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ABSTRACT

An analytical method is developed to assess the
safety of an operation or a mission. A computer
program, PAR, is written to implement the quantitative
features of this method. The analysis can incorporate
judgment factors and can assess the results of accept-
ing each of several alternatives.
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INTRODUCTION

Two important barriers to the application of quantitative
probabilities in safety analysis are:

e Lack of convenient analytical methods of adequate scope and
flexibility

e Difficulty of assembling pertinent input data

These two problems are related. If an analytical approach were
available that had great flexibility in accepting and handling

a wide range of input data, the task of providing the data might
be easier. This is especially important when some quantitative
input data must reflect primarily judgment factors. It then
becomes essential to have an analytical framework in which the
consequences .of such judgment may be quickly and conveniently
depicted.

This report describes an analytical approach and a computer
program that incorporates broad scope and flexibility. The program
Probabilistic Analysis of Risk (PAR) is available for possible
application. Further improvements in the capability of PAR are
believed to be possible if computing time proves to be a limi-
tation.

SUMMARY

An analytical approach is developed to assess the safety of
an operation, campaign, or mission. The information of possible
concern at the end of the campaign or after a time period of the
operation is contained in yes or no answers to a set of appropriate
propositions or questions. Each combination of yes and no answers
corresponds to a unique state or condition of the system. If
there are n questions in the set, then there are 21 possible states.
The objective of the analysis is to find for each question the
unconditional probability that its answer is yes. Whereas, these
unconditional probabilities may not be known within orders of
magnitude on the basis of either experience or judgment, their
dependence upon the answers to other questions may be much more
reliably known. This situation is a direct consequence of the
increase in the reliability of an answer with an increase in the
amount of information available to support the answer.
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The analytical method consists of three steps:

1. Formulation of an appropriate set of questions whose answers
will provide the desired information

2. Assignment of conditional probabilities to each question
that its answer is yes, given each possible state of the set
of remaining questions upon which the question of concern

is dependent

3. Calculation for each question of the unconditional proba-
bilities that its answer is yes

Although the judgment exercised in the formulation of the
input will obviously influence the results of the analysis, the-
nature of the judgment is explicitly expressed in quantitative
measures. Possible disagreements among people concerned with a
specific problem should be capable of reconciliation because of
the quantitative detail of the analysis.

The computer program PAR is written to accept the type of
input described in Step 2 and to calculate the unconditional
probabilities of the answer to each question., Also calculated
is the risk associated with questions that have undesirable
consequénces when their answer is yes. The risk is calculated
as the product of a relative undesirability factor and the
unconditional probability of a yes answer. An important feature
of the computer program is the logical procedures it utilizes
to minimize the computing time for large problems.

DISCUSSION

CONCEPT

A statistical or probabilistic evaluation of an operation,
program, or mission is desired. If a steady-state operation is
to be evaluated, an appropriately short period of time is selected
for statistical characterization: perhaps one day of reactor
operation. An appropriately short period is one in which multiple
occurrence of events to be characterized may be neglected. For
instance, a major power failure has a certain probability of
occurring in one day; the likelihood of two different, independent
failures in one day may ordinarily be safely neglected. For
convenience, the general term 'campaign" will describe the specific
mission, program, or interval of operating time that is to be
characterized.



The campaign is considered to be specified by information
that describes the intended course of the campaign and antici-
pated possible deviations from it. This information includes
designation of equipment, instrumentation, protective systems,
backup devices, personnel, procedures, and administrative
controls, as well as specified objectives and plans. From the
point of view of hazards analysis, attention is primarily
focused on assessment of probabilities that various undesirable
departures from the nominal campaign will occur.

