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ABSTRACT

The diffusive center of mass motlion of particles 18 derived
by assuming that the particles are coupled to a heat bath by a
dipole Interaction. Both the particles and the bath are treated
as quantum mechanical systems. The equations of motion are
obtained by using a perturbation method which describes dissipative
effects 1n gquantum mechanlics. The diffusive slow neutron scatter-
Ing law for the center of mass motlen of partlcles 1n a liguid
ig then derived in the 1ncoherent approximaticn. The scattering
law satisfiegs the principle of detalled balance and the zeroth
and first energy transfer moment thecrems. The scattering law iz
expressed as a serles of incomplete gamma functlons and 18
evaluated in that form.
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INTRODUCTION

The cross sectlon for scattering of slow neutrons by a system
of atoms depends only in a minor way on the actual interaction of e
neutron with the individusl atoms of the system; rather, the cross
section depends primarily on the positions of thg atoms and thelr
motions within the structure of the system. If the scattering
system is a gas, it 1s a reasonable approximation to assume that
the center of mass motion of each molecule is completely free. For
a crystalline solid the lowest order approximation is to regard the
molecules as harmonically bound in a regular array., In the inter-
mediate case of a liquid, the molecules may be imagined to move
either singly or in clusters, but this motion 1s expected to be

diffusive rather than free,

In the original work of Vineyard,1 the diffuslve motion of a
molecdule in & liquid is deecribed by & Langevin equation, In this
report diffusion is described by this same equatlon, but both the
diffusing particle and the surrounding medium with which 1t inter-
acte sre treated as quantum mechanical systems.

d2xi dxi
m dt2=-fa-€—-+F1(t) , (1)

where the x4 are quantum mechanical operators that correspond to
the coordinates of the particle, and the P4 are also orerators
which bélong to the particle's environment. The frictlon
coefficient £ 18 given in terms of the diffuslon coefficlent D

by the Einsteln relation

f = (2)

o

where T i8 the temperature of the liquld in energy units.
In Equation (1) the liquid environment yields two forces:

(1) The first term on the right is a dissipative force.
It 1s given in hydrodynamlcs by Stcke's law. Hydro-
dynamlics treats the fluld medium as a continuum, and
this force represents an average effect.

(2) The second term iz a Fluctuating force. It represents
the instantaneous electric field which would exist at
the positlion of the particle in the absence of the
perturbing effect of the particle at that point. The
dissipative force can be regarded as a reaction of the
particle to 1ts own effect on the surrounding liquid.
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This report derlives a slow neutron scattering law which
corresponds to the diffuslive center of mass motlon of particles
in a scattering system. All of the particles are assumed to have
the same constitution. The internal degrees of freedom of the
particles areconsidered to show how the center of mass contributlion
is separated out. The origin of the Langevin equation and the
fluctuatlon-dissipation theorem which relates the two forces
appearing in this equation is discussed in terms of a perturbation
method introduced by Senitzky.? This discussion should clarify
the physical assumptions made in describing the llquid.

The differential cross section for scattering of slow neutrons
by an atomlc system can be written3’*

S(E:CU) (3)

where the Fouriler transform* is defined as

. +e
S(k,w) = g; E: <avav>Av ji” o100k XVVI(E’t)dt (4)

vyt

and the correlation functlon as
ieer (e+t1)  -iger (t1)
(!5’13) = € e (5)
m .

In these expresslons, the quantity

y :

vy!

h5=h(;5-k) (6)

~0

is the neutron momentum transfer, and

hwy = E - E (7)

e}

is the neutron energy transfer. The bound scattering length of
the vth atom is denoted by a,, and pv(t) 18 the position operator
of the vth atom in the Helsenberg representation. The scattering
system 1s assumed to be in thermal equililbrium, and the symbel

( )T denotes an average over a thermal distribution of

* Por & discussion of the physical interpretation of S(g,w), see
Appendix A,
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initial states. If correlations between the spins of different
atomle nuclel of the scattering system are neglected, all orlen-
tations of these nuclear spins can be assumed to be equally probable
in the initial state. Alternatively, the incident neutrons can be
assumed to be unpolarized. In elther case, the average products

of scattering lengths in Equation (4) can be written as

_ 2
<avav;%v. - Av Av' + cv avv' _(8)

where A, and Cy are the coherent and incoherent scattering lengths
of the vth atom, respectively.

