"~ the channel. Total flow in a channel, 

per unit width, is determirod by the critical flow conditions and 

is known prior to the solution of the governing partial differential 

equation. Additional information obtained from the solution of the 

partial differential equation is the identification of streamlines 

and the capability to calculate velocity and pressure. 

Several sink geometries were considered for axisymmetric 

flow, and typical streamline solutions are given. The total flow 

for axisymmetric geometries was calculated in terms of the 
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equivalent width of a horizontal channel that would yield the same 

total flow from the given source and stream thickness. For 

instance, in the important case of flow to a point sink where the 

steady flow is derived from a source height h in a linearly 

stratified fluid, the total flow is the same as that which can be 

supported by horizontal channel flow from the same source and a 

channel width of 0.63 h. The numerical value 0.63 is determined 

as an eigenvalue of the partial differential equation that meets 

specified boundary requirements. 

In addition to the point sink in axisymmetric flow, solutions 

were found for circular curvilinear sinks and open holes of various 

radii. The case of a point sink beneath a rigid disk is also 

considered. 

In both the channel and axisymmetric cases, it was not 

possible to find steady-state solutions meeting the zero velocity 

boundary requirement that spanned the entire distance from sink 

to source. The implication is that a transition region of unsteady 

flow must exist between the entrance of the flowing stream to the 

steady-state region and the stagnant source fluid (if it exists) 

even farther upstream. 

Comparison of the theoretical results with Debler's6 

experiments for channel flow and with the experiments of 

Harleman, Morgan, and Purple9 for axisymmetric flow revealed 

generally satisfactory agreement. The theory supports Debler's 

proposal that selective withdrawal in two-dimensional channel 

flow is characterized by a Froude number of l. 
TI 
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THEORY 

BASIC EQUATIONS OF STEADY FLOW 

Genera 1 

The fluid is assumed to be incompressible, inviscid, and 

nondiffusive. Effects of wind, tide, and Coriolis force are 

neglected. Only those stratified flows are considered that are 

derivable from a stagnant, stably stratified source. The latter 

assumption is intended to imply that the Bernoulli condition 

holds along streamlines and that, if the velocity of the fluid 

is set to zero, the distribution of pressure and density with 

height will correspond to that of a stably stratified fluid; 

i.e., the density increases monotonically with depth. 

While only steady flows are considered in this report, these 

must be regarded as limiting conditions that describe slowly 

changing unsteady flows. Interest is focused on the conditions of 

flow into a sink of some sort, with particular emphasis on 

selective withdrawal of the fluid. In the vicinity of a sink, the 

conditions for selective withdrawal may be developed by steady-state 

considerations, even though the character of the flow remote from 

the sink is time-dependent. 

Associated Flow 
-> Let q' be the velocity vector for the stratified flow. As 

Yih showed,',s an associated flow may be defined by the trans­

formation, 
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.... 
where q is the velocity vector of the associated flow of con-

stant reference density p , and p is the variable density of 
o 

the stratified flow. This elegant transformation accounts for . 
the inertial effects of the variable density, and will therefore 

be used throughout the analysis. (The prime is applied to the 

actual flow instead of the associated flow in the definition 

to avoid repeated use of the prime.) If density variations are 

small, it is unnecessary to transform solutions for the associated 

flow back to the actual flow with variable density. The constant 

reference density, p , is arbitrary, but a convenient assignment 
o 

will be made when the source fluid is related to the elevation 

of discharge at the sink. 

Representation by Dual Stream Functions 

Stratified flow, as shown by Yih,s may be characterized 

as layerwise irrotational, if it is derived from a rest condition 

at the source. The vorticity vector is normal to the density 

gradient. Essentially any flow field of an incompressible fluid 
.... 

may be represented by expressing the velocity vector q as the 

vector product of two scalar gradients v~ and VX.ll The method is 

well suited to description of stratified flow; ~ may be associated 

with surfaces of constant density in the flow (~ is a function of 

p); X represents surfaces (X = constant) orthogonal to the 

isopycnic surfaces. Thus, 

.... 
q = VX x V~ 

(2) 
and VX' V~ = VX • Vp = 0 

(VX need not have been chosen or"thogonal to V~, but it is con­

venient to do so.) The interpretation of ~ and X as stream 

functions is in the usual way. In Figure 1, ~a ~b is a measure 

of the quantity of flowing fluid bounded by surfaces ~ = ~ and a 
~ = ~b; similarly, the quantity of fluid flowing between X = Xa 

and X = Xb is Xa - Xb . In the stagnant source region, the surfaces 

- 11 -



~ = constant, since they coincide with layers of constant density, 

must be horizontal planes while the orthogonal surfaces X = constant 

must be vertical planes. 

If the flow exhibits selective withdrawal of a stratified 

fluid, with the flow exiting to a sink, then an upper bounding 

layer ~(Pu) or a lower boundary layer ~(p~) (or both) exists. 

Fluid above and below the respective upper and lower boundaries 

is assumed to be stagnant. Conditions of hydrostatic equilibrium 

then require the bounding ~urfaces to be horizontal planes, and the 

velocities at these boundaries must be zero. 

FIG. 1 FLOW DEFINED BY DUAL STREAM FUNCTIONS ~ AND X 

- 12 -



General Equation of Stratified Flow 

The Euler equation of fluid motion for the associated flow 

in a gravitational field (reference density po) is 

-.. 
p a + gpVz + VP = 0 

o 
(3) 

-... 
where a IS the acceleration vector, P is the pressure, and g is 

the gravitational constant; z represents the elevation of the 

fluid above a reference plane. Lagrange's form of the acceleration 

is 

-.. 

-.. ~ ~ -.. -.. 
a = at + V(2 ) + ~ x q 

~ is the-..vorticity vector and q is the scalar speed. In steady 

state, ~ = 0; with equation (3), 

(4 ) 

-.. -.. 
The term q x ~ combined with equation (2) yields 

-.. -.. 
q x 1; (VX x VI/!) x t 

Since the vorticity vector is orthogonal to the density gradient 

(and therefore to VI/!) , VI/! • t = O. Thus, q x t = (VX • t)VI/!. 
11 -+ -+ By the definition of vorticity, ~ = V x q. Equation (4) may 

now be written as 

(5) 

where G is a scalar quantity given by 

G VX • V x (VX x vI/!) (6) 
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The Bernoulli quantity is defined as 

2 

H = Po f + gpz + P (7) 

Equations (5) and (7) combine to yield 

IlH - gzllp = P GIllj! 
0 

(8) 

IIp and Illj! are in the same direction; the derivative in the 

direction of the density gradient gives 

p G dH dp 
0 CW- gz cw (9) 

Equation (9) and the method of derivation parallel Yih's derivation 

for two-dimensional and axisymmetric flow. 5 In general, the 

expression for G is formidable, but is tractable for the channel 

flow (two-dimensional) and aXisymmetric cases. 

Channel Flow (Two rectangular dimensions) 

An appropriate X function is simply X = y, where y is the 

cross channel dimension. Let the dimension lengthwise of the 
A A A 

channel be X and let i, j, and k be unit vectors in the x, y, and 

z directions. Thus IlX = j. Since VX • v1/J = 0, j . vlj! = ° and the 
A 

j component of Illj! is zero. The quantity G becomes 

A A 

G = j Il X (j X vlj!) 

j [(V, vlj!)j - (V • j')Vlj!] 

Il vlj! = V2lj! 

and, the channel equation from equation (9) is 

- 14 -
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Equation (10) is tilL same as Yih's equation,S and l)! is the usual 

Lagrangian stream function. Thus, the horizontal and vertical 

velocity components are q = _ al)! and q = al)!.* 
x az z az 

Axisymmetric Flow 

The X stream function assumes the form X = be, where e is the 

azimuthal angle and b is a constant. Let r be the radius and z 

the vertical dimension; unit vectors e, ~, and k are in the 
be 

direction of e, r, and z. VX = --, and l)! does not depend upon e. 
r 

The G quantity is 

A A 

be be 
G = -- • v x (-- x vl)!) 

r r 

The reduction of G is straightforward, and the result is 

Thus, the axisymmetric equation is 

a2 l)! o2l)! 
--- + 
o z 2 or2 

dH dp (;w - gz diV) (11) 

Equation (11) is the same as Yih'ss except that it contains the 

constant "b." The difference arises from Yih's choice of l)! as 

the usual form for Stokes stream function: 

1 al)! 
qr=-r1iZ 

1 3l)! 
qz == r or 

(radial velocity component)* 

(vertical velocity component)* 

* The choice of signs is to reflect a fluid velocity directed 
toward the origin (negative) when l)! increases with z. 
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Equation (11) implies 

Inclusion of the constant b is convenient as an explicit 

parameter (which could otherwise be incorporated into ~). If b 

is considered to have the dimension of length, the dimensions of 

~ are the same in both equations (10) and (11), thus avoiding 

the inconvenience caused by the fact that the Lagrange and Stokes 

stream functions have different dimensions. 

CRITICAL HYPOTHESIS 

General 

Equations (9), (10), and (11) for stratified flow contain 

terms Hand p that may be regarded as functions of ~. 

desired 
dp) . 
di)j In 

It is 
dH to find suitable expressions for Hand p (actually dW and 

terms of ~, based on the assumption that the flow originates 

from a stably stratified rest condition. 