The analytical procedure is based on construction of a set
of propositions such that a particular outcome of the campaign
may be adequately characterized by indicating for each proposition
whether it is true or false. The method resembles the old game
of "Twenty Questions" in which only yes or no answers are
permitted. In some respects, the method is a generalized fault
tree approach. The portrayal of the spectrum of all campaign
outcomes may be quantitatively represented by the interdependence
of the propositions and by the probabilities that each proposition
will be true (or false). Interdependence is important. For
instance, if one of the propositions happened to be (for a hypo-
thetical day of reactor operation} "A reactor incident occurred";
and if this statement is false for a particular campaign outcome,
then another proposition, "A major power failure occurred,' can
hardly be true for the same outcome. A key point in the analysis
is that the occurrence probabilities of many events of interest
may be given conveniently in terms of their dependence upon other
related events. A computer program based on an appropriate
mathematical model may conveniently accept such interdependent
data and systematically calculate probabilities that each
proposition will be true or false.

1f many possible, undesirable consequences of widely
differing magnitudes and probabilities must be considered, the
analysis should provide a method for combining probability and
magnitude of a particular consequence in a single quantity that
may be treated as a risk. We assume that the risk associated
with a particular undesirable consequence C is measured by the
product:

Risk = PCRC

where Pc is the probability of the occurrence of C in the
campaign, and R¢ is a relative measure of the undesirability

of the consequence C. We assume that risks defined in this way
may be compared one to another and that they may be added to
obtain a meaningful combined risk.

-7



.

The concept of risk as a product of probability and relative
undesirability is of secondary importance in the analysis.
Estimation of consequence probabilities is the primary objective.
Assigmment of quantitative relative undesirabilities of conse-
quences may serve a useful purpose in reflecting the relative
weight judged to be appropriate for diverse consequences.

The analytical method would be most effectively applied in
an iterative feedback procedure as follows: A set of propositions,
interdependent probabilities, and undesirable consequence factors
are analyzed to obtain unconditional event (or proposition)
probabilities and risks. The results of the analysis are then
reviewed to determine if the desired features of the campaign
have been adequately described by the set of propositions and if
the unconditional probabilities and risks are in accordance with
judgment and experience. The problem is then reformulated and
the analysis is repeated. The iterative process continues until
the objectives of the analysis have been satisfactorily met. The
value of such an analysis does not lie in a few isolated quanti-
tative probabilities and risks, but rather in the systematic
portrayal of the hazards structure as viewed by the analyst. The
analysis should afford a more quantitative medium of communication
for exchange of views and judgments on hazards analysis. Areas
of agreement and disagreement are more easily identified among
people engaged in analysis, review, and approval of hazardous
programs. Hopefully, a dissenter should be able to put his finger
on specific points of the analysis with which he disagrees or
believes to be inadequate.

More details of the method will become evident in the dis-
cussions of the mathematical model and the computer program in
subsequent sections. (The reader may profitably scan the Sample
Problem, page 33, at this point to get a qualitative feel for
the formulation of a problem.)

MATHEMATICAL MODEL

Everything of concern about the outcome of the campaign is
assumed to be definable by yes and no answers to a finite set of
questions. For example, the answers to five questions might be
sufficient in a particular instance to provide all the desired
information. In this case, 2° = 32 different outcomes are
represented by all combinations of yes and no answers to the five
questions. If yes is represented by 1 and no by 0, then each of
the 32 combinations corresponds to a binary number, which can be
used to identify the outcome. This set of outcomes forms a
mutually exclusive and exhaustive set because one, and only one,
outcome must result for each campaign or experiment.
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Each question or proposition about the campaign is considered
to be represented by a binary variable which may assume only one
of the two values 1 (yes = true) and O (no = false). These
propositions are the basic elements of the model and are called

bivariables. The bivariables are designated X, Xz, ..., X, and
the ordered set is designated S,. The set of all possible outcomes

or all possible combinations of 1 and O for the bivariables is
designated Z,. Therefore, the set Z, always contains 2N elements.
To continue the example of five questions, the particular outcome

Xy =1, X =0, Xz =1, Xy =1, and Xs = 0
corresponds to the binary number 10110 or the decimal number 22Z.