The position of the vth atom of a particle* (molecule or
cluster) can be written as

r =r+b *+u (9}

where r is the position of the center of mass of the particle,

b, 1s the equillbrium position of the atom relative to the center
of mass, and u, 1s its displacement from equilibrium. The center
of mass coordinates descrlibe the translatlonal motlon of the
particle as a whole. The vectors Bv and u, describe rotational
and vibrational motions, respectively. Isoclation of the trans-
lational motion of & liquld particle from 1ts other motions will
be considered 1n the first section of the Discussion.

* Henceforth the baslc constituents of the liquld, whether they are
molecules or clusters of molecules, will be called "particles."



SUMMARY i

A general formalism of Van Hove,® and Zemach and Glauber?
was uged in this report to derive the slow neutron cross section
for a monatomic liquild in the incoherent approximation. An
electriec dipole interactlion was assumed for the particles of the
liquid. The electric fleld experienced by a particle of the 1liquid
was expanded to first order uslng a perturbation method Introduced
by Senitzky. This procedure ylelded a Langevin equation of motion
for a liquid particle in which the resistance (which 1s in general
a function of frequency) was taken to be a constant. A fluctuation-
dissipation theorem was derlved for the ligquid field, and the
resistance was seen to be propeortilonal to the photon spectrum of
the fleld. The time correlation functlon, whose Fourler trans-
formation gives the cross section, was determined in the Gaussian
approximation by consistently applying Senltzky's perturbation
treatment of the liquid fleld. The cross sectlon was expressed
in terms of dimensionless quantities in the form of a scattering
law as defined by Egelstaff and Schofield.”’®

The wildth function which appears in the expressicn for the
scattering law depends upon a frequency distribution f(w) which
characterizes the motion of a liquld particle. This distribution
is determined by (but is not equal to) the photon spectrum of the
surrounding environment. In the case of simple diffuslon wilth
constant resistance, this frequency distributlion 1s a Lorentzlan
function. However, the diffusing-partlcle model dcoes not restrict
f(w) to a Lorentzlan form, because the only a priori condition on
the photon spectrum R(w} is that it be a real, positive function
of frequency.

The scattering law was written as & series of incomplete gamms
functions. Diffusive scattering laws based on classical width func-
tions have been expressed in terms of incomplete gamma functions
previocusly by Singwi and Sjolander” and by Glbbe and Ferziger.® 1In
addition to the momentum and energy transfer paremeters alpha and
beta, the diffusive scattering law depends upon a resistance para-
meter A. The computer code which was written to evaluate the
scattering law 1s applicable only for values of A which lle in a
range between O and 2w (and not too close to elther 0 or 2w), This
range 1s adequate for water in the temperature range 0° to 100°¢C,




DISCUSSION

MQTION IN A LIQUID

-The liquid enviromnment of a particle is accounted for by
assuming a dipole interactilion of 1ts atoms with a time-dependent
electric fleld. This interactlon ls wvalld because the wavelengths
represented in the field are all large compared with atomic
dimensions. To obtaln the form of the interaction, the dipole
moment of a liguid particle 1s first consldered. This moment
consists of two terms; one assoclated wilith 1its equilibrium con-
figuration, and the second due to elastlc stretching.

M=M + 2T u (10)
v
A charge ey is associated with the vth atom such that

=Ze b (11)
Zev =6 (12)

Let E,(t) be the electric field at the vth atom. The v-dependence
of the fleld means that the fleld wvarles from atom to atom. However,
all E,(t) 's are assumed to have the same average properties in

that fthey all represent the same fleld energy density. The 1nter-
action between the particle and the surrounding liquid is

[ = Lo + . 1
v Z ev ':'E":‘V ( T QV ) ZV: fV ‘@V BV ( 3)
. v

The total Hamlltonian for the scattering system is then

H=Hp+HB+V (14)
where is the Hamlltonlian for the particle, Hp 1s the
Hamiltonian for all the other particles of the system (which
will be referred to as the "heat bath™), and V is the interaction

between the one particle and the heat bath.

M i Lo TR




The Hamiltonian can be written as the sum of two terms;
one for the center of mass motion, and the second for the internal
(rotational-vibrational) degrees of freedom. Similarly, Equation
(13) can be separated into center of mass and internal terms.