Let the stably stratified source be characterized by the 

function Z(p), where Z is the elevation of fluid with density p 

above a zero reference plane. The reference plane is chosen at 

the elevation where the density is p , the reference used in the 
o 

derivation of the equations of flow. The Bernoulli quantity H is 

given by equation (7). At the source, because q is zero and the 

elevation z for density p is Z(p), 

H = gpZ + P 

Differentiate (12) with respect to p, and note that: 

dP dP dZ dZ 
dp = dZ dp = -gp dp 

- 16 -
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gives dH 
dp gZ (14) 

dH 
When p = Po' Z(po) = 0 and dp = 0; thus H has an extremal at the 

reference plane; the extremal is clearly a maximum, since 
d2 H dZ dZ . 
-- = g d and d must be negatlVe. 
dp2 p P 

While a given stagnant source distribution Z(p) is physically 

invariant with respect to the choice of a reference elevation, 

the above result shows that the same is not true of H(p). The 

function H is uniquely specified only when p [for which 
o 

Z(p)=O] 
o is specified. This implies a definite relationship 

between the elevation of fluid discharge at the sink and the 

reference elevation corresponding to p at the source. The 
o 

effective elevation of discharge may be taken, by definition, 

as that elevation in the source fluid with density p. Often 
o 

the elevation of discharge is apparent, such as the case where 

a point sink is located in a large body of fluid remote from any 

rigid boundaries or the fluid surface. The same is true for a 

horizontal line sink at the base of a dam terminating a channel. 

In more complex exit structures, the effective discharge elevation 

may not be known explicitly until the flow problem is solved. 

A property of the streamline with density p is that it has 
o 

a maximum energy, H, with respect to adjacent streamlines, as 

was indicated by equation (14). If the streamline p is at the 
o 

same elevation near discharge that it had in the source region, 

then the streamline Po will have a maximum velocity with respect 

to its neighbors. The coincidence of maximum velocity and maximum 

kinetic energy is true for the associated flow as a result of the 

transformation given by equation (1). In the actual flow, 

streamlines of maximum kinetic energy and maximum velocity do not 

coincide, although they are close together if the density gradient 

is small. 
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By equation (14), 

~ dp 
~=gZ~ (15) 

Since Z is known (given the source and the reference or discharge 

elevation), the quantity ~~ is determined, if ~~ can be found. 

The Extremal Hypothesis 

The stream function ~ may be regarded as a mapping function 

on the source distribution: ~ = ~(p). Consider a given source 

fluid in some specified flow geometry where a given steady flow 

is being withdrawn to a specified sink configuration. If 

~I = ~(PI) and ~2 = ~(P2) are two arbitrary stream surfaces with 

corresponding layer densities of PI and P2, then the extremal 

hypothesis is that: 

• 
satisfied. } 

(16) 

• The Bernoulli equation (7) is 

Physically, the hypothesis may be interpreted as follows: Out of 

the set of all possible mapping functions ~(p) that satisfy the 

Bernoulli condition and that yield the specified total flow to 

the sink, ~he flow will tend to a unique function, ~ (p), that m 
satisfies the extremal condition of equation (16). The permitted 

variations of ~(p) between PI and P2 are only those functions for 

which the dependent variables, z, q, and P have fixed, specified 

values at PI and P2. The physical model and the solutions that 

are obtained by application of (16) require the extremal condition 

to be a maximum: the flow between PI and P2 will be the maximum 

possible consistent with the specified conditions. A consequence 

of the hypothesis is that the flow will tend to confine itself to 

the least possible layer thickness, subject to the specified 

conditions: the quantity Z(pu) - Z(p£) will be a minimum, where 
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Pu and P~ are respectively the densities of the upper and lower 

limits of withdrawal. This follows from equation (16), if 

PI and P2 are identified with the boundary layers Pu and P~; an 

extremal (maximum) flow between stream surfaces Pu and P~ implies 

that these surfaces have the least possible separation that will 

accommodate that flow. 

The extremal of equation (16) is believed to be an appropriate 

critical condition that applies everywhere in the flow. Let the 

function that satisfies (16) be ~m(p), Consider any stream tube 

extending from the source to the sink. The Bernoulli condition 

holds everywhere along the tube. If ~ (p) can be found at any m 
cross section along the tube, then this solution must apply over 

the length of the tube since the flow distribution as a function 

of densi~y does not involve velocity, elevation, pressure, or cross­

sectional area of the tube. It would be very difficult to solve 

the general variational problem that is posed by (16) for an 

arbitrary cross section of the flow, because q, z, P must be 

treated as dependent variables in the variation; in addition, 

several other dependent variables are required to specify the 

geometry of a surface normal to the flow. If it is accepted 

that (16) does apply and is independent of the geometry, then 

the desired mapping function ~ (p) is uniquely specified once m 
the bounding layers are known. It is therefore possible to devise 

a hypothetical geometry of flow that has the appropriate boundaries 

in the source region and that greatly simplifies the solution of 

the variational problem. The simplest possible geometry is one 

in which flow from the source, with bounding layers Pu and P~. 

is ultimately constrained to flow horizontally in a channel with 

vertical parallel walls (again with bounding layers Pu and p~). 
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Critical Equations for Horizontal Channel Flow 

In this development, the density p of the source is generally 

considered to be the independent variable. Let p be the reference 
o 

density, which is taken as that of the discharge elevation in 

the source; Po is that density (streamline) that has maximum 

velocity in the channel. Z(p) is the height of density p in the 

source with Z(p ) = O. Consider a horizontal flow in the channel 
o 

(which might physically occur in a region that is far from both 

the channel entrance and the exit structure that defines the 

sink). Let z(p) be the height of density p in the channel, and 

q(p) be the velocity (vertical component zero). The Bernoulli 

condition for such a flow is 

s.: H(p) = Po 2 + gpz + P (17) 

Differentiate (17) with respect to p, 

H = poqq + gz + gpz + P (18) 

(Here and subsequently, the superior dot denotes a derivative 

wi th respect to p, e. g., H = ~~.) In the channe 1 with hori zontal 

flow and zero acceleration, the pressure is the same as the 

hydrostatic pressure corresponding to the density distribution 

with depth in the channel; i.e., 

dP 
- = -gp dz 

or . dP dP dz 
P = dp = dZ dp = -gpz 

Substituting (14) and (19) into (18) yields 

p qq = g(Z-z) 
o 

(19) 

(20) 

In the channel, the streamline with maximum velocity implies 

q = O. This streamline of maximum velocity is the one that 

corresponds to the discharge elevation Z = 0 and therefore to 

density p. From equation (20), z(p) Z(p) = O. Thus, 
o 0 0 

the maximum velocity in the channel is at the density p , which 
o 
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has the same elevation both in the source and in the channel. 

This elevation serves as the reference zero for both z and Z. 

(Physically, one may visualize a sink at elevation z 

far downstream.) 

o somewhere 

Now consider tne flow per unit channel width between 

streamlines P and P + dp (between elevations z and z + dz): 

dl/J = qdz 

The extremal condition (16) as applied to the channel flow may 

be written as 

6 dl/J = j
P2 

PI 

qdz o (21) 

Equation (21) is subject to the Bernoulli condition. But in 

the horizontal channel flow, the derivative of the Bernoulli 

equation led directly to (20), so that it may be used as an 

appropriate condition to impose on (21). The problem is now 

in the typical form of the classical problem of Lagrange from 

the calculus of variations. It may be solved by the Lagrange­

mUltiplier method to obtain the Euler-Lagrange equations. The 

function, 

F = qz + A(p qq+gz-gZ) o (22) 

is formed in which A is a Lagrange multiplier (a function of p) 

The Euler-Lagrange equations are: 

These produce immediately: 

Z + AP q - ~(p Aq) = 0 
o dp 0 

d 
qA - dp q 0 
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Elimination of A from the two equations yields 

(23) 

If equation (20) is differentiated with respect to p and z is 

eliminated via (23), 

(24) 

Equation (24) is a second order nonlinear differential equation 

with q as the dependent variable and p as the independent variable. 

(2 is a known function of p, if the stratification of the source 

is known.) 

A specific solution of (24) must invoke two boundary 

conditions. If free (fluid) boundaries p 
u 

then the two boundary conditions are q(p ) 
u 

and P£ are specified, 

= q(p£) = 0 and the 

solution is then determined. In this case, the streamline of 

maximum velocity (po) is also determined; thus, Po' Pu' and P£ 

are not all independent. 

It is convenient to define a flow region bounded by p and 
o 

either Pu or p£. The boundary conditions for equation (24) then 

become q(po) = 0 and either q(pu) = 0 or q(p£) = O. To avoid 

repetitious discussions of boundary conditions, the flow will 

henceforth be treated with boundaries Po at the elevation of 

discharge and Pu = p* as the upper boundary of flow. This 

corresponds to a physical model in which the reference plane 

z = 0 defines a frictionless bottom to the entire region of flow 

(including the source, and in which the elevation of discharge 

is similarly z = 0); i.e., the sink is located in the reference 

plane. Adaptation of problems and solutions to different boundary 

c.onditions will not be treated explicitly here. (Generally p* 

could just as well represent a lower boundary as an upper boundary.) 
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If equations (23) and (24) are combined to eliminate the 

term in qq. 

·2 L (2 q 
Po 

(25) 

Once equation (24) is solved so that q is a known function of P. 

z(p) may be found via equation (20); i.e .• 

Po . 
z = Z - -- qq (26) 

g 

z Z at both boundaries Po and p*: 

z(p) Z(p) = 0 
o 0 

h is the depth of the withdrawal layer at the source. The depth 

of the horizontal flow in the channel is also h. 

It is possible to obtain an expression for 

follows: For the horizontal channel flow being 

d1jJ = qdz or 

o = qz 
With equations (25) and (27). 

