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ABSTRACT 

The diffusive center of mass motion of particles is derived 
by assuming that the particles are coupled to a heat bath by a 
dipole interaction. Both the particles and the bath are treated 
as quantum mechanical systems. The equations of motion are 
obtained by using a perturbation method which describes dissipative 
effects in quantum mechanics. The diffusive slow neutron scatter­
ing law for the center of mass motion of particles in a liquid 
is then derived in the incoherent approximation. The scattering 
law satisfies the principle of detailed balance and the zeroth 
and first energy transfer moment theorems. The scattering law is 
expressed as a series of incomplete gamma functions and is 
evaluated in that form. 

- 2 -



r 

Introduction 

Summary 

Discussion 

Motion in a Liquid 

CONTENTS 

Resistance and the Photon Spectrum 

The Correlation Function 

The Scattering Law and Width Function 

Evaluation of the Scattering Law 

Appendix A 

Appendix B 

References 

LIST OF FIGURES 

Figure 

1 Width Function W(t) for l\ 0.0 (The Free 
and for l\ = 1.57 

2 
n 

Value of l\ = mD for H2 O 

3 Diffusive Scattering Law for l\ = 1. 57 

Gas Case) 

4 Temperature Dependence of s(a,~) for ~ = 0.0 and 

4 

7 

8 

8 

12 

15 

18 

20 

27 

28 

31 

21 

23 

25 

t3=1.0 ......................... 26 

- 3 -

~' . ,','" b 



r 

INTRODUCTION 

The cross section for scattering of slow neutrons by a system 
of atoms depends only in a minor way on the actual interaction of a 
neutron with the individual atoms of the system; rather, the cross 
section depends primarily on the positions of, tb,ll atoms and their 
motions within the structure of the system. If the scattering 
system is a gas, it is a reasonable approximation to assume that 
the center of mass motion of each molecule is completely free. For 
a crystalline solid the lowest order approximation is to regard the 
molecules as harmonically bound in a regular array. In the inter­
mediate case of a liquid, the molecules may be imagined to move 
either singly or in clusters, but this motion is expected to be 
diffusive rather than free. 

In the original work of Vineyard,1 the diffusive motion of a 
molecule in a liquid is described by a Langevin equation. In this 
report diffusion is described by this same equation, but both the 
diffusing particle a~d the surrounding medium with which it inter­
acts are treated as quantum mechanical systems. 

( 1) 

where the Xi are quantum mechanical operators that correspond to 
the coordinates of the particle, and the Fi are also operators 
which belong to the particle's environment. The friction 
coefficient f is given in terms of the diffusion coefficient D 
by the Einstein relation 

f 
T 
D 

where T is the temperature of the liquid in energy units. 

In Equation (1) the liquid environment yields two forces: 

(1) The first term on the right is a dissipative force. 
It is given in hydrodynamics by Stoke's law. Hydro­
dynamics treats· the fluid medium as a continuum, and 
this force represents an average effect. 

(2) The second term is a fluctuating force. It represents 
the instantaneous electric field which would exist at 
the position of the particle in the absence of the 
perturbing effect of the particle at that point. The 
dissipative force can be regarded as a reaction of the 
particle to its own effect on the surrounding liquid. 
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This report derives a slow neutron scattering law which 
corresponds to the diffusive center of mass motion of particles 
in a scattering system. All of the particles are assumed to have 
the same constitution. The internal degrees of freedom of the 
particles are considered to show how the center of mass contribution 
is separated out. The origin of the Langevin equation and the 
fluctuation-dissipation theorem which relates the two forces 
appearing in this equation is discussed in terms of a perturbation 
method introduced by Senitzky.2 This discussion should clarify 
the physical assumptions made in describing the liquid. 