Therefore, the correlation function Equation (5) can be written
as a product

Xypt (£28) =X (£:8) X, 1 (&%) (15)
where the center of mass term 1s
1c.p{t+t!) -ic-r(t")
x (k58) =(e” e (16)
T

and the internal term 1s
te.rr(t4t1)  -ig.rr (87)
1 e TV e - oV (17)
xvv' ~
T

where the internal coordinates are

-
Eat
-
ct
g
1]

b +u (18)

By allcwing the index v to enumerate the atoms of a single liquid
partlecle, c¢oherent secattering by atcoms belonging to different
particles 1s effectlively neglected, l.e., an incoherent approxi-
mation 1s made.

The following natural assumptions were made for the heat
bath:

(1) In the absence of any perturbatlon, the heat bath has
a unliform temperature.

(2) The influence that the single particle exerts on the
heat bath is a small perturbatilon.

In contrast to assumption (2), the bath may have a considerable
inf'luence on the motion of the single partlcle. Therefore, in

a perturbation expansion of the electrie fields of the heat bath,
the coordinates of the particle must appear 1n the Helsenberg

5
.



(exact) representation, while the electric fields will appear

in the interaction (unperturbed) representation. Furthermore,
the first order term of the expanslon wlll be averaged usling a
Boltzmann distribution of initial states for the heat bath. This
1s the essence of Senitzky's? perturbation method.

The interaction of the center of mass of the particle with
the bath 1s

3
Vp =E . _1:=Z E, X, (19)
i=1
where
E = E;ev E, (20)

Let a superscript (o) denote the interaction representation, and
no superscript denote the Helsenberg representation. The
connection between these representations 18 glven by a unltary
transformation

B (8) = vx(1) £ V(1) u(e) (21)

~which satisfies the equation of motion

ih &Y - vlg") u (22)

A perturbation expansion of the electric fleld components can
be generated by using the integral equation

_ (0 4 L b (o) (o)
B (6) = B,%(6) + %fu (1) [Ei (+), Ej (m]

x U(t,) xj(tl) at, (23)

which follows from Equations (19), (21), and {(22). The square
bracket in thls equatlion denotes a commutator of the enclosed
field operators. With Equation (23) the field components can be
approximated while leaving the particle coordinates in the
Helsenberg representation. If the unitary cperators are set
equal to unity in Equation (23), the approximate equation is

- 10 -
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3

= 59 1 (o) (o) | ‘
E(t) = E,° (0) + sz; [ (¢}, Ej (tl)} xJ(tl)dtl (24)

To cemplete the approximation, the commutator in the first order
term 1s replaced by its thermal average

€
B,(6) = 5 (1) + j; B(t-t3) x,(8)at, (25)
where
B(t-t1) 5,, == ( [E09 (), 819 (en) > (26)
13 1k [1 J ] i

The Kronecker delta symbol on the left side of Equation (26) means
that the field 1s assumed tc be isotroplec and that different fileld
components are not correlated. The unperturbed field can now

be identified with the fluctuating force of Equation (1)

= F (27)
and the equation of motion for the particle takes the form

d®x

' mo = F, (1) - ft B(t-t,) x,(t,)dt, (28)
o]

dt®

The zeroth order (fluctuating) term in Equation (25) is not averaged

because it represents the direct effect of the unperturbed heat
bath., 1Ifs average value in an lsotroplc bath would be zero. 1In
the next section, the function B(t) is related to the resistance

of the liquid medium and this resistance 1s determined by the photon

spectrum of the fluctuating electric field.

T e L ———— ey o
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RESISTANCE AND THE PHOTON SPECTRUM

The resistance in the equation of motion {28) and alsoc the
photon spectrum of the unperturbed fleld may both be defined in
terms of the spectral density of the fleld. Let the Fourier
transform of the fleld be taken over a finite time interval

(-7, 1)

+
Ego)(w) - 2_1 f_: Ego)(t) e 1ot gt (29)

Because the fleld does not necessarily vanlsh for large times,

its transform over an Infinite interval wlll not in general exist.
The spectral density matrix of the unperturbed field components
is then

G (@) = Tlimu b <E§o)(w) Ego)(-m)>T (30)