. SJi Po ·2 
1jJ = 2 - 2g qq 

Differentiating with respect to p gives 

But equation (24) may be written as 

d • 2 ~ •• 
-- (qq ) = "'- qZ dp P 

o 

Combining the last two equations yields 

.. .'l .. 
1jJ = 2 Z 
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dp2 
considered. 

(27) 

(28) 



If the source stratification is linear [i.e., if Z(p) is linear .. 
in pl, then Z is a constant and Z is zero. For a linear source 

stratification, equation (28) shows that ~ is zero, and ~ is a 

constant; i.e., ~~ (and therefore ~~) is a constant. Equal 

density intervals, within the boundaries of flow, yield equal 

flows. 

In general, the stream function ~(p) may be interpreted 

as the amount of fluid flowing per unit channel width between 

streamline p and streamline p. Thus ~(p ) = o. ~(p) may be 
o 0 

determined by combining equations (23) and (27) to obtain 

p 
,;, 0 2" ",=-qq g (29) 

A remarkable feature of the critical equations is that no 

restriction is necessary on the density range to which they apply. 

They presumably apply regardless of the magnitude of the density 

variation, although most cases of practical significance are 

indeed restricted to relatively small variations in density. 

Richardson's Number in Critical Channel Flow 

Richardson's number is defined a5
12 

In terms of the associated flow (dq' = W dq), with a rearrange­

ment of variables, 

L~ 
P '2 o q 

(30) 

(Actually, dq' is not exactly equal to~ dq, but the difference 

is small if the density variation over the stratification is 

small.) In any case, it is suggested that (30) is the best 

generalization of Richardson's number in terms of the associated 

flow. If (30) is combined with (25), 
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dZ 2 _ ! 
dz = R (31) 

Z 

z 

In (31), both Z and z must be negative in a stable steady flow; 

therefore, the minimum value of R permitted by (3~) is}. This 

minimum value is approached as z approaches -00. Note that 

Z = -00 corresponds to ~~ = 0; i.e., a zero density gradient. 

Apparently, Richardson's number must be ~} everywhere in a 

steady two-dimensional horizontal flow derived by gravity from 

a source fluid at rest. 

Numerical Solutions of Critical Equations 

Systematic solution of the critical channel equations may be 

obtained by Runge-Kutta methods. The following set of equations 

may be solved either simultaneously or sequentially in the indicated 

order: 

• 2 po· 
2qq + q = - Z 

g 

z Z 

P 

Po 
-qq 
g 

a 2 •• 
-q q g 

It is best to proceed as follows: Assume a maximum velocity 

(24) 

(26) 

(29) 

qo = q(po) for the reference plane, z = 0. Integrate by steps 

until q = 0, thus establishing p. at the boundary. In this way, 

the height of the flow for the assumed q is found as h = z(P.) = 
o 

Z(P.). The initial value ~(p ) = 0 permits integration of (29). 
o 

The total flow per unit channel width is thus determined as 

~o = ~(P.). By obtaining a series of such solutions, ~o is 

established as a function of h. 
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Solutions for Constant Density Gradient at the Source 

When the source fluid is stratified so that the density 

varies linearly with depth, straightforward analytical solutions 

are derivable for the horizontal channel equations. Let Z = -k. 

The following relationships are developed: 

_ 2h (...L)~ 
qo -:;r p k 

o 

where qo is the speed of fluid at reference plane z(po) 

q = q 2 ITZ o cos 2h 

(32) 

(33) 

o 

(34) 

(3:; ) 

The relation of (36) is to be interpreted that a streamline 

p of elevation Z(p) in the source has an elevation z(p) in the 

horizontal channel flow. 

Z 
h. ITZ 

= Z + iT Slll 11 

Other useful relationships are: 

,j, = _ kqo = _ !!. (~) ~ 
'I' qz 2 IT P 

o 

~ (~ ) ~ (p-p*) 
o 

1j; (p) 

h
2 (...L.) ~ 

1j;o IT P k 
o 

(total flow) 

( 

IT2 P k1j; 2 )~ 
h = 0 0 

g 

~ = ~ 
o 
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As was predicted from equation (28), the constant density 

gradient at the source leads to a linear relationship of the flow 

~ with p, as shown by (37) and (38). 

Of particular interest in any stratified gravity flow 

exhibiting fluid separation (selective withdrawal) is the behavior 

of the fluid in the vicinity of the boundary of separation. Even 

for nonlinear source stratifications, the conditions close to this 

boundary must, in general, be well represented by the behavior of 

an appropriately selected linear distribution. Thus for small 

vertical displacements near the separating boundary, p. at 

elevation z = h in the horizontal channel flow, the flow-density 

distribution may be considered constant (~ = -E). (If the source 

is linearly stratified, ~ -£ over the entire depth of the channel 

flow.) Since ~ = qz, z - £ in the vicinity of boundary p*. As 
q 

p approaches p., q(p) approaches zero; therefore the magnitude of 

z must become infinite. Since i is the reCiprocal of the density 

gradient, ~~, the density gradient approaches zero as p approaches 

p*. From equation (25), (q)2 must approach 00 in the same way as 

Iii (since Z remains finite). The ratio of Iii to (q)2 approaches 

a constant value as p nears p., so that the Richardson's number 

approaches an asymptotic value. The limiting value of Richardson's 

number is readily apparent from (31), which yields R = t as Iii 

becomes infinite. Thus the phenomenon of fluid separation, for 

critical horizontal flow, is associated with the approach of 
1 

Richardson's number to the limiting value 2' 

Alternative Critical Hypotheses 

Craya 3 employed a variational approach in his analysis of 

stratified flow. He developed formulas for the "critical regime" 

corresponding to minimum thrust and to minimum energy flux. His 

two relationships did not yield the same results. Neither the 

minimum thrust nor the minimum energy flux hypothesis corresponds 

to the extremal hypothesis of this paper, which might be termed 

maximum flow. The critical equations were developed by direct 
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application of the. Euler-Lagrange equations to the horizontal 

channel flow. If Craya's hypotheses are treated similarly, one 

readily obtains the same relations as Craya. The corresponding 

critical conditions are 

(a) for minimum thrust, 

(b) for minimum energy flux, 

z = 
Po 1. d 2 (q3) 

g q dp2 

These equations resemble equation (23): 

(23) 

Equation (23) appears to lead to physically meaningful results, 

with plausible fluid behavior in the vincinity of the boundary of 
1 

separation. The limiting value of Richardson's number, R = 2' 
at the separation boundary suggests stability of the flow. On the 

other hand, the same development of horizontal flow in a channel 

by means of the equations derived from Craya's hypotheses appears 

to lead to stability problems. The assumption of minimum thrust 

leads to a Richardson's number of zero at the boundary of separation. 

The other assumption, of minimum energy flux, requires the 

Richardson's number to become negative. The former condition is 

not dynamically stable, and the latter is not even statically 

stable; i.e., a negative Richardson's number implies a density 

inversion (z > 0). For these reasons, the extremal hypothesis 

of this paper is preferred to the assumptions of Craya. 
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PARTIAL DIFFERENTIAL EQUATIONS FOR THE STREAM FUNCTION 

General 

Combining equations (9) and (15) yields 

( 42) 

In general, solution of the critical equations will permit both 
dp Z and dW to be expressed as a function of ~. 

The channel and axisymmetric flow equations from (10) and 

(11) assume the following form: 

for channel flow, 

P V2~ = g[Z(~) _ z) dp(~) 
o ~ 

for axisymmetric flow, 

[Z (~) _ z) dp (~) 
d~ 

Stream Function Equations for Linear Source Stratification 

(43) 

(44) 

With linear stratification of the source, from (37) and (41), 

dp _ .!. = _ 2!.(Po)!:z 
d~ - ~ h gk 

and 

Z = t h 
o 

the channel equation becomes, from (43), 

!:z 
V 2~ = _ L [L h _ Z] 2!. (Po) 

P ~ h gk o 0 

Hence, from (39), 
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It is convenient to define dimensionless quantities as follows: 

n z 
h 

x 
h 

In dimensionless form, the above relation for 7 2* becomes 

- 1[2 ('¥-n) (45) 

Equation (45) is very similar to the dimensionless equation 

considered by Yih. 5 The two are identical if Yih's F is set 
1 equal to -. 
1[ 

The same procedure yields for the axisymmetric equation 

via (44): 

a2 ,¥ 
-- + ( 46) 
an 2 

where the quantities are defined as: 

'I' n z 
h 

r 
h s b 

h 

The interpretation of band S is as follows: In (44), if the 

flow were constrained to be horizontal at radius r = b, the 

velocity would be given by 

o 

In other words, if * is interpreted as the flow per unit arc 

length at the radius b, the horizontal flow at that radius 

would have the same character as the channel flow, where the 

horizontal velocity is qx = - ~~. Thus, the total flow for 

the axisymmetric case (44) is the product of the periphery 

of radius b and the total critical flow per unit channel width, 

*0 
Q (47) 
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where Q is the total flow to the axisymmetric sink. This does 

not mean that the axisymmetric flow is necessarily horizontal 

at radius b -- in general, it is not; nevertheless, the total 

flow is given by (47) if ~ and ~ are taken from the critical 
o 

equations based on horizontal channel flow. This is satisfactory 

if the assumption that the flow-density distribution, ~, is 

indeed independent of the flow geometry. Thus "b" may be 

dubbed the "critical radius." The quantity S is the dimensionless 

counterpart of b and may be considered the critical radius, measured 

as a fraction of the flow height h. 

CHANNEL FLOW TO A LINE SINK 

Statement of Problem with Boundary Conditions 

Consider the solution of the channel equation: 

(45) 

The geometry may be considered as a long rectangular channel with 

the linearly stratified source fluid far upstream (Figure 2). 