The differential cross section for scattering of slow neutrons 
by an atomic system can be written 3 ,4 

where the Fourier transform' is defined as 

( a a ~ 
v v Y Av 

-i(j)t 
e X ,(K,t)dt vv N 

and the correlation function as 

~
i~ ·f) t+t I) 

X , (IC,t) = 
vv -

-1ic·r (t l ) .... -v' 
e 

T 

In these expressions, the quantity 

hlC = 11 (k - k ) 
'V ........0 

is the neutron momentum transfer, and 

fuo=E-E 
o 

(4) 

( 5) 

( 6) 

is the neutron energy transfer. The bound scattering length of 
the vth atom is denoted by av' and Xv(t) is the position operator 
of the vth atom in the Heisenberg representation. The scattering 
system is assumed to be in thermal equilibrium, and the symbol 
( )T denotes an average over a thermal distribution of 

• For a dIscussion of the physical interpretation of S(~,(j)), see 
Appendix A. 
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initial states. If correlations between the spins of different 
atomic nuclei of the scattering system are neglected, all orien­
tations of'these nuclear spins can be assumed to be equally probable 
in the initial state. Alternatively, the incident neutrons can be 
assumed to be unpolarized. In either case, the average products 
of scattering lengths in Equation (4) can be written as 

( a a ,\ 
v v 'IAv 

A A + 0 2 I) 
V v' V VV I 

( 8) 

where Av and 0v are the coherent and incoherent scattering lengths 
of the vth atom, respectively. 

The position of the vth atom of a particle" (molecule or 
cluster) can be written as 

_r+b +u 
"'v "'v 

where r is the position of the center of mass of the particle, 
Ev is the equilibrium position of the atom relative to the center 
of mass, and ~v is its displacement from equilibrium. The center 
of mass coordinates describe the translational motion of the 
particle as a whole. The vectors Ev and ~v describe rotational 
and vibrational motions, respectively. Isolation of the trans­
lational motion of a liquid particle from its other motions will 
be considered in the first section of the Discussion • 

• Henceforth the basic constituents of the liquid, whether they are 
molecules or clusters of molecules, will be called "particles." 
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SUMMARY 

A general formalism of Van Hove,s and Zemach and Glauber4 

was used in this report to derive the slow neutron cross section 
for a monatomic liquid in the incoherent approximation. An 
electric dipole interaction was assumed for the particles of the 
liquid. The electric field experienced by a particle of the liquid 
was expanded to first order using a perturbation method introduced 
by Senitzky. This procedure yielded a Langevin equation of motion 
for a liquid particle in which the resistance (which is in general 
a function of frequency) was taken to be a constant. A fluctuation­
dissipation theorem was derived for the liquid field, and the 
resistance was seen to be proportional to the photon spectrum of 
the field. The time correlation function, whose Fourier trans­
formation gives the cross section, was determined in the Gaussian 
approximation by conSistently applying Senitzky's perturbation 
treatment of the liquid field. The cross section was expressed 
in terms of dlmensionless quantities in the form of a scattering 
law as defined by Egelstaff and Schofield.s'B 

The width function which appears in the expression for the 
scattering law depends upon a frequency distribution f(m) which 
characterizes the motion of a liquid particle. This distribution 
is determined by (but is not equal to) the photon spectrum of the 
surrounding environment. In the case of simple diffusion with 
constant resistance, this frequency distribution is a Lorentzian 
function. However, the diffusing-particle model does not restrict 
f(m) to a Lorentzian form, because the only a priori condition on 
the photon spectrum R(m) is that it be a real, positive function 
of frequency. 

The scattering law was written as a series of incomplete gamma 
functions. Diffusive scattering laws based on classical width func­
tions have been expressed in terms of incomplete gamma functions 
previously by Singwi and Sjolander7 and by Gibbs and Ferziger. B In 
addition to the momentum and energy transfer parameters alpha and 
beta, the diffusive scattering law depends upon a resistance para­
meter A. The computer code which was written to evaluate the 
scattering law is applicable only for values of A which lie in a 
range between 0 and 2~ (and not too close to either 0 or 2~). This 
range is adequate for water in the temperature range 0° to lOOoe. 

- 7 -
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DISCUSSION 

MQTION IN A LIQUID 

The liquid environment of a particle is accounted for by 
assuming a dipole interaction of its atoms with a time-dependent 
electric field. This interaction is valid because the wavelengths 
repreaented 
dimensions. 
moment of a 
consists of 
figuration, 

in the field are all large compared with atomic 
To obtain the form of the interaction, the dipole 

liquid particle is first considered. This moment 
two terms; one associated with its equilibrium con­
and the second due to elastic stretching. 