From this definition the Wiener-Khintchine®’*°’1l theorem can be
established

(o) 0 (o)., _ [ 1wt
<Ei°(t+t)EJ (t)>T = '/:m Gij(m) e LUV (31)

Equation (30) can also be used to derive the symmetry relation

_ ehuyT

Gji(—w) Gij(w) (32)

and from this relation it follows that the averaged commutator of
the fields 1s

+oo
<[E§O)(t+t'), Ego)(t')J>T = —/:,,. (1 - ehw/T) ¢, () 1% 4y
(33)




The resistance responsible for the dilsslipative effect of the heat
bath is

Rid(m) i

- 1) ¢, () (34)

This resistance 1s related to the fluctuating field by the
fluctuation-dissipation (Nyquist) theorem®*2,212

<{E§O)(t+t'), Ego)(t')}> = % f-m Rij(m) E(w,T) e g4
. - (35)

where the curled bracket denotes an anticommutator, and E(w,T) is
the average thermal energy of a harmonic osclllator with natural
frequency w,

Elw,T) = % coth 2——%" (36)

A modified version of the theorem 1=

‘ +e
CRISECIN '/:” Ry (o) (E(1) - 22 as (31)

P kil

which removes the zero point energy from E(w,T). Equation (37)
is a frequency analysis of the energy in the fluctuating field.

Because of the previous assumptlons that the fleld 1ia
isotropic and that the fluctuations of different field components
are uncorrelated

R, (a) = R(o) o, (38)

The resigtance R(w) is proportional to the density of fleld
oscillators in the frequency range {w, w + dw). The Fourier
transform of the function B(t) defined by Equation (26) is
glven in terms of the resistance by

B(w) == o R(a) (39)



The reslstance can be showh to be positive and an even function
of w. It follows that B(t) 1s a real, odd function of t. The
equation of motion (28) takes the form cof the simple ILangevin
equation 1if

B(t) = f g‘-g (8(t+e) + B(t-e)) (40)

where f 1is the frletlion coefficlient. The parameter ¢ gives the
integral of Equation (28) an unambiguous meaning and 1s allowed
to tend to zero after the Integration. The resistance in this
case 1s a constant

R{w) = £ (41)

which implies that the density of fleld oscillators 1s the same
for all frequencles. This 1is sometlimes referred to as a whilte

spectrum.

- 14 -
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THE CORRELATION FUNCTION

When the solutlon of Equation (1) 1s consldered, the particle
is assumed to have been in contact with the heat hath for
essentlally an infilnite time so that translents assoclated with
its motion have vanighed. In that case the soclution is

0 1l o t
x, = (x +5-P)) + . A, (t-t;) e(ti)de, (42)

where xo and po are respectlvely, the initilal position and
momentufi of the partlecle, and

it

£/m

Y
(43)

A, = Frﬂn

In the integral of Equation (42) the following kernel function
was Introduced

g(t) =§ (1-e77Y (44)

To evaluate the correlation function Equation {16), use the
relation

P+Q+2 [F,Q]
‘ (45)

e e =g

where P and Q are operators which commute with thelr commutator.
In this case

P=ic - r (t+t7) (46)

Q=-1 - r (t") (47)

and the desgired commutator 1s

. L 3 ft+t'ft'
2 [BQ] =35 1%=1 LI A [Ai(t+t‘—t1),hd(t‘-t2)]

x g(ty)e(tz)dt,dt, (48)

- 15 -
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Equation (48), as 1t stands, 1s not expected to commute with P
or Q. The equation of motion (1) was derived by averaging the o
commutator of the filelds. Expressions for the coordinate and ;
momentum operators of the partlcle contain the effect of this i
average, and they satlsfy the correct commutation relations only ‘
1f products of the fileld components are averaged whenever they

appear.*® It is therefore consistent with the approximate treat-

ment of the heat bath to perform a thermal average of the

commutator of the flelds which apprears in Equation (48) by using

Equations (26) and (40).

-12-<[P,Q]>T =t %Es(!tl) (49)

where the plus sign 1s used if t 1is positive, and the minus sign
if t 18 negative. The Fourier integral representatlon of this

commutator
400
<[P,Q,:|> - Zl—;mif L%D—)-sinmt dw (50)
T e -

will be used, where the Lorentzian function f(w) 1s

X 1
T (@w® 4+ yE)

SV 3]

£{w)

which 18 normalized to unity.