A line sink is located at the base of a vertical dam at ~ = 0, 

n O. The bottom of the channel is the plane n = O. Fluid in 

the channel extends to a height in excess of n = 1. In dimensionless 

coordinates, the stagnant source fluid is represented as 

Ij1 = n (47) 

This equation must be considered to apply in a region external 

to the region of steady flow (in 

a uniform, horizontal velocity -

the assumption that the fluid is 

steady flow, Ij1 

a'±' = -1 which 
an ' 
at rest). The 

= n would imply 

would contradict 

total channel 

flow per unit width is determined by the critical equations SO 

that ~o is already known prior to the solution of (45). (~o 

corresponds to Ij1 = 1). The additional information obtainable 

from the solution is the flow pattern of the streamlines, and 

detailed information on velocity and pressure, if desired. 
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The boundary conditions for (45) must now be considered. 

It is in this respect that the solution obtained here differs 

from Yih et al. 5 The following boundary conditions are 

straightforward: 

f(O,n) = I f(~,O) = 0 

The condition that applies at the upstream entrance of steady 

flow is somewhat arbitrary. If it is assumed that the upstream 

boundary is remote from the source fluid, it is reasonable to 

expect that the critical horizontal flow pattern will have been 

established in the channel. The condition that is naturally 

suggested is to require ~~ = 0 at the upstream boundary, which 

might be taken at any value of ~ = ~l remote from the sink. 

The final condition that must be specified relates to 

the upper boundary of the moving stream. A principal feature of 

the solutions for steady stratified flow developed in this report 

is that a fluid boundary separating the flowing stream from an 

overlying (or underlying) stagnant fluid must satisfy a condition 

of zero velocity. This is a consequence of requiring that 

the velocity be continuous across the boundary, as is the 

pressure. Since the stagnant fluid has zero velocity by 

definition, velocity at the boundary with the moving stream 

must be zero also. This is not to argue that discontinuous 

velocities cannot exist in fluids -- the phenomenon is well 

known. The hypothesis here is that steady stratified flows 

derived from a rest condition by gravity will not create a 

velocity discontinuity and that there is no reason to assume 

that one exists. The picture that emerges from these con­

siderations is that the upper boundary is a free fluid 

boundary such that 
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The free boundary condition just given is an example of a 

Cauchy, or third boundary problem in which both the scalar 

function and its normal derivative are given on the boundary. 

This is, in general, an overspecification if the boundary is 

itself a specified curve or surface in space. For a free 

boundary, the boundary curve is considered free to adjust to 

a (generally unique) curve such that the Cauchy condition may 

be satisfied. Suppose a steady stratified flow in a region 

"V" has an upper boundary curve of fluid separation represented 

by the equation z = B(x) (Figure 3). If the overlying fluid is 

to be stagnant, and both velocity and density are to be continuous 

along the boundary, then the overlying fluid must be isopycnic 

in the region "S," which is shaded in Figure 3. The entire region 

S must have a uniform density equal to the density p., the layer 

bounding the moving stream; no other condition is hydrostatically 

stable. Above the maximum elevation z reached by the stream's 
m 

boundary, stable stratification may exist, but will have no 

influence on the flowing stream. 

Kao's model of stratified flow in a channel to a line 

sink7 dealt with the upper boundary by assuming the formation 

of a stably stratified pocket of stagnant fluid above the boundary 

in a fashion qualitatively similar to that shown in Figure 3. 

However, his model retained the assumption that a velocity dis­

continuity exists at the boundary and implies the existence of 

discontinuities of density along the boundary. The stability 

of these conditions is questionable. 

WOOdlO introduces the concept of a stable pocket or 

wedge that forms above a stratified moving stream. Hereafter 

in this paper, such a condition will be referred to as an 

"isopycnic wedge" or just "wedge." 
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In summary, the partial differential equation and boundary 

conditions are 

( 45) 

'l'(~,O) = 0 'l'(O,n) = 1 

( a'l') = 0 
dn B 

1 

B denotes the upper, free boundary of the stream. ~ = ~l is the 

upstream boundary arbitrarily assumed for introduction of the 

steady flow. 

It is easy to obtain the solution for 'l' in the horizontal 

flow remote from the sink. If indeed the streamlines are 
a'l' a 2 'l' horizontal and have no curvature, then -- = --- = O. Thus the 
a~ a~2 

vertical distribution of 'l' is readily obtained from (45): 

The solution that meets the required boundary condition is: 

'" 1. T = n + 11 Sln 'TT1l ( 48) 

It may be expected that equation (48) could be derived from the 

critical channel equations equally well. Indeed this may be done 

by combining equations (36) and (41) and recalling the definitions 

of the dimensionless variables. An alternative of the boundary 

condition ~~ = 0 at ~l would be to require (48) to hold on the 

boundary ~ = ~l. 
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Solution of the Channel Equation 

Equation (45) and the associated boundary conditions may be 

readily solved by iterative solution of the finite-difference 

equation. (Solution via separation of variables and harmonic 

expansion is complicated by the free boundary.) Interpretation 

of the boundary condition on the computational mesh is straight­

forward except for the Cauchy condition on the free (upper) boundary. 

A very satisfactory algorithm for handling the free boundary is 

based on the following features of the expected solution: 

• In the flowing stream, ~ may never assume a value greater 

than 1 (by definition of the boundary). 

• The isopycnic wedge above the boundary, if it exists, must 

be represented by ~ = 1 (i.e., same density as boundary layer). 

• The free boundary curve must not extend above elevation 

n 1. (The horizontal critical flow is confined to a height 

n 1). 

The algorithm is as follows: The condition ~(~,l) = 1 is imposed 

as a fixed boundary condition for the upper row of the lattice 

mesh. During the iterative calculation, whenever a value of ~ is 

calculated for any interior lattice point, it is tested to determine 

if it exceeds 1. If it does not, the computed value of ~ is entered 

and the computation proceeds to the next lattice point. If ~ 

exceeds 1, the value of ~ is entered as 1.0 for that lattice point, 

and the computation then proceeds to the next lattice point. 

If a convergent solution is found by iteration with the above 

algorithm, a region will appear in which all lattice points have 

the value ~ = 1. This region corresponds to the isopycnic wedge. 

Along the lower boundary of such a region, two successive values 

of ~ = 1 in a given column (or row) correspond to a zero gradient 

of ~, which is just the condition that must hold if the velocity 

is to be zero at the boundary. If this account of the free 

boundary algorithm leaves the reader unconvinced, one can observe 
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that, once a convergent solution is obtained, it is obviously 

possible to redefine the upper boundary of each column as the 

lowest elevation above the reference plane (smallest n) for 

which ~ = 1 in this solution. It is apparent that the interior 

lattice points of this redefined problem will represent a valid, 

convergent solution of the redefined problem. It seems inescapable 

that, if there is a unique solution to the boundary value problem, 

the free boundary algorithm will provide a solution that will 

approach the true solution within the limitations of the finite 

mesh. By using a fine enough mesh, one could approximate the 

true boundary curve as closely as desired. 

The channel problem was solved with a 5-point finite-difference 

formula for the operator V2; in all cases, a mesh spacing of 0.05 

was used in both ~ and n dimensions. The upstream boundary was 

taken as ~l = 10. For the initial conditions, all interior 

lattice points were assigned the values specified by equation (48). 

With a Liebmann extrapolation constant in the range 1.B to 1.9, 

convergent solutions were obtained in approximately 100 iterations. 

The criterion for convergence was that maximum change of ~ for any 

mesh point must not exceed 10- 5 for two successive iterations. The 

solution is shown in Figure 4. The streamline elevations were 

obtained by linear interpolation from the solution mesh. All 

solutions were computed on a UNIVAC 110B. 

The following features of the solutions in Figure 4 are 

notable: 

• In the vicinity of the upstream boundary (or entrance), 

~ = ~l the flow is indeed horizontal, and the functional 

relation between ~ and n is close to equation (4B) as expected. 

The slight difference may be attributed to the finite­

difference approximation inherent in the 0.05 mesh. Little 

departure from this horizontal flow pattern is apparent until 

~ is decreased to about 2. 
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• The isopycnic wedge forms at the face of the "dam" (I; ~ 0) 

and extends from n = 1 down to an elevation of about n = 0.4. 

At elevations less than n ~ 0.4 against the face, the velocity 

of the dividing streamline, ~ = 1, is no longer zero (and the 

boundary is no longer free). Acceleration must occur as the 

fluid proceeds into the sink. 

• The free boundary curve defining the lower extent of the 

isopycnic wedge approaches the line n = 1 asymptotically as 

I; increases. The discontinuous nature of the curve is 

inherent in the finite mesh. These artificial boundary 

discontinuities influence adjacent interior streamlines somewhat, 

but seemingly damp out for streamlines ~ = 0.99 or less. 

The solution appears to be strikingly similar to the 

flow patterns obtained experimentally by Debler 6 (also shown 

in Reference 5). 

AXISYMMETRIC FLOW 

General Statement of Problem 

Unlike two-dimensional flow in a channel, the equation 

for axisymmetric flow contains a parameter related to the total 

flow that must be determined by solution of the partial differ­

ential equation with boundary conditions and by treating the 

flow parameter as an eigenvalue in the solution. In channel 

flow, once the boundaries of separation are specified for a 

given source fluid, the channel flow per unit width is determined. 