This particular element of the Z set is designated Zs,22 :
and is one of the 32 elements in the complete set. The 32 elements
in Zs are considered to have the standard order Zs,o, Zs,1,

Zs,25 «++5 L5,31-

The set of bivariables (propositions) S_ is selected for a
given campaign so that all outcomes of possigle interest are
included in the set Z,. One would expect to select bivariables
in such a way that, in principle, a yes or no could be assigned
to each defining proposition on the basis of available post-
campaign records. For instance, after the fact, it can be said
for any day's operation of a reactor whether or not there was a

"power failure, a scram, a power surge accident, etc,

A campaign described by a bivariable set S,, viewed as a
statistical entity, can be completely characterized if the proba-
bilities of the occurrence of each outcome or element of the set
Z, are specified. For example, when five different coins are
tossed, all statistical information about the experiment 1is

contained in the statement that all 32 outcomes are equally likely
or that the probability of each outcome is 1/32. All other

statistical questions that one might ask, such as:
What is the probability that the third coin is heads?

What is the probability that there are at least three
heads among the five coins?

can be answered from the knowledge of the probabilities of the
individual outcomes. These latter questions deal with events
rather than single outcomes. Each of these events is defined
by a subset of outcomes, and the probability of an event is the
sum of the probabilities of the outcomes defining the event.

In roulette, the set of mutually exclusive and exhaustive
outcomes consists of 00, 0, 1, 2, ..., 36 while odd, even, red,
black, etc., are events, each of which is defined by a subset of

the outcomes.



The probability that Zp; is the outcome of the campaign is
defined to be Qqj. Since one of the Zpj must occur,

DR e

If the Qu; are kmown for all j, then the other statistical
quantitieS related to the sets Sp and Zp can be calculated.
Specifically, the probability that the campaign outcomes will
yield a yes for the kth bivariable (X, = 1) is the sum of all
Qnj for the Zpj in which Xy = 1. In symbols,

2n.1
P {xk - ]_} = Wk = Z ijQnJ (2)
j=0

where Xp;-is either 1 or O in accordance with whether Xy = 1 or

0 in Zpj. The probability of any other event of interest in the
campaign can be calculated by summing the Qn; for the subset of

outcomes in Z, that define the event.

The basic relation from which all of the desired information
is calculated from available input data depends on one of the
fundamental laws of probability, viz., the multiplication theorem.
The multiplication theorem may be expressed as

P {A x B} = P {B]|A} P {A} (3)

In words, the theorem states that the probability that both events

A and B will occur equals the product of the probabilities of
events (1) and (2), where (1) is B occurs given that A has occurred,

and (2) is A occurs. For example, what is the probability that
two cards drawn at random from a bridge deck will both be hearts?
The theorem states that

P {Hp x Hy} = P {Hp|Ha} P {Hy}

P {H1} is just the probability that the first card is a
heart and is clearly equal to 13/52 = 1/4. The quantity P {Hs/H,}
is the probability that the second card is a heart given that the
first card is a heart. When the first card is a heart, the
remaining 51 cards include 12 hearts so that P {H2|Hy} = 12/51 and
finally
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Expressions of the form P {B|A} are known as conditional
probabilities and imply a possible dependence of the event B upon
knowledge concerning the outcome of other or previous events A.
In the example given above, the probabilities of drawing cards
depend upon what has already been drawn. There are instances,
of course, in which the events are independent, as, for example,
when a coin is tossed repeatedly.

The multiplication theorem can be extended to more than two
events, as follows:

P {AxBxcC}="p{c|axB}P {B|A} P {A} (4)

Equation (4) permits the computation of Qpj for set Ip in terms
of the interdependence of the bivariables in the set &n.

The ordered sequence of S and Z sets:-is
Sl, Sz, Sa, o Sn and Z1, Zz, 23, ceay n

Each set in the two sequences is generated by adding another
bivariable, say Xy, to the m-1 bivariables previously defined as
Sy-,: If the dependence of the probability. of Xp on the elements
of Z,_, is known, and if all Qu_, j for the set Zy., are known,
then all of the Qg- can be calculated. The multiplication
theorem is applied” as follows:

PL{(X, =1 x zm_l’j} =P {X, = 1)|zm_1,j} P {zm_l'j} (5)