M M + 'f u -0 0 v -v 
v 

( 10) 

A charge ev is associated with the vth atom such that 

( ll) 

( 12) 

Let ~v(t) be the electric field at the vth atom. The v-dependence 
of the field means that the field varies from atom to atom. However, 
all ~v( t) I S are assumed to have the ,same average properties in 
that they all represent the same field energy denSity. The inter­
action between the particle and the surrounding liquid is 

v 'e E o v-v 
v 

• (£ + ll) + I 
v 

f E 
v -v 

u -v 

The total Hamiltonian for the scattering system is then 

H = Hp + HB + V 

( 13) 

( 14) 

where ~ is the Hamiltonian for the particle, HB is the 
Hamiltonian for all the other particles of the system (which 
will be referred to as the "heat bath"), and V is the interaction 
between the one particle and the heat bath. 
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The Hamiltonian HP can be written as the sum of two terms) 
one for the center of mass motion, and the second for the internal 
(rotational-vibrational) degrees of freedom. Similarly, Equation 
(13) can be separated into center of mass and internal terms. 

Therefore, the correlation function Equation (5) can be written 
as a product 

where the center of mass term is 

and the internal term is 

wmere the internal coordinates are 

i 
r = b + U 
-v -v -v 

( 15) 

( 16) 

( 17) 

( 18) 

By allowing the index V to enumerate the atoms of a single liquid 
particle, coherent scattering by atoms belonging to different 
particles is effectively neglected, i.e., an incoherent approxi­
mation is made. 

The following natural assumptions were made for the heat 
bath: 

(1) In the absence of any perturbation, the heat bath has 
a uniform temperature. 

(2) The influence that the Single particle exerts on the 
heat bath is a small perturbation. 

In contrast to assumption (2), the bath may have a considerable 
influence on the motion of the single particle. Therefore, in 
a perturbation expansion of the electric fields of the heat bath, 
the coordinates of the particle must appear in the Heisenberg 
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(exact) representation, while the electric fields will appear 
in the interaction (unperturbed) representation. Furthermore, 
the first order term of the expansion will be averaged uSing a 
Boltzmann distribution of initial states for the heat bath. This 
is the essence of Senitzky 1 s2 perturbation method. 

The interaction of the center of mass of the particle with 
the bath is 

3 
V = E r=I E xi p _ i (19) 

i=l 

where 

.!l = Ie E v -v ( 20) 
v 

Let a superscript (0) denote the interaction representation, and 
no superscript denote the Heisenberg representation. The 
connection between these representations is given by a unitary 
transformation 

which satisfies the equation of motion 

it dU = V( 0) U 
dt ,P 

A perturbation expansion of the electric field components can 
be generated by using the integral equation 

(21) : 

( 22) 

( 23) 

which follows from Equations (19), (21), and (22). The square 
bracket in this equation denotes a commutator of the enclosed 
field operators. With Equation (23) the field components can be 
approximated while leaving the particle coordinates in the 
Heisenberg representation. If the unitary operators are set 
equal to unity in Equation (23), the approximate equation is 

- 10 -
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3 lL: 
ih j=l 

( 24) 

To complete the approximation, the commutator in the first order 
term is replaced by its thermal average 

( 25) 

where 

1 
=-

it 
( 26) 

The Kronecker delta symbol on the left side of Equation (26) means 
that the field is assumed to be isotropic and that different field 
components are not correlated. The unperturbed field can now 
be identified with the fluctuating force of Equation (1) 

_E(O) = F 
i i 

and the equation of motion for the particle takes the form 

( 27) 

( 28) 

The zeroth order (fluctuating) term in Equation (25) is not averaged 
because it represents the direct effect of the unperturbed heat 
bath. Its average value in an isotropic bath would be zero. In 
the next section, the function B(t) is related to the resistance 
of the liquid medium and this resistance is determined by the photon 
spectrum of the fluctuating electric field. 