Thus * is known prior to the solution of the partial differential 
o 

equation. This point of view is extended to axisymmetric flow in 

the sense that * is predetermined in the same way; however, one o 
does not generally know in advance what arc length to multiply 

* by to get the total flow. The critical radius b (or the o 
dimensionless S) is an eigenvalue characteristic of the sink 

geometry. 
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The interpretation of S <l:j a critical eigenv "lue may be 

readily seen by the following: Consider the dimensionless 

axisymmetric equation, 

1 3'1' '112 ~2 ('I' ) 
~ 1lf = - 62 " - n 

z r 1jJ b 
where n = hand F,; = h' 'I' ij)' S h 

o 

Visualize a flow satisfying (46) that is constrained to be 

horizontal at radius I; = S. Horizontal flow is taken to mean 

that the streamlines are horizontal and have no curvature. 
3'1' a 2'1' 

Thus - = - = 0 at I; = 6. From equation (46) at F,; = S, 
31; a~2 

(46) 

d 2 '1' 2 c, 
-- = -'II ('I' - n). This is exactly the same as the equation for 
dn 2 

horizontal flow in a channel and, with the boundary conditions, 

the solution is 

1 . n + - S1n 'lin 
'II 

again the same as the channel equation. In this contrived 

geometry, 1jJ is the flow per unit arc length on a circle of 
o 

critical radius b. 

(48) 

The total flow is then equivalent to that of a channel with 

a flow height h and a width 2'11b, i. e. , Q = 2'11b1jJ . The dimensionless 

= 1jJ Qh = 
0 

total flow Q' 2'116. While several sink geometries will 

be considered f o. . flow, in all of them the sink will or aX1symmetr1c 

be located in the reference plane z = 0 (or n = 0), and the 

reference plane will form a fixed, frictionless bottom for the 

flow as in the case of channel flow. Fluid is considered to 

extend above the elevation h (or n = 1) and to be stagnant above h. 

Equation (46) may be solved by iteration of the corresponding 

finite-difference equation. For all solutions discussed in this 

report, the mesh spacing in both dimensions is O.OS. The criterion 
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for convergence is again a maximum change of 10- 5 between 

successive iterations. The free boundary algorithm is the same 

as that described for channel flow. Typically, a Liebmann 

extrapolation constant of 1.8 was used and convergent solutions 

were obtained in 40 to 150 iterations, depending upon the boundary 

conditions. If the mesh region is defined for too large a radius, 

divergent behavior is encountered. This is apparently related to 

the finite mesh; the finite-difference equation becomes unstable 

if the radius is permitted to increase indefinitely and the mesh 

size remains fixed. 

Several kinds of boundary conditions were explored for the 

upstream boundary where the flow enters the region defined by the 

problem mesh. If this upstream boundary is taken sufficiently far 

from the sink, the pattern of flow in the vicinity of the sink 

and the eigenvalue $ are insensitive to the assumed entrance 

conditions. The upstream boundary condition that was selected 

as standard was to require ~~ = 0, as in the case of channel 

flow. 

In the following, a solution will first be given for flow 

to a point sink in which the flow parameter S is fixed in advance 

($ 1). The overall character of the solution is similar to 

other axisymmetric geometries and serves as a basis for discussing 

features that are common to all cases. Subsequently, solutions 

will be considered for a point sink with different values of 

S; this will set the basis for describing an algorithm for finding 

a specific S as a solution to an eigenvalue problem. Finally, 

different sink geometries will be considered in which $ is 

determined for a range of sink parameters. 

- 42 -



Flow to a Point Sink with S = 

For flow to a point sink located at n = 0, ~ 

boundary conditions for equation (46) are: 

~(O,n) = 1 

~(~,O) = ° 
a~ 

° a1; (~l,n) = 
~ = 1 B 

(::~= ° 
~(~,l) = 1 

0, the 

(49) 

As in the channel case, B denotes the free boundary. The last 

condition is specified to constrain the total flow within the upper 

boundary of the mesh region defining the problem. The relationship 

of this latter condition to the free boundary condition will be 

apparent in the discussion of the solution. Two solutions were 

obtained: one for the upstream boundary at ~l = 2 and the other 

for ~l = 3. 

The solutions are shown in Figure 5. The streamlines are 

plotted by linear interpolation from the solution mesh. The 

following features are noted in Figure 5. 

• The isopycnic wedge appears at a radius ~ of about 1, and 

extends outward with rapidly increasing depth. 

• At the outer boundary, ~l = 2, the entering horizontal 

stream is confined to a height of about n = 0.3; for an outer 

boundary ~l = 3, the height is about n = 0.2. 
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• From a radius of about ~ = 1 inward, the free boundary 

~ = 1 is constrained by the boundary condition ~(~,l) 

is not affected by the free boundary algorithm. 

• Over an appreciable region in the vicinity of ~ = 1, the 

streamlines appear to be nearly straight lines. Each 

streamline undergoes an inflection. A theory related to 

these inflections is discussed later. 

• The entrance streams for the two cases ~l = 2 and ~2 = 3 

quickly approach the same flow pattern as the sink is 

approached. 

1, and 

It is easy to visualize the effect of extending the position 

of the outer boundary ~l to even greater radii. As a limiting 

case, one could think of a boundary at 00. The free boundary curve, 

~B = 1, would approach the plane n = 0 asymptotically as one follows 

the stream outward. [It can be shown that the theoretical limiting 

velocity distribution at infinity has the form q2 = TI2 (1 _ ~2). 

Thus the maximum dimensionless velocity of the stream, with ~ = 0, 

is TI. This is the velocity one gets if the maximum hydrostatic 

~p is computed between a depth of h (or n = 1) in the source fluid 

and the same depth in the isopycnic wedge.] Regardless of the 

position of ~l (if it is not close to 1) and for any reasonable 

assumed flow pattern at ~l' the character of the flow quickly 

approaches that of Figure 5. In general, the fluid tends to flow 

in a stream confined to a minimum distance from the reference 

plane (discharge elevation). 

Consider again the behavior of the boundary ~ = 1 for 

Figure 5. From a radius of about 1 inward, the boundary is not 

free, but rather is constrained by the boundary condition 

~(~,l) = 1. With this boundary fixed, it is clear that the 

velocity at the boundary does not remain zero; if the velocity 

is no longer zero, then the pressure must decrease as the 

velocity increases and the elevation n = 1 remains constant 

(as required by Bernoulli condition). These conditions are 
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0.8 

0.6 

0.4 

0.2 --- --- ... _-- ----
.... --~~---------------=========:::: ---

---- -------------- --------------------------
o~o~------~--------~--------~------~~------~~------~ 0.5 1.0 1.5 

FIG. 5 STREAMLINE SOLUTION FOR AXISYMMETRIC FLOW TO A 
POINT SINK AT ~ = 0, n = 0 WITH CRITICAL RADIUS S 
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incompatible with the existence of a fluid-to-fluid boundary in 

this region, if the overlying fluid is required to be stagnant. 

The resolution of the dilemma is that the boundary along n = I 

from ~ = 0 to ~ = I (approximately) must be considered a fixed, 

rigid boundary such as might be formed by a disk covering the 

region. With this concept, it is easy to explain how the 

eigenvalue S could be set equal to I in advance. The explanation 

is that the boundaries were not completely specified; i.e., the 

junction or attachment of the free boundary to the rigid disk 

was not specified. The radius of attachment, in effect, serves 

the function of an eigenvalue. Because of the finite mesh, the 

position of the free boundary attachment cannot be determined 

more closely than the 0.05 mesh spacing. The radius of attachment 

is taken as midway between the two columns that reflect the change 

from fixed to free boundary (Figure 6). For S = 1, the radius 

of attachment is ~ = 0.975. 
o 

"'n' , n'" Radius of Attachment. 
0.80 0.85 0.90 0.95 1.00 1.05 1. 1 0 

Fixed Boundary at n = 1.0 , = '0 = 0.975 at n = 1.0 

1 .00 1. 0000000 1:0000000 1:0000000 1:" OOOOOO~ 0000000 1.0000000 1.0000000 

0.95 0.9953817 0.9967602 0.9981553 0.9993482 1.000000~.0000000 1.0000000 
- ---, 

0.90 0.9899679 0.9927522 0.9956223 0.9981873 0.9998923 1.0000000 '1.0000000 

0.85 0.9829454 0.9871717 0.9916347 0.9958129 0.9989629 1.0000000 ~OOOOOOO 
0.80 0.9734745 0.9791651 0.9853418 0.9914128 0.9965760 0.9998057 1.000000Di 

Axisymmetric Flow to a Point Sink at ~ = D. ~ = O. 
Critical Radius 6 = 1. 
See Figure 5. 

Free 
Boundary 

FIG. 6 'I' VALUES AT THE CALCULATIONAL MESH POINTS .. 
IN THE VICINITY OF t; = 1, n = 0 
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A series of problems was solved with the same boundary 

conditions as for Figure 5, but with different values for S, 

and the following results were obtained: 

s 
0.6 
0.7 
0.8 
1.0 
1.5 
2.0 

TABLE 1 

~o 

a 
0.425 
0.625 
0.975 
1.625 
2.185 

a. No attachment; i.e., the isopycnic 
wedge extends all the way to 
radius zero. 

Apparently, for S ~ 1, the radius of attachment is close to 

~o = S. For S < 1, ~o decreases more rapidly than S and goes to 

zero between S = 0.6 and S = 0.7. With these data, it is now 

easier to state the physical problem to which the date of Table 

1 prOVide an answer: If a horizontal disk of radius ~ and height 
o 

n = 1 covers a point sink at the origin, the dimensionless critical 

radius is S as given above. 