Now conslder the exponential of the sum P + Q. If the average
value of the fluctuating field is zero, the first order expansion
is .

3
R 12_1 egg [Ty (BFET, THET) + T, (60,81) = 2 Ty (6457, 17) ]
»J= 4 (52)
where
1 Tl Tz
Tid(T:u"z) =73 ff <{A1(T1-t1):AJ(T2"t2)}> g(t,)e(tz)dt dat,
°° ! (53)

Here the antlcommutators of the flelds have been averaged 1in
keepling wilth the general treatment of the heat bath. Thls average
is given by Equation {35). The result for a constant resistance
is

¥ For a discussion of the commutation relatlons between the
coordinate and momentum coperators of the particle, see Appendix B,

- 16 -



1 : \ a2 [ 1wt
n gj £y <{Ai(t+t )ah (¢ )}> . —%"‘E - E(w,T) e du (54)

When the integrals over %, and tz; in Equation (52) are evaluated,
the 1imit as t' tends to Infinity is taken to give the first order
result.

00
2
R Eﬁff E(w,T) %‘2—) (1 - coswt) do  (55)

In the perturbation treatment of the heat bath, the products
of two components of the unperturbed field have bheen accounted for
but net products of three or more. Therefore, the expansion
Equation (55) cannot be extended by direct caleculation without
Introducing some conventions for performing averages of these
higher order products. Instead of Introducing such conventlons,
the complete expansion 1s assumed to be represented by the Gaussilan
functlion 2 ()

-—T (t
eP + Q = e 2 c (56)

Thils procedure is suggested by the form that the correlation
function takes when the scattering system 1s a gas or a poly-
crystalline material. 1In particular, 1t is consistent with the
isotropy property which a liquid shares with these other systems.
The first twec terms of the expansion imply

+o0
7 wtom 22 (1 - cosut) a0 (57

r(t) =

=1

By combining Equation (57) with the result of Equation (50), the
complete correlation function Equation (16) can now be written in
the Gaussian form ’

- 5;- ()
x(t) =e (58)

where the dispersion i1s

r(t) = % f —ﬂfi [1 sin wt + coth -g—f; (1 - coswt)] dw (59)

This dlspersion has the zame form as the dispersion function for
a crystal, where f{a) takes the place of the phonon spectrum. It
also gives the ideal gas dispersion when f(w) is replaced by a
delta function.

7
5
3
Kk
E



THE SCATTERING LAW AND WIDTH FUNCTION

The differentlal cross sectlon for scattering of slow
neutrons by a monatomic liquid has the form of Equation (3).
Under the condltions of the foregoing argument the Fourler trans-
form in Equation (3) 1s now given by

2
K
+o0 - 5 I(%)
g I at (60)

It is desirable to express thils in terms of dimensicnless parameters

-h 2
Q= —-=

2y
2mT

ho
T

(61)
B -

The standard form of thls transform introduced by Egelstaff and
Schofileld 1s5°°©

1, ,
-2 50 (62)

where

. g 1Bt gmallt) 4y (63)

18 called the "scattering law." The width function in Equation
(63) 1s obtained by the transformation

w(t) =;"—1—ZF (#—1£ ing~) (64)

T 27T

and depends upon a dimensionless time parameter, t, From Equation
(59) the integral representation of the width function is found

W(t) =_/; ﬂ—gi [coth B/2 - fi—;’]%%;—e]da (65)

- 18 -
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The dimensionless distribution function p(g) in this expression
is obtained from f{w) and is the Lorentzian function ’

2A 1

p(p) = o BT+ 35 (66)
wlth half width
hy *h
n=d s (67)

The dimensionless resistance parameter A 1g the only experimentally
determined quantity which enters into the present theory.

Egelstaff and Schofield®’® point out that the function W(t)
has three simple propertles which can be related to properties
of the scattering law. First, 1t is a real, even functlon of t.
This implies that the scattering law is a real, even function of
£, which, in turn, means that the cross sectlion satisfles the
principle of detailled balance. According to this principle, if
a gas of neutrons is in thermal equllibrium with the liquid, then
the number of neutrons scattered out of a given range of momentum
states equals the number scattered lnto the same range. The
other two propertles are given by ,

w(1/2) =0 (68)
aw( 1/2)
T = 1 (69)

These properties 1lmply that the scattering law satisfiles the two

moment theorems

+-00
doo
f S(a,p) p sinh 5/2 dg = a (71)

Equatlon (70} may be regarded as a normalization condition for

the probability function S(k,w), whose interpretation is discussed
in Appendix A, The first moment Equation (71) shows that the
average energy exchange 1in a scattering process is the same as
that which wculd occur 1if the system consisted of free, initlally
stationary particles.