- 11 -
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RESIST ANCE AND THE PHOTON SPECTRUM 

The resistance in the equation of motion (28) and also the 
photon spectrum of the unperturbed field may both be defined in 
terms of the spectral density of the field. Let the Fourier 
transform of the field be taken over a finite time interval 
(-or, or) 

( 29) 

Because the field does not necessarily vanish for large times, 
its transform over an infinite interval will not in general exist. 
The spectral density matrix of the unperturbed field components 
is then 

7T 

or ( 30) 

From this definition the Wiener-Khintchinee' ,0", theorem can be 
established 

Equation (30) can also be used to derive the symmetry relation 

G (-00) = hOO/T G ( ) 
ji e ij 00 

and from this relation it follows that the averaged commutator of 
the fields is 

ioot d e (j) 

( 33) 

- 12 -
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The resistance responsible for the dissipative effect of the heat 
bath is 

This resistance is related to the fluctuating field by the 
fluctuation-dissipation (Nyquist) theorem>2,>s 

where the curled bracket denotes an anticommutator, and E(ill,T) is 
the average thermal energy of a harmonic oscillator with natural 
frequency ill, 

E( ill, T) =~ coth : (36) 

A modified version of the theorem is 

which removes the zero point energy from E(ill,T). Equation (37) 
is a frequency analysis of the energy in the fluctuating field. 

Because of the previous assumptions that the field is 
isotropic and that the fluctuations of different field components 
are uncorrelated 

The resistance R(ill) is proportional to the density of field 
oscillators in the frequency range (ill, ill + dill). The Fourier 
transform of the function B(t) defined by Equation (26) is 
given in terms of the resistance by 

B( ill) =.! ill R( ill) 
7r 

- 13 -
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The resistance can be shown to be positive and an even function 
of ill. It follows that B(t) is a real, odd function of t. The 
equation of motion (28) takes the form of the simple Langevin 
equation if 

B( t) ( 40) 

where f is the friction coefficient. The parameter € gives the 
integral of Equation (28) an unambiguous meaning and is allowed 
to tend to zero after the integration. The resistance in this 
case is a constant 

R(ill) = f ( 41) 

which implies that the density of field oscillators is the same 
for all frequencies. This is sometimes referred to as a white 
spectrum. 

- 14 -
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THE CORRELATION FUNCTION 

When the solution of Equation (1) is considered, the particle 
is assumed to have been in contact with the heat bath for 
essentially an infinite time so that transients associated with 
its motion have vanished. In that case the solution is 

( 42) 

o 0 
where xi and Pi are respectively, the initial position and 
momentum of the particle, and 

-y = flm 

( 43) 

In the integral of Equation (42) the following kernel function 
was introduced 

(44) 

To evaluate the correlation function Equation (16), use the 
relation 

1 
P + Q + "2 [P,Q] 

e
P 

e
Q 

= e ( 45) 

where P and Q are operators which commute with their commutator. 
In this case 

P = ile r (t+t') ( 46) 

Q = -1,1> r (tl) ( 47) 

and the desired commutator is 

; [P, QJ 3 It+t'jt' 
=1:. I Ie Ie 

2 i, j=l i j 0 0 

( 48) 

- 15 -
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Equation (48), as it stands, is not expected to commute with P 
or Q. The equation of motion (1) was derived by averaging the 
commutator of the fields. Expressions for the coordinate and 
momentum operators of the particle contain the effect of this 
average, and they satisfy the correct commutation relations only 
if products of the field components are averaged whenever they 
appear.' It is therefore consistent with the approximate treat­
ment of the heat bath to perform a thermal average of the 
commutator of the fields which appears 1n Equation (48) by using 
Equations (26) and (40). 

~ <[p'Q]~ = ± ~~ g(ltl) ( 49) 

where the plus s1gn is used if t is positive, and the minus s1gn 
if t 1s negative. The Fourier integral representation of this 
commutator 

( 50) 

will be use~where the Lorentzian function f(w) 1s 

( 51) 

which is normalized to unity. 