Flow to an Isolated Point Sink 

The most important problem of axisymmetric flow is that 

of an isolated point sink: i.e., the sink is located in the 

reference plane at elevation zero and no other rigid boundaries 

are nearby. One might consider the problem as a degenerate 

case of a cover disk at height n = 1, but with ~ = O. The free 
o 

upper boundary must extend all the way to radius zero. On the 

other hand, the desired solution should not yield a condition 

of over-stagnation above the sink. Evidently, a solution exists 

for some S such that the free boundary is tangent to the plane 

- 47 -



n = 1 at a single point. Let this value of S be called S. For 
o 

S > S ,~ > 0 a rigid cover is required to maintain the validity o 0 

of the solution. For S < S , over-stagnation results. Physically, 
o 

it is reasonable to expect the flow to an isolated sink to tend 

toward a pattern that yields S B. 
o 

To determine the value of B , one could proceed by trial 
o 

and error to extend the data of Table 1; however, this is 

cumbersome and computationally inefficient. It was possible to 

devise a simple algorithm to vary S during the iterative 

computation so that, in effect, the trial and error search for the 

eigenvalue S was carried out simultaneously with the development o 
of the mesh solution for~. In general, the critical eigenvalue 

is the one that causes the free boundary to be tangent to the 

plane n = 1 at a single point. It was not difficult to find 

algorithms that would find the critical eigenvalue with a precision 

of better than one percent. Eigen solutions for S were readily 

obtained, and the free boundaries of the solutions exhibited the 

desired characteristics. 

For the isolated sink, the value of S was found to be 0.63. 
o 

Figure 7 shows the streamlines for the solution. Figure 8 shows 

a portion of the solution mesh for ~ in the region ~ = 0, n = 1. 

The close proximity of ~ to 1 (but yet ~ < 1) for the innermost, 

upper interior point strongly implies that the true curve of the 

free boundary is tangent to n ; 1 at the origin ~ = 0, if the 

limitation of the finite mesh is removed. 

The solution for axisymmetric flow to a point sink is 

especially important because it is a "self-similar" solution and 

reflects the limiting behavior of any sink of finite size. Even 

irregular structures forming an outlet for fluid being drawn from 

a large body of water will be well represented as point sinks when 

the flow is sufficiently great that the thickness of the withdrawn 

stream is large compared to the dimensions of the outlet structure 
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o. 

0.6 

0.4 

ho"od,rv ;s apparently tangent to the plane 
point s = 0, 1'1 = 1. 

"",he"",,,""'''''''';'''''';'' Rad; us = 0.63 

FIG. 7 STREAMLINE SOLUTION FOR AXISYMMETRIC FLOW TO 
AN ISOLATED POINT SINK AT ~ = 0, n = 0 

~ 0 0.05 0.10 0.15 0.20 

1.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 
0.95 1 .0000000 I 0.9999998 11 .0000000 1.0000000 1.0000000 
0.90 1.0000000 0.9999915 0.9999762 0.9999715 0.9999895 

0.85 1.0000000 0.9999627 0.9998745 0.9997823 0.9997413 

0.80 1.0000000 0.9998986 0.9996384 0.9993102 0.9990340 

Axisymmetric Flow to an Isolated Point Sink at s ~ 0, 1'1 = O. 
Critical Eigenvalue Radius S = 0.63. 
See Figure 7. 0 

FIG. 8 ~ VALUES AT THE CALCULATIONAL MESH POINTS 
IN THE VICINITY OF ~ = 0, n = 1 
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(sink). For instance, a ring header of radius r in the reference 
o 

plane will look like a point sink if the height of the flow, h, is 

much greater than r . 
o 

It is possible to develop useful formulas 

for the point sink by adapting 

earlier. Recall equation (47) 

the critical equations obtained 

for the total axisymmetric flow: 

Q = 21TbljJ C 47) 
0 

With b Shand equation (39) for a linearly stratified source, 
0 

1 

~ 
= (PokQ

2

) Q = 2S h 3 
( ...L) or h (50) 

o P k 4gS 2 0 
0 

With So = 0.63, 

(
p kQ2)~ 

h = 1. 082 0 g 

The depth of the stream, h, varies as the one-third power of the 

total flow to the sink. 

Flow to Various Axisymmetric Sinks 

When the dimensions of a sink structure are comparable to the 

depth of the flowing stream, the behavior departs significantly 

from that of an isolated point sink. One example is that of a 

disk or cover above a point sink as discussed on page 47. Other cases 

of possible interest (Figure 9) are: 

• Circular line sink in the reference plane at radius S 
o 

Ca) Circular sink is located at the base of a dam in the 

form of a right circular cylinder 

(b) Isolated circular sink 

• Hole of radius s in the reference plane 
o 
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l Oom S.d", 

1,0 I - -;- \. -; :-1-:-;;'- - - - - - - - - --

"l L ~=1.0 a'l' 
~ = 0 at ~ = ~, 

~ = 0.0 
a - -'-----':..-- -----

a ~, 

a. Circular Line Sink at Base of Dam (~ = ~o) 

See Figure 11 

L _ ~ /Surfoce A 

1,0 C~= ------'------~----
t, ~';o" '" /' /;:":~"' ;1" 0" ( - (, 

00 -
~ f, 

b. Isolated Circular Line Sink at ~ = ~o' n = 0 
See Figure 12 

~ 
~ _ ~ ~~S_ur_f~_c~e __________ __ 

1,0 --------------------
'- 'l' = La' I 

t ~ = 1.0 a'l' 
~ = a at ~ = ~, 

'~-o r ~_= 0.0 a ~ an - at n = a ~L. __ ___L.,_ _ ___ _ 
a €o 

c, Ho 1 e Sink from 0 to ~o at n 
See Fi gure 13 

o 

• The upper boundary of the moving stream is also subject to the 
"free fluid boundary conditions." (See Figure 3) 

FIG. 9 OTHER SINK GEOMETRIES WITH AXISYMMETRIC FLOW 
SHOWING BOUNDARY CONDITIONS 
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With appropriate boundary conditions, equation (46) was 

solved for different values of ~ to obtain the corresponding 
o 

critical radius, e , in each case. The free boundary and upstream 
o 

boundary conditions are the same as for the line sink. Care was 

taken to ensure that the upstream boundary, ~l' was far enough 

from the sink not to influence S significantly. The other 
o 

boundary conditions appropriate for the sink geometries are: 

Circular line sink with dam: 

'¥(~O,11) = 1 

'¥(~,O) = 0 

Isolated circular line sink: 

'1'(0,11) = 1 

'¥(~,O) = 1 

'¥(~,O) 0 

Hole: 

'1'(0,11) = 1 

a 'I' 
(I;, 0) 0 an = 

'1'(1;,0) = 0 

In the latter 

midway between the 

o '" ~ < ~ o 

case, the hole radius ~ was considered 

h · Th .0 h d'¥ mes p01nts. e requ1rement t at an = 

the hole is rather arbitrary. 

to be 

o at 

Table 2 shows the values of 8 obtained for different ~ in 
o 0 

the various geometries. 
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TABLE 2 

A. Circular Line Sink at Base of Dam 

Radius of Sink, So Critical Radius, 

0.0 0.63 
0.1 0.74 
0.2 0.88 
0.3 1.02 
0.5 1. 28 
0.8 1.65 
1.0 1.89 
1.5 2.48 
2.0 3.04 

10.0 11.54 

B. Isolated Circular Line Sink 

Radius of Sink, 

0.0 
0.3 
0.5 
1.0 
1.5 
2.0 

Hole Radius, So 

0.0 
0.325 
0.525 
1.025 
1.525 
2.025 
3.025 
4.025 

10.025 

So 

C. 

Critical Radius, 

0.63 
0.78 
1.04 
1. 71 
2.33 
2.84 

Hole Sink 

Critical Radius, 
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0.63 
0.76 
0.97 
1.62 
2.29 
2.85 
4.00 
5.09 

11.40 

So 

So 

So 



The data are plotted in Figure 10. Typical streamline solutions 

are shown for ~ = 1.5 in Figures 11, 12, and 13. The following 
o 

features are noted: 

• In all cases the point of tangency of the free boundary to 

the plane n = 1 is at a larger radius than ~ . 
o 

• The isopycnic wedge for the circular sink at the base of a 

dam (Figure 11) extends to a depth of about n = 0.75. For 

greater ~ 's, the profile of the wedge near the dam should o 
approach that previously obtained for flow in a channel, 

since the channel case represents the limit of an infinite 

radius of curvature. 

• The isopycnic wedges for the isolated circular sink and for 

the hole extend all the way to the reference plane in 

Figures 12 and 13. When ~ is small enough, however, the 
o 

wedge does not reach the reference plane. 

Neutral Surface 

The streamline solutions for axisymmetric flow obtained 

in this paper have a characteristic pattern. Fluid entering at 

the upstream boundary, after a short distance of adjustment, 

appears to settle into a stream that decelerates until it 

begins to enter the field of the sink, where it accelerates. 

Each streamline appears to suffer an inflection where the 

streamline's curvature reverses; the inflection is in the region 

where the flow changes from deceleration to acceleration. Because 

of the inflection, the streamlines are approximately linear for an 

appreciable distance. 