The event Xp and Zp.,,j is a member of the Zj set, and the
probability of the event is some Qpj. The relation between the
i and j will be resolved. The quantity P {Zp_, j} has been
defined as Qg_y j. The notation for the quantity P {(Xy = 1) |
Zm-1,j} is shortened to Ppj. For Xy = O, the conditional
probability is 1 - ij. Tﬂerefore, equation (5) is now written
as

Qmi = ij : Qm—l,j (6)

- 11 -




Induction shows that when Xﬂ = 1 is added to Zm-1,j, the new
outcome is Zm,2j+1. Likewise, when X = O is added to Ip-1,j,
the new outcome is Zm,2j- Thus, the recurrence relations are:

Qm,2i+1 - Pmi ’ Qm—l,i
(7)

Qm,zi - Pmi)Qm-l,i

All the Qi and thus all the probabilities of events of
interest can be calculated when the Qi1 for the initial proposition
and all the Py; for subsequent propositions are specified. The -
Q11 is just the probability that the initial proposition is true.
Obviously, Q1o = 1 - Qi1. The conditional probabilities Pp; are
the quantities that are specified when the problem is defined
and thus they constitute the input to the calculational problem.

In theory, the analytical process is now outlined. A
bivariable set S, is defined, and the sequence order of the Xj
is selected so that one can specify the dependence of any Xp on
all the Xj appearing earlier in the sequence, i.e., 1 < m. One
might proceed in this fashion theoretically to define and analyze
campaigns that require any number of bivariables. ,

The quantitative specification of the problem in terms of
conditional probabilities has the advantage that these are the
quantities that can be stated most reliably either on the basis
of past observations or merely on judgment. For example, the
probability that a given person will have a serious accident in .
an automobile during the next ten minutes is strongly dependent
upon answers to such questions as:

Is the driver intoxicated?
Is the automobile speed greater than 80 mph?
Is the next mile of road crooked and mountainous?

If the answers to all thrée questions were yes, then the
probability of a serious accident would usually be judged as high.
Obviously, any information about the conditions under which the
truth of a proposition is being judged will assist in making the
most appropriate quantitative assignment. The answers to these
three questions may in turn be considered dependent upon still
other propositions and may go all the way back to the question,

Is the person in an automobile?

- 12 -
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for which the unconditional probability is statéd. There may, of
course, be more than one question for which an uhconditional

probability is given.

COMPUTATIONAL STRATEGY

The practical feasibility of the analytical approach for
systems of large n depends on the effectiveness of methods to cope
with the potentially large dimensionality of the model. To
illustrate the potential size, a set of 100 bivariables (n = 100)
may be regarded as defining a groblem in 100-dimensional space
with a possible manifold of 2'%? or about 10°% elements. The
conditional probabilities Pgg,j that are required to compute the
set Qio0 for the set Z;oo must be defined for 299 glements. To
list all the input data for such a problem is obviously impractical,
much less to solve it by brute-force application of equation (7).
On the other hand, an analysis of a system that requires several
hundred bivariables is not an unreasonable objective.

In general, the concepts for dealing with potentially large
dimensionality all take into account features that may be expected
in a practical representation of a problem. Three useful concepts

are:
1. Implicit bivariable interdependence

2. Exploitation of a high proportion of zero entries in
the input data

3. Segmentation of a large bivariable set into loosely
coupled subsets

Each of these concepts is discussed in the following
sections.

Implicit Bivariable Interdependence

When a set S, of n bivariables has been defined, the
dependence of an arbitrary Xp in the set on the preceding bivari-
ables is completely given by equation (5), which is repeated
here:

'} = PAG = D) X By, 50 =F (2 . .
m-1,1 P {zm—1,k} m“m-1,1

(5)

)

P . =P{(Xm=1)|2

ml

- 13 -



In practice, the conditional probabilities P,; may frequently
be expected to depend on a subset K of k bivariables contained
within the set m-1, k < m-1. All possible states of the k
bivariables of K are reflected by a subset Zy within Zm-3.
Equation (5) may then appear as

Poi = Pk (k) | (8)

where the specific Xj that comprise the set K have been identified.
The first subscript m on the P and F is retained to indicate that
the mth bivariable is being considered, and the additional sub-
scripts denote that the domain of the function has been shortened
from Zm-1 to Zk. Zi; is the binary number defined by the ordered
set of the k differeht Xj, when the X values of 0 and 1 are
assigned. Thus, the subset (k =3}, X1, X5, and X9 of the set

(m-1 = 10), X1, Xz, ..., X10 will generate a sequence of binary
numbers Zsy = 0, Zsz = 1, ..., Z3g = 111. In this example, there
are eight values for Pmkj corresponding to the eight ij.