Now consider the exponential of the sum P + Q. If the average 
value of the fluctuating field 1s ,zero, the first order expansion 
is 

e P + Q .. 1 -

where 

3 

I 
i, j=l 

"i,,}Tij(t+tt,t+tt) + Tij(tl,t l ) - 2 Tij(t+tl,t l)] 

(52) 

Here the anticommutators of the fields have been averaged in 
keeping with the general treatment of the heat bath. This average 
is given by Equation (35). The result for a constant resistance 
is 

• For a discussion of the commutation relations between the 
coordinate and momentum operators of the particle, see Appendix B. 
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When the integrals over t, and t2 in Equation (52) are evaluated, 
the limit as t' tends to infinity is taken to give the first order 
result. 

e P + Q .. 1 _ /(2 j+oo E(ro,T) f(r;;) (1 _ cosrot) dro (55) 
m _00 (f) 

In the perturbation treatment of the heat bath, the products 
of two components of the unperturbed field have been accounted for 
but not products of three or more. Therefore, the expansion 
Equation (55) cannot be extended by direct calculation without 
introducing some conventions for performing averages of these 
higher order products. Instead of introducing such conventions, 
the complete expansion is assumed to be represented by the Gaussian 
function 

P + Q 
e = e 

t(2 

- - r (t) 
2 c ( 56) 

This procedure is suggested by the form that the correlation 
function takes when the scattering system is a gas or a poly­
crystalline material. In particular, it is consistent with the 
isotropy property which a liquid shares with these other systems. 
The first two terms of the expansion imply 

~ combining Equation (57) with the result of Equation (50), the 
complete correlation function Equation (16) can now be written in 
the Gaussian form 

x(t) = e 

where the dispersion is 

r( t) = ~ ['" f~ro) [i sin mt + coth ~ (1 - cosmt) ] dro (59) 

This dispersion has the same form as the dispersion function for 
a crystal, where f(m) takes the place of the phonon spectrum. It 
also gives the ideal gas dispersion when f(ro) is replaced by a 
delta function. 

- 17 -
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THE SCATTERING LAW AND WIDTH FUNCTION 

The differential cross section for scattering of slow 
neutrons by a monatomic liquid has the form of Equation (3). 
Under the conditions of the foregoing argument the Fourier trans­
form in Equation (3) is now given by 

1+'" -1 -i(J)t 
- -- e e 271" _00 

2 

K2 r( t) 
dt ( 60) 

It is desirable to express this in terms of dimensionless parameters 

hm 
13 = -­T 

( 61) 

The standard form of this transform introduced by Egelstaff and 
Schofield is5 '6 

where 

1 
2 13 -

S(a,t3) ( 62) 

( 63) 

is called the "scattering law." The width function in Equation 
(63) is obtained by the transformation 

w( t) = ~ r (1,t _ i1,) 
h2 T 2T 

(64 ) 

and depends upon a dimensionless time parameter, t. From Equation 
(59) the integral representation of the width function is found 

-1'" .cl& [ cos flt ] w( t) - 0 13 coth 13/2 - sinh 13/2 dt3 (65) 

- 18 -
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The dimensionless distribution function p(~) in this expression 
is obtained from few) and is the Lorentzian function 

p ( fl) 
21- 1 
7r (~2 + 1-2) 

( 66) 

with half width 

I- =!:rr -h 
T mD 

( 67) 

The dimensionless resistance parameter I- is the only experimentally 
determined quantity which enters into the present theory. 

Egelstaff and Schofield 5 ,e point out that the function wet) 
has three Simple properties which can be related to properties 
of the scattering law. First, it is a real, even function of t. 
This implies that the scattering law 1s a real, even function of 
fl, which, 1n turn, means that the cross section satisfies the 
principle of detailed balance. According to this principle, if 
a gas of neutrons 1s in thermal equilibrium with the liquid, then 
the number of neutrons scattered out of a given range of momentum 
states equals the number scattered into the same range. The 
other two properties are given by 

a w( i/2) 

dW(i/2) = i 
dt 

( 68) 

These properties imply that the scattering law satisfies the two 
moment theorems 

1 ( 70) 

( 71) 

Equation (70) may be regarded as a normalization condition for 
the probability function S(~,w), whose interpretation is discussed 
in Appendix A. The first moment Equation (71) shows that the 
average energy exchange in a scattering process is the same as 
that which would occur if the system consisted of free, initially 
stationary particles. 