To test the credibility of the free boundary hypothesis 

and the consistency of the solutions obtained therefrom, an 

independent hypothesis and flow model were devised to explain 

the fluid behavior at the streamline inflections. 
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13 

12 0 Hole Sink of Radius ~o 

• Circular Line Sink of Radius ~o 

II 0 Isolated Circular Line Sink of Radius ~o 

{;; Plate of Radius ~o in the n = 1 Plane 
10 Over a Point Sink in the n = 0 Plane 

9 

<:rJ..
0 

en 8 :J 

"0 
0 
0: 

Q) 7 
.2 
0 
> c: 
Q) 
co 6 
w 
0 
0 

5 
~ 

u 

4 

3 

2 {;; 

{;; 

2 3 4 5 6 7 8 9 10 

Characteristic Radius, ~o 

FIG. 10 CRITICAL EIGENVALUE RADIUS So VERSUS CHARACTERISTIC RADIUS ~o 
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1.0 

0.8 

0.6 

TJ 

0.4 

0.2 

0 

Radius of Dam,~o '" 1.5 

Critical Eigenvalue Radius, So '" 2.48 

Of' '" 1.0 
at ~ '" ';0 

, = 0.0 
atn"'O.p 

1.0 <0 2.0 3.0 
€ 

FIG. 11 STREAMLINE SOLUTION FOR AXISYMMETRIC FLOW TO A 
CIRCULAR LINE SINK AT THE BASE OF A DAM 
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Critical Eigenvalue Radius So = 2.33 

FIG. 12 STREAMLINE SOLUTION FOR AXISYMMETRIC FLOW TO AN 
ISOLATED CIRCULAR LINE SINK OF RADIUS ~o = 1.5 
IN THE n = 0 PLANE 
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Critical Eigenvalue Radius 8
0 

= 2.29 

FIG. 13 STREAMLINE SOLUTION FOR AXISYMMETRIC FLOW TO A 
HOLE SINK OF RADIUS ~o = 1.525 IN THE n = 0 PLANE 
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In the case of horizontal channel flow remote from source 

and sink, simple solutions were found for stratified flow on the 

premise that an extremal condition exists for gravity flow. The 

critical horizontal flow so derived has a characteristic that the 

fluid moves in a stable flow with zero acceleration. The pressure­

depth relationship in any vertical section of the horizontal flow 

is the same as that calculated from the density-depth relationship 

on the basis of hydrostatic pressure. For axisymmetric flow, it 

is clear that such a condition of limiting flow in zero acceleration 

cannot persist indefinitely as it can in a channel of infinite 

length. However, it is possible to hypothesize the existence of 

such a limiting condition at a single, unique cross section in 

the flow. This is the concept of the neutral surface: Any 

stream of stratified fluid flowing under gravity from a source 

at rest through an appreciable region of steady-state flow with 

a free boundary will have a neutral, flow-normal surface. 

Properties of the fluid at the neutral surface are: 

• Streamlines are orthogonal to the neutral surface. 

• Fluid acceleration is zero. 

• Streamlines undergo an inflection as they intersect 

the neutral surface. 

• The pressure as a function of depth, along the neutral 

surface, is just the hydrostatic pressure characteristic 

of the density-depth relationship on the neutral surface. 

Let the neutral surface be designated S. On this surface, 
o 

the conditions (assumed as above) permit application of 

equations (17), (18), (19), and (20) just as for channel flow, 

if it is understood that 

• q is the magnitude of the velocity of streamline with 

density p at S . 
o 

• z is the elevation of streamline p at S . o 

Z(p) has the meaning it had before; namely, the elevation of 
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streamline with density p at the source, where the fluid is at 

rest. With these interpretations, equation (20) holds on S : 
o 

p q ~dd = g(Z - z) 
o p 

(20) 

It is convenient to define a dimensionless velocity q* that 

is compatible with the dimensionless variables already in use. 

An obvious definition is 

Actual velocity 
Mean critical velocity in channel flow 

1jJ 
where the denominator is simply hO

; thus 

(51 ) 

This definition is compatible with the previous definitions 

as can be seen from the following: In the dimensionless 

axisymmetric equation (46), the magnitude of the dimensionless 

velocity should be 

~: W~f + (~~n 
1jJ z r dB--where '!' = 1jJo' n = ii' i; = ii' an 

velocity magnitude is given by 

One gets by substitution: 

2 h Z 

q* = qZ 
1jJ Z 

o 

(52) 

*; and where the actual 

which agrees with (51) . It is now possible to write (20) in 

dimensionless form with the help of (51) , (37) , (39) , and (41) . 

Thus upon the neutral surface, S : 
0 
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Now, in axisymmetric flow, 5 itself must be an axisymmetric 
o 

(53) 

surface, e.g., a surface of revolution about the axis; = O. Let 

the generating curve for 5 be the curve T with arc length t 
o 

measured from the reference plane. 5ince 5 was assumed to be a 
o 

surface normal to the flow, the curve T is normal to the streamlines. 

Thus, on 5 : 
o 

q 2 = it (~:)' 
* ;2 

Equation (53) may be rewritten, via (54): 

d (1 df) TI2 - - - = - - C;Cf - n) dt ; dt 132 

If the generating curve of 5 were known, i.e., t; and n 
o 

(54) 

(55) 

were known functions of t, then (55) would relate ~ and t in an 

ordinary second-order differential equation. 

The nature of 5 fOllows logically from the assumption that 
o 

the acceleration of the fluid is zero at 50. If the acceleration 

is zero, the curvature of the flow-normal surface must also be 

zero. More precisely, if K is the mean curvature, then K = 0 

everywhere on 5 . 
o 

If rl and r2 are the principal radii of curvature 

at a point on a surface, then: 

rl and r2 have opposite signs if their corresponding centers are 

on opposite sides of the surface. The mean curvature is 

5urfaces with zero mean curvature are well known in differential 

geometry. They are referred to as minimal surfaces because they 
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are generally derived from a requirement that a surface have 

a minimum area subject to reasonable boundary constraints - e.g., 

soap-film models. The surface represented by a plane section 

normal to the horizontal channel flow is a minimal surface. 

For axisymmetric flow, the required minimal surfaces are surfaces 

of minimal area of revolution that are constrained to be normal 

to the reference plane. By standard variational methods, it can 

be shown that such minimal surfaces are of the form: 

r = r cosh (L) m r 
m 

where rand z are the ordinary cylindrical coordinates, and r 
m 

is the intercept of a surface in the reference plane (z 0). 

These surfaces indeed have zero mean curvature. In terms of 

the dimensionless coordinates for axisymmetric flow, the minimal 

surface is 

~ = ~m cosh (~ ) 
m 

(561 

With equations (56) and (55), it is now possible to derive the 

desired differential equation. The choice of independent 

variable is arbitrary, but to make it easier to compare the 

result with the channel case, the independent variable was 

selected as n. Note that 

(57) 

With (55), (56), and (57), the following equation is obtained 

upon S : 
0 

d 2 '1' 2 (.!L) d'l' 2 

r tanh - = - ~ S2 ('I' - n) cosh' (lL) (58) 
dn 2 m Sm dn 13 2 m Sm 

Boundary conditions for (58) are (on S ): 
0 

'I' = 0 when n = 0 when 'I' = 1 

The latter condition is the requirement that the velocity be 

zero at the boundary 'I' = 1. If the constants Band S are 
m 

specified, (58) is readily solved by numerical methods. Because , 

of the form of the boundary conditions, the finite difference 
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equation was solved by an iterative method with an algorithm 

similar to the free boundary algorithm to take care of the 

conditions at ~ = 1. 

In comparing the solution for ~ upon S with that obtained 
o 

from the partial differential equation, it is apparent that the 

value of S in (58) must be the same in both. The value of ~ , 
m 

theoretically, could be obtained by plotting the inflection 

points of the streamlines in the full solution. However, the 

inflections, since they involve second derivatives, are strongly 

influenced by the finite-difference mesh and therefore do not 

yield a clean, smooth curve. A value of ~m was chosen so that 

the curve for S appears to give the best overall fit to the 
o 

inflection region. It is emphasized that only the single 

parameter ~ is selected to make the fit. 
m 

Figure 14 shows the curve for neutral surface S determined 
o 

for flow to an isolated point sink; ~ has 
m 

values ~ = 0.7 and 0.9, the corresponding 
m 

the value of 0.8. For 

surfaces for S 
o 

visibly departed from orthogonality with the streamlines. 

Figure 15 compares the agreement between ~ determined from the 

partial differential equation and equation (58) in the case of 

the flow to a point sink. The agreement is good and affords 

support for the hypotheses of the neutral surface. 

For an axisymmetric sink of very large radius, it may be 

expected that ~ and S will be approximately equal to the sink 
m 

radius and the ratio ~ IS should approach 1 as larger and larger 
m 

radii are considered. The limiting form of (58), as ~ approaches 
m 

infinity and ~rniS approaches unity, is 

d'~ 
- = -1T'(~ - n) 
dn' 

This is the same as the governing equation for horizontal channel 

flow, as it should be, and yields the solution given by (48). 
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So = 0.63 

1.0,......;--..., 
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0.6 
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0.4 
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0.2 

0.1 

0.8 

FIG. 14 STREAMLINE SOLUTION FOR AXISYMMETRIC FLOW TO AN 
ISOLATED POINT SINK AT ~ = 0, n = 0 SHOWING THE 
NEUTRAL SURFACE 
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• From Figure 14. Intersections of 
Equation (56) with the Streamlines 
from solution of Equation (46) 

FIG. 15 COMPARISON OF ~ VERSUS n ON THE NEUTRAL SURFACE 
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VELOCITY AND PRESSURE DISTRIBUTIONS 

Once a solution for ~ is obtained for a specific problem 

either in channel or axisymmetric flow from equations (45) or (46), 

it is easy to obtain the detailed velocity and pressure distributions, 

if desired. Since the streamlines themselves convey complete 

information on the direction of fluid flow, there is little need 

for the individual components of velocity, and the total magnitude 

is of primary interest. The dimensionless magnitude of the 

velocity for axisymmetric flow was defined in the discussion of the 

neutral surface as 

(52) 

For channel flow, 

2 ( a'l' )2 
q*; an + (59) 

Thus q* is readily computed from the solution mesh for 'I' by means 

of the finite-difference representations of (52) and (59). From 

(59) and (48), at the bottom of the horizontal channel flow 

(n ; 'I' ; 0), q* ; 2. The maximum velocity, at the bottom of the 

channel, is twice the mean velocity in the channel. 