The “implicit definition of all the Ppj in equation (5) is
equivalent to an agreement to derive these values from Equation (8):
For a given set Zm-1,i (which is itself a binary number), all bits
are omitted that do not correspond to Xj in the subset K. The
remaining bits in their original order define a binary number
Zy; for which a Ppgj is defined as input data. Thus, there is one
Pyki for each of the elements in the set Zkj. The subset K may be
null, e.g., k = 0. If so, only one Pmkj is defined; viz., Pmo-

The functional dependence given in equation (8) implies that
the k bivariables upon which the probability of occurrence of Xp
depends have been explicitly listed. This explicit list is
referred to as the argument list of Xy. All indices of the
argument list must be less than m. The entire function of
equation (8) is specified by a set of 2k Py that must be provided
as input data to calculate the probability of the occurrence of
Xp. This set is referred to as the probability function set, or
simply function set, for Xp. To repeat the previous definition,
ecach of the Pj is the conditional probability that the event Xy
will occur given the occurrence of the corresponding set of events
upon which Xy is dependent.

- 14 -
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The efficiency of this concept (really a convention) 1is
apparent from the previous example. The function set for the
bivariable Xj1 is represented by

Pi1,3 = Fi1,3 (X1, Xs, Xo)

This is a set of eight values, but it serves to define all
510 = 1024 values in the full function set for Xp: implied by
equation (5).

Zero Entries

Even though all possible bivariables may not appear in the
argument lists for the respective Xj, it may be expected that
sizeable argument lists must be handled. A list of twenty to
thirty does not seem out of reason. However, an argument list of
thirty implies a function set of over a billion Pj. Fortunately,
a practical representation of such a data set will quite likely
contain a very high proportion of zeros. The high density of
zeros-may stem from two sources: (1) an accurate formulation of
the problem may truly yield a high zero density, and (2) knowledge
of the problem by the analyst may permit him to assign zeros to
many probability entries. The latter situation arises because
the analyst knows that the effect on the results of interest will
be negligible.

The following circumstances are examples of conditions that
will produce high zero densities. In the first instance, the
argument list for some bivariable X, may include ten earlier
bivariables so that the possible functipn set comprises 1024
entries. It might be known that Xy can be true only when at least
nine out of the ten bivariables in the argument list have the
value 1 (yes). In this case, there would be only eleven nonzero
entries in the function set of Xp. These correspond to binary
numbers of ten bits with no more than one zero bit, All other
probability entries are zero. The zero density in this case
is about 99%.

In the second instance, the analyst might know, for example,
that X; = 1, Xs = 1, and Xa = 1 in the argument list of X;1 would
certainly cause Xi1 to equal 1 or

P = F(1,1,1) = 1.0

However, he might also know that X5 and X, are so interrelated
that Xe cannot possibly occur if Xs does. The probability entry
of 1 is correct, but academic, because the corresponding simul-
taneous occurrence of Xs and Xs is impossible. The analyst then

T Lol L e e



knows that his result will be unchanged if he considers

P = F(1,1,1) = 0. In practice, the analyst may choose zero
entries for probabilities in a function set whenever he judges
the contributions of such entries to be negligible. Bivariables
may be defined and selected in such a way that the results of
the analysis provide a cross-check on a priori judgments of this
sort.

High zero density in the input data may be exploited both
in the input medium and during computation by explicitly handling
only nonzero elements. Each nonzero probability in the input
probability function sets may be associated with an identifier
derived from the binary number corresponding to it in the set of
all states of the argument list. Specification of this identifier
for a particular bivariable permits retrieval of the matching
probability; failure to find an identifier in its appropriate
array means that the corresponding probability is zero. Compu-
tational advantages are more apparent in the subsequent discussion
of the computer program.