- 19 -



EVALUATION OF THE SCATTERING LAW 

To evaluate the scattering law, Equation (65) is integrated 
to give 

" 
wit) = a +.5. It I + esc A!2 e-Altl + I a 

. A A m 
m=l 

-2mnltl e 

where the constant term a is 

" 2 '\ 1 
a = - A2 + 2 L (7TIl) (27TIl + A) 

n-l 

and the coefficients in the series term are 

a 
m 

(_l)m 2A 
mn (4n2ro2 _ A 2) (m 1,2,3, ... ) 

(73) 

(74 ) 

Expression (72) presupposes that A does not equal 27m, n = 0, 1, 
2, •••• For these isolated values the integrand of Equation (65) 
has a double pole, and the width function assumes a different 
form. Figure 1 is a comparison of Equation (72) for A equal to 
n!2 and for A equal to zero the free gas width. The free gas 
width is 

( 75) 

(A = 0) 

whereas the long time behavior of the diffusive width is given by 
a linear function of t. 

When Equation (72) is substituted into Equation (63), the 
result can be written as 

- 20 -
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0.1 ~----'_L...l-'-UJ.-\-'-;;-_-'--'-...L.J....Ll..!.+;:-----L----'---'--Ll....l.J+,!, 
0.1 1.0 10 100 

Value of Time, dimensionless 

FIG. 1 WIDTH FUNCTION W(t) FOR ~ = 0,0 (THE FREE GAS CASE) 
AND FOR A = 1.57 

where z is equal to At, the real parameters are 

v = a a 
m m 

the complex parameter is 

and the number is 

CSC A/2 
u = =-=-A:.:.t...=. a 

v = aa. 

(m 1, 2, 3, ... ) 

- 21 -
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The integration of Equation (76) can be written as the multiple 
series 

.. .. 
I I 

nl=o 
( 81) 

[p + N+ D(n, + 2n2 + 3n" + ... )] 
[p + N + D( n , + 2n2 + 3ns + ... ) J2 + q2 

Equation (81) can be further arranged to take the form 

.. n , 

-( ) 1 -v" " S a, ~ = 7TA eLL 
n1=o n2=o ns=o 

( 82) 

~ (_l)N uN [p + N + D (n1 + n2 + ... )] 

N=o N! ([p + N + D (n 1 + n2 + ••. ) J2 + q2) 

where 

x = v Iv m n( m-l (m = 2, 3, ••. ) ( 83) 

and the ratios depend only on A. To combine the terms of Equation 
(82) which satisfy 

nl + n 2 + ns + ..• k ( 84) 

coefficients are defined as 

.. 
C(k) = I 

( 85) 

x( ).( )i .5k,n, +n2+.··+ nk n 1 - n 2 • n 2 - n" .... nk . 

- 22 -
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where the Kronecker delta symbol imposes the requirement of 
Equation (84). Note, the sum over N in Equation (82) can be 
written in closed form as 

.. 
[p + N + !)k] Re {u-cr(k)'Y(cr(k),U)} (86) I 

N=o 

where 'Y (cr,u) is the incomplete gamma function with argument 

cr(k) = s + Tlk ( 87) 

Figure 2 shows A as a function of temperature for H2 0. This 
curve was obtained by assuming that the basic constituents of the 
liquid are single H20 molecules so that m used in Equation (67) 
is the mass of a water molecule. The self-diffusion coefficients 
used are those given by Simpson and Carr.~4 The following 
discussion assumes that A lies in the neighborhood of this range 
of values. 