With knowledge of the velocity and fluid elevations along a 

streamline, it is straightforward to find the pressure. It is 

convenient to define a dimensionless quantity that contains the 
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pressure information as a meaningful pressure differential. Let 

PI(z) be a reference hydrostatic pressure in a fluid that has 

(1) a density equal to the actual fluid at the boundary of 

separation, p. (2) the same pressure as the actual fluid at 

p. and elevation z : h in the source. PI(Z) is the pressure 

in the isopycnic wedge at elevation z; if the wedge does not 

extend to Z : 0, PI(z) is still defined. A dimensionless 

pressure differential is defined as 

P : • (60) 

where P is the pressure at any point in the fluid and PI is the 

"wedge pressure" (just defined) at the same elevation z. With 

equations (12), (17), (34), (39), (41), and (60) and T) : z/h, the 

following expression for p. is derived: 

(61) 

Equation (61) holds for either channel or axisymmetric flow from 

a linearly stratified source. In the limiting case remote from 

the sink where the isopycnic wedge approaches the reference plane 

and the fluid is confined to a stream of infinitesimal thickness, 

the maximum q. (for ~ : 0, T) : 0, and p. : 0) is q. : IT. 

Computation of q* and P* was carried out for most of the 

streamline solutions, but the results are not reported here. 
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COMPARISON WITH EXPERIMENT 

Detailed experimental data for flow of stratified fluids 

with continuously variable density do not appear to be readily 

available. The experiments of Debler,6 Koh,B and Harleman et al. 9 

afford some basis for comparison. 

DEBLER's EXPERIMENTS' 

Debler observed selective withdrawal of a linearly stratified 

fluid from a line sink at the bottom of a rectangular channel. He 

found that, for the flows and density gradients he used, the thickness 

of the withdrawal layer was associated with a modified Froude number 

F of about 0.24, were F was defined as 

F = o.jJo JPok 
h 2 g 

Viscous effects would be expected to lower the experimental value 

of F. Debler suggested that the theoretical value of F for an 

ideal, inviscid fluid should be l/rr, which is exactly the value 

predicted by equation (39). The flow patterns obtained by Debler 

with dyed fluid appear to be compatible with the solution given 

by Figure 4. Some qualitative differences in the patterns away 

from the vicinity of the sink could be explained by the difference 

in the finite tank used by Debler and the assumption of an infinite 

channel for the solution of Figure 4. 

KOH'S EXPERIMENTS B 

Koh's experiments were also conducted in the channel geometry 

with flow to a line sink. His objective was to obtain data with 

which to compare a theory that included friction contributions 

because of the viscosity of the fluid. As a consequence, his data 
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were obtained under conditions where viscosity effects were not 

negligible. Thus Koh's stream thicknesses were greater than 

predicted by equation (39) and from Deb1er's correlation. 

Koh was able to obtain good measurements of the velocity 

distribution in the flowing stream. Figure 16 shows Koh's 

normalized velocity distribution together with that derived from 

the cosine-squared distribution of equation (36). The agreement 

is good. 

DATA OF HARLEMAN, MORGAN, AND PURPLE" 
These data were obtained for axisymmetric flow of a stratified 

fluid to a sink of one-inch diameter. The source stratification 

was obtained by superimposing fresh wafer over a solution of sodium 

chloride with a procedure designed to minimize interfacial mixing. 

The position of the interface was defined and made visible by 

including a few droplets of a solution of di-n-butyl phthalate and 

xylene so proportioned that its density was midway between the 

fresh water and the underlying salt water. In each run, flow 

to the sink was increased until the interface dipped to indicate 

some flow at or above the interface into the sink. 

The results of the experiments were correlated by relating 

the data to an approximate analytical expression that was obtained 

for flow to a point sink on the basis of assuming a discontinuous 

velocity between the flowing salt water stream and the stagnant 

overlying fresh water. This analysis yielded the following: 
Q 2 

_c_ = 6.32 K2 = 2.58 (62) 
g'y 5 

o 
where Qc is the critical flow to the sink that draws down the 

interface, g' = ~p g; 6p is the density difference between the 

two fluids of mean density p; Yo is the height of the interface 

above the reference plane; and K is a constant dependent upon 

the streamline geometry in the vicinity of the sink. The data 

were well correlated by selecting K = 0.64. 
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FIG. 16 KOH's NORMALIZED VELOCITY DISTRIBUTION VERSUS 
COSINE-SQUARED DISTRIBUTION EQUATION (35) 
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There are some uncertainties in comparing the analytical 

results obtained earlier in this paper with the information 

contained in the Harleman paper. These include: 

• Differences in boundary conditions remote from the sink 

and uncertainty in the approach to steady-state conditions 

in the experiments. 

• The amount of flow from above the interface that corresponds 

to the critical drawdown condition of the experiments. 

• Uncertainty about the source stratification. 

Nevertheless, an interesting comparison can be made with some 

reasonable assumptions. Let f be the ratio of critical flow 

from the experimental stratification of source height y = h 
o 

relative to that of a linearly stratified source that has a 

density span of ~p/2 over a height h. The value of k for the 

reference linear stratification is thus k = 2h/ ~p. The "reference" 

flow of this linear, source is thus, by (50), 

~ 
Q = 2S h 3 (~) o 2p h 

o 
The actual 

P
O
QC

2 

(experimental) flow is Q
c 

Q 2 

---= __ c_ = 2f2S 2-

~pgh5 g'y 5 
o 

o 

fQ; thus, 

(63) 

If it is assumed that So is unaffected by the nature of the source 

stratification, the appropriate value for a point sink is 

S = 0.63 (Figure 7). There is a similarity in the concept of K 
o 

as employed in the Harleman paper and S in this report. The 
o 

comparison of K = 0.64 experimentally determined by Harleman with 

the 6
0 

= 0.63 is striking. 

A suitable value of f in equation (63) must now be found. 

Figure 3 of Harleman's paper shows a profile of the source 

stratification about the interface. If it is assumed that this 

profile is representative of all experimental runs, the critical 

flow and thus f relative to a linearly stratified source could 

be calculated for each y in the experiment via equations (24), 
o 
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(26), and (29). In view of the uncertainties, a simpler course 

was chosen. It was assumed that the source distribution is 

represented by a linear variation of density over a fraction 

y of the source height (upper portion) and that the density is 

uniform over the remaining fraction (l-y). With this assumption, 

f may be calculated as a function of y; the result is shown in 

Figure 17. f has a maximum of 1.64 for y = 0.09. Over the range 

0.04 < y < 0.18, f is greater than 1.60. A Y of about 0.1 appears 

to represent the profile shown by Harleman for y (or h) of about 
o 

2 inches, which is about the median y for the experiments. It 
o 

seems reasonable to take f 1.6 in equation (63) to obtain 

(with S = 0.63): 
o 

f 

Q 2 
C 

g'y 5 
o 

0.5 

5.09 S 2 
o 

y 

2.01 

Approximation 
of Harleman's 
Distribution 

1.0 

FIG. 17 CRITICAL FLOW RATIO f VERSUS FRACTION Y 
OF THE SOURCE HEIGHT 
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The agreement of (64) with (62) is surprisingly good. The 

difference in terms of the flow Q is about 12%, or in terms of 

the interface height, about 5%. For the lowest values of y in 
o 

the Harleman data, it might be expected that f would decrease 

because the zone of interfacial density variation is greater 

relative to y. However, this should be offset by an increase 
o 

in S when the radius of the sink (hole) is a significant 
o 

fraction of y. The lowest data point plotted by Harleman is for 
o 

Yo; 0.75, with a sharp-edged intake, for which the effective 

diameter is 0.75 inch (coefficient of contraction was 0.75). Thus 

the appropriate value of ~ for the hole-geometry of Figure 10 is 
o 

about 0.5, with a corresponding value of So ; 0.95. If no 

compensating decrease in f occurred, the constant on the right 

hand side of (64) would be about 4.5, which would yield a flow 

about 30% higher than (62). 

Harleman in his Figure 7 plotted a "Dimensionless Interface 

Curve and Drawdown". In the nomenclature of this paper, he plotted 

n versus ~ for ~I = constant, where ~I represents a constant value 

of the stream function appropriate to the interface. No information 

is available on the amount of flow emanating from the region above 

Harleman's interface. Figure 18 shows Harleman's curve overlaid 

on the streamlines of Figure 7, which depicts flow from a linear 

source to a point sink. It appears Harleman's curve might correspond 

roughly to ~ = 0.98, which would imply 2% of the flow comes from 

above the interface. Deviation of Harleman's interfacial streamline 

and that calculated in this paper may be expected as one moves 

away from the vicinity of the sink as a result of differences in 

boundary conditions and the extent to which steady flow is 

approached. Insufficient information is available ·to determine 

if the Harleman experiment offers any opportunity to confirm or 

deny the tendency to form an isopycnic wedge. 
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FIG. 18 HARLEMAN'S INTERFACE CURVE VERSUS CALCULATED 
STREAMLINES FOR AXISYMMETRIC FLOW TO AN 
ISOLATED POINT SINK* 

* See Figure 7 
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