Segmentation

The computing time for a problem with n bivariables may be
roughly proportional to the number of possible states that must
be considered; i.e., Z,, or approximately 2R. If such a problem
could somehow be reduced to the solution of two independent
problems, each comprising n/2 bivariables, the total number of
states in the two combined problems is given approximately as
2 « 2%2, In comparison with the original problem, this is a
reduction by a factor of 2™/2°!, If n is a large number, say
100, the reduction factor is indeed impressive — on the order
of 101%1 If the two problems are not completely independent
of each other so that some additional computation is required
to account for interactions between them, it is apparent that
a substantial increase in computing time for each of the separated
problems would still be more than compensated by the ability to
segment. In the example with n = 100, a reduction in computing
speed by a factor of 100 (to account for interactions) would still
yield an improvement factor of about 10'* for the segmented
problem compared to the original.

The foregoing paragraph is intended to illustrate qualitatively
the potential computational improvement that may be anticipated
for segmentation of a large problem into smaller ones. In
practical problems, the expected high zero density discussed earlier
may cause computing time for a set of n to vary more like all, where
a is a number smaller than 2 (but greater than 1). Even so, it
may be expected that considerable benefits in computing time will
accrue if segmentation is exploited.

- 16 =
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The optimum exploitation of segmentation could get to be a
complicated problem in jtself. The optimum would depend upon the
character of the typical input data to be processed. Qualitatively,
the optimum approach would be one in which the decrease in com-
puting time enabled by enhanced capability to segment is just
offset by the increased computational complexity (and time) required
to account for interactions. The interactions that are treated
in the present version of PAR are comparatively simple. If com-
puting time is of real concern in practical problems, the treatment
of more complex interactions may be justified.

To become more specific about interaction, assume & set Sy of
n bivariables has been defined, and the argument list for each
bivariable is specified. Any bivariable Xi may be considered
to generate a chain that forms a subset of Sp. The chain based
on Xj is defined as that subset of S, that includes X; and the
chains of all bivariables that contain Xi in their argument lists.
The definition of ''chain" is not circular as it might appear.
The stepwise generation of the chain from Xj is as follows: Xi
is the first element; all X's that contain Xj in their argument
lists are identified and added to the chain. Next, those Xj are
sdentified that contain within their argument lists any X
already within the chain; those Xj so identified are added
to the chain. The process is repeated until all bivariables
within the set Sp have been resolved as either in or not in the
chain of Xj. From the definition of a chain, it is apparent that
there must be at least one bivariable in a chain, and there may
be as many as n bivariables.

It is now possible to deal more precisely with interaction.
Two bivariables Xi and Xj are said to interact if, and only if,
the chains based on Xi and Xj have at least one common element.
Or conversely, Xj and Xj may be said to have mo interaction if
the intersection of their chains is null. The underlying
thought behind the interaction of bivariables 1s this: If there
is no interaction between X; and Xj, then it will not be necessary
in the ultimate solution of the problem to account for all four
possible states of the pair XjXj (00, 01, 10, 11) as they influence
either the probabilities of Xj, Xj, or any other bivariable that
depends upon them indirectly; Xj and Xj may therefore be separated
with impunity.

A calculable subset within Sp is defined as a subset that
satisfies the following requirement: Each bivariable in the subset
contains within its argument list (if any) only bivariables that
are also members of the same calculable subset. Since the indices
of bivariables in any argument list are required to be less than
the index of the bivariable jtself, at least one bivariable of a
calculable subset must have a null argument list. In other words,
the absolute, unconditional probability must be given for at least

one bivariable in a calculable subset.
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Examplés of calculable subsets are (each bivariable is
represented by its index):

Example 1
Bivariable Argument List
1 Null
2 1
3 1,2
4 1,3
10 2,3,4
Example 2
Bivariable Argument List
6 Null
7 6
8 7
9 8

The following subset is not calculable:

Bivariable Argument List
12 10,11
13 12
14 13
15 12,13,14

In the last example, the subset is not calculable because of

the presence of bivariables 10 and 11 in the argument list of 12.
No. 10 and 11 are not members of the subset, This subset may
become calculable as a result of a preceding computation of a
calculable subset that includes 10 and 11, so that the absolute
probability of No. 12 is determined.