A 2.0 

1.0 

O~ __ ~~~ __ ~~~~ __ ~~~ __ ~~~ __ ~ 
o 20 40 60 80 100 

Temperature, ·C 

FIG. 2 VALUE OF A = ~o FOR H20 
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The numerical evaluation of the left side of Equation (86) 
was found to present an accuracy problem when u is large because 
in that case uNjN! increases initially as N increases and may 
become large even though the value of the total series is a 
relatively small number. This results in a loss of significant 
figures or a breakdown of the evaluation. A more satisfactory 
method of evaluation is to write the incomplete gamma function 
as 

'Y( a, u) 
" uae-u,", r(a) uN 
L r( a + N + 1) 

N=o 

The scattering law then takes the final form 

where 

s( 0, tI) e-(u + v) f C(k) G(k) 
k=o 

_ -l.. . r( a ( k) ) N {" } G( k) - 7TA Re I r( a (k) + N + 1) u 
N=o 

( 88) 

( 89) 

( 90) 

A FORTRAN code was written for the IBM 360 computer to 
evaluate the scattering law in this form for the values of A 
shown in Figure 2. Figure 3 shows the diffusive scattering law 
evaluated for A equal to 7T/2, which 'corresponds to a water 
temperature of 27°C. The dotted line in this figure shows the 
free gas law, which corresponds to A equal to zero, for alpha 
equal to one. Figure 4 is a plot of the scattering law versus 
alpha for A equal to 7T/2 and zero. The curve in general peaks 
in the neighborhood of alpha equal to beta when plotted for a 
fixed value of beta. For elastic scattering (beta equal to zero), 
the diffus~ve scattering law has a 1/0 singularity in contrast 
to the l/o~ singularity of the gas law. About 30 minutes was 
required to compute the scattering law for fifty values of alpha 
from 0 to 50 and twenty values of beta from 0 to 12. The magni­
tude of beta is limited by the time required to compute an in­
creasing number of the coefficients C(K) as bets increases. 
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APPENDIX A 

The function S()S,ro) is interpreted as being proportional to 
the probability that a neutron energy change hill will be in the 
range (ru, ru + dru) if the neutron momentum change is h~. For a 
given neutron momentum change, the amplitude for the scattering 
system to make an energy transition from E to E, is 

n n 

N < iJ>' 1: > ampl. = 2: a v nle v I n' 
v=l 

( Al) 

where N is the number of atoms in the scattering system (in our 
case the atoms of a single liquid particle), and av and Ev are 
the scattering length and position operator of the vth atom. 
The probability that the scattering system makes this energy 
change when the neutron is scattered is proportional to the 
quantity 

( A2) 

where Pn is the probability that the system has the initial 
energy En' The sum of all such probabilities which are consistent 
with the energy conservation equation 

hru=E -E n n' ( A3) 

gives the function S(J>,ru), i.e. 

=2: 
n,n' 

x 

(A4) 

(nl/J> • !'v I n.) < n'l:i~ . EV'ln) 5(hru + En' - En) 

Equation (4) is obtained from Equation (A4) by using the Fourier 
integral representation of the delta function. 
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APPENDIX B 

The complete solution of differential Equation (28) for an 
arbitrary B(t) is 

d (t) I 0 I ft (0» 
x (t) = XO 

g + - p g(t) - - g(t-t , ) Ei (t , dt , (BI) 
i i dt m i m 0 

where the kernel get) is the solution of the corresponding 
homogeneous differential equation 

~ (t 
m dt2 + J~ B(t-t , ) g(t , ) dt , 

o 

for the initial data 

g(o) = OJ ~ (0) 
dt I 

o ( B2) 

(B3) 

The commutators of position and momentum operators are therefore 
given by 

( B4) 

11tlt~ )[(0) (0»] +;;; 0 0 dt (t-t , ) g(t-t2 . Ei (tlLEj (t2 

This expression already contains the effect of averaging the 
commutator of the fields which occurs in the equation of motion. 
If the commutator of fields which appears here is similarly 
averaged 

When the equation of motion for g(t) is substituted into 
Equation (B5), it reduces to the form 
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(B5) 



r 

Therefore, the particle coordinate and momentum operators satisfy 
the correct quantum mechanical commutation relations if the 
approximate treatment of the heat bath is carried out consistently. 
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