T g g £



EVALUATION OF THE SCATTERING LAW

To evaluate the scattering law, Equatlion (65) is integrated
to give

Wt) = a +§- ]t[ + 2&27\_7\[?_,3'7\]17[ + i a e_2ﬂm|t| (72)

m=1 m

where the constant term a is

2 1 '
a=-i?+2nz=1 TR (73)

and the coefflcients in the series term are

( )m
am - ;l’f]'l: (uﬂamg?\_ 7\27 (m = 1: 2.9 3, .--) (Tl})

Expression {72) presupposes that )\ does not equal 2m, n = 0, 1,
2, .... For these 1solated values the integrand of BEguation {65)
has a double pole, and the width functlon assumes a different
form. Figure 1 1s a comparison of Equation (72) for A equal to
m/2 and for M equal to zero the free gas width. The free gas
width 1s

(75)

whereas the long time behavior of the diffusive width is given by
a linear functlon of ¢.

When Equation (72) is substltuted into Equation (63), the
result can be written as

~~ -V o
S{a,B) = %\— Re{ Jo‘ exp (-sz - ue Z . z vme'mnz>dz}(76)
m=1
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where z 1s equal to At, the real parameters are
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The integration of Equation (76) can be written as the multiple
series

i haf % N+n, +n + ...
(_1) 1 2

Blap) = eV Y 2 X e T

(81)

[p+ N+ nln; + 2no 4+ 3ng + ...} )
b+ N+ n{n, + 2np + 3ng + ...) 1% + g

N n
X u Vi Vo “eoe

Equation (81) can be further arranged to take the form

n,

~ 1 -y ("‘1)
S ’ = i P
(0P m ° nggo géio ngio (n; - nz)t{nz - ne)t ...

(82)
N N

(-1)" w [(p+N+n(n, +ng+ ...)]
N=o N! ([p+ N+ n(n, +ng+ ...) 1%+ g3

n, , Ny nNg
X Vl Xé Xs s

where

(m=2, 3, ...) (83)

and the ratlos depend only on A. To comblne the terms of Equation
(82) which satisfy .

n, +n+ng+ ... =k (84%)

ceoefficlents are deflned as

o n; Ne
Cx) =» > D ... (-1)™

n;=0 nNg=0 Ng=0

(85)

v x x L A ) x
. = 2 k 6kyn, + np+ ... +n

*Tny - na)i{n, - ng)? ... o ! X
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where the Kronecker delta symbol imposes the requirement of
Equation (84). Note, the sum over N in Equation (82} can be
written in closed form as

N N

Y L eertad e (w90, | (@9
N=0

where vy (0,u} is the incomplete gamma function with argument

o(k) =8 + nk (87)

Flgure 2 shows A as a functlon of temperature for Hgz0. This
curve was obtained by assuming that the baslc constituents of the
liquid are single H 0 molecules 86 that m used in Equation {67)
is the mass of a water molecule. The self-diffusion coeffilcients
ugsed are those glven by Simpson and Carr.** The following
discussion assumes that A lies in the nelghborhood of thils range
of wvalues. :

4.0

3.0

Temperature, °C

_h
FIG. 2 VALUE OF A = ﬁﬁ-FOR H,0
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The numerical evaluation of the left side of Equation {86)
was found to present an accuracy problem when u is large because
in that case ull/N! increases initlally as N increases and may
become large even though the value of the total series 13 a
relatively small number. This results in a loss of slgnificant
figures or a breakdown of the evaluation. A more satisfactory
method of evaluation 1s to wrlte the incomplete gamma function
as

¥(o,u) = u° e‘uNZ e fla o (88)
=0

The scattering law then takes the final form

Hap) = TS 600 6w (89)

=0

where

k)) N
-E-N+l) - } (90)

A FORTRAN code was written for the IBM 360 computer to
evaluate the scattering law in this form for the values of A
shown in Figure 2. Figure 3 shows the diffusive scattering law
evaluated for A equal to n/@, which corresponds to a water
temperature of 27°C. The dotted line in this figure shows the
free gas law, which corresponds to A equal to zero, for alpha
equal to one. Filgure 4 1s a plot of the scattering law versus
alpha for A equal to m/2 and zero. The curve in general peaks
in the neighborhood of alpha equal to beta when plotted for a
fixed value of beta. For elastic scattering (beta equal to zero),
the diffusjve scattering law has a 1/a singularity in contrast
to the 1/a? singularity of the gas law. About 30 minutes was
required to compute the scattering law for fifty values of alpha
from 0 to 50 and twenty values of beta from O to 12, The magni-
tude of beta 1s limited by the time required to compute an in-
creaging number of the coefficlents C(K) as beta increases,

1 . - I(
o) = 7% Re{NEO Mo (o)

- 24 -



!B)

§(a

10 T T TTTT T T T TTTO

L 111

I_lllIHI

illtl_il

l

I N III]
0l 0. 1.0

Value of Beta

FIG. 3 DIFFUSIVE SCATTERING LAW FOR A = 1.57
(Dotted Line is the Gas Law for o = 1.0)

- 25 -

=5
£




|0: T I T T T TTTT T T 11T
~
.0
x -
Ei -
wn
Ol =
-
-
1
.0l | LZL Flllill | L.l lllllJ l Ll 1.1 113
0l Q.l [.Q 10

*Volue of Alpha

FIG. 4 TEMPERATURE DEPENDENCE OF S{w,8) FOR B = 0.0 AND g = 1.0

- 26 -

TR T e ) %



APPENDIX A

The function S(x,w) 1s interpreted as being proportional to
the probebility that a neutron energy change hw will be in the
range (@, w + dw) if the neutron momentum change is hx, For a
given neutron momentum change, the smpllitude for the scattering
system to make an energy transition from En to En' 1s

N 1.& . Ll
ampl. = Z 2, <n|e v| n'> (A1)
v=1

where N 1s the number of atoms in the scattering system (in our
case the atoms of a single liquid particle), and a, and r, are
the scattering length and poslitlon operator of the vth atom.
The probability that the scattering system makes thls energy
change when the neutron 18 scattered 1s proportional to the

quantity
P_|amp1. |2 (A2)

where P, 18 the probablility that the system has the initial
energy E,. The sum of all such probabilltles whilich are conslstent

with the energy conservatlon equatlon

ho =E - E (A3)

glves the function S(k,w), i.e.

1 .
= S(k,w) = P a a ,>
y 0 E gn, nv’zv, <vv A
(A%)

ik -i¢ - '
x \nle [ nt ntle ~ v In/ &(bw + E ., - En)

Equation (4} 1s obtained from Equation (A4) by using the Fourier
integral representation of the delta functilon.

v
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APPENDIX B

The complete solution of differential Equation (28) for an
arbitrary B(t) is

t
=0 B L Loy L[ gy 5y as ()

x-
1 dt m m A

1

where the kernel g(t) 1s the solutlion of the corresponding
homogeneous differentlal equation

Eé B(t-t,) g(t,) dt; = 0 (82)

for the initlal data
glo) =05 S&(0) -1 (B3)

The commutators of positiocn and momentum cperators are therefore
glven by

[xi(t): pJ(t)] = B4y ih[(%%)a ) g'%] (Bk)

% ftf %% (t-t,) g(t-tp) [Ego)(tl),Ego)(tz)] dt,dts

This expression already contains the effect of averaging the
commutator of the fields which occurs in the equation of motion.
If the commutator of flelds which appears here 1s simllarly

averaged
G ] ) oy ({88 - o 23]

Sy m _[f 7 (£2) &(t2) B(t,-tz) dt,dt,

When the equation of motion for g(t) 1s substituted into
Equation {B5), it reduces to the form

(B5)

- 28 -
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<[xi(t), pJ(t)]>T = 5y ih (%% (o))a = 513 ih { B6)

Therefore, the particle coordinate and momentum operators satisfy

the correct quantum mechanical commutatlon relatlons 1f the
approximate treatment of the heat bath 1s carried out consistently.
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