Now assume that a calculable subset A within Sy has been
somehow selected and that the interaction of A with the remainder
of S, is to be considered. (The intent is to determine whether
the subset A may be usefully segmented from S, for computational
purposes.) Define another subset E in Sy that will be called
the set of external bivariables associated with A. An external
bivariable (by definition): (1) is not contained in A and
(2) contains within its argument list at Jeast one bivariable
that belongs to A.



1f the set of external bivariables, E, is null, then A may
obviously be segmented from the rest of S, and computed as a
separate group. The subset E could contain no bivariables only
if all chains originating within the set A also aré contained in
A; in which case A is completely independent of the remainder of
Sn.

If E is not null, there is some interaction between A and
the remainder of Sp. (Notationally not A in Sp is denoted X))
A measure of the degree of interaction between A and X can be
gained from the intersection of all chains based in E, i.e., the
intersection of all chains based on the external bivariables of
A: define this intersection as set B. A case of particular
interest is where B is null. In this case, it can readily be
shown that no pairs of chains emanating from bivariables within
A have an intersection anywhere in A except in E. If B is null,
none of the bivariables in E interact with each other. The
interaction of A with the individual bivariables of E can be
resolved when the computation for A is executed, After the
computation of subset A, the final result is:

1. Unconditional probabilities for all bivariables in A are
determined.

2. The remaining subset A is free of any residual interactions
among bivariables of A.

If B is not null, e.g., some bivariables of E interact,
computation of the calculable subset will not permit resolution
of all interactions between A and K. The bivariables of A in
argument lists of interacting members of E may mnot be disposed
of once and for all and must be treated subsequently in one or
more calculable subsets. If any members of E are isolated
{e.g., do not interact with the other members of E), it is
possible to achieve a reduction of their argument lists through
computation of A. Also, if there are members of A that do not
appear in any argument 1list of interacting members of E, those
members may be resolved; e.g., it will not be necessary to
treat them again.

Define an actionable subset as a calculable subset that has
at least one isolated external bivariable (member of E) or that
‘has one or more resolvable members.




E

The segmentation algorithm of PAR is based on the following:

1. Search the unresolved bivariables to find the actionable
subset with fewest members.

2. Compute subset; obtain unconditional probabilities for alil
subset members (if any) that may be resolved. Reduce argument
lists of isolated members of E. Go to 1.

This algorithm is based on the assumption that any progress
toward solution that may be achieved in small subset calculations
is preferred to even much greater apparent progress through compu-
tation of larger subsets. Undoubtedly more effective algorithms
could be devised, but they would require more elaborate methods
for analyzing and utilizing the special features of particular
problems. '

Return now to the reduction of argument lists of isclated
bivariables of E at the time the computation of A is carried out.
Suppose Xy is a particular isolated bivariable of E. Let the
function set for Xy be given as

P, = Fk(YA,YR) (9)

where Yp and YX denote the two subsets of Xy argument list that
contain respectively the bivariables in A and in A, The basic
procedure is to utilize the detailed state probabilities computed
for A (and therefore for Yp) to derive a new, reduced probability
function set for Xy in the form,

P, = F} (Y ’ (10)

If Y, and Yg contain p and q bivariables respective}y, then the
index "i" in equation (9) ranges over at most 2'P*9) elements,
while in (10) it ranges over at most 24. The reduction of (9)
and (10) can be expressed as

2P-1
P. = }; QFy (Y, »Yx ) = Fp(¥g ) (11)
! i j

i=o
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The notation here is a bit mixed; YAi and YX; denote
specific state combinations of bivariables in Yp dnd YX that

may be identified with binary state numbers as was done for
equation (5). The Q; are individual probabilities for the
occurrence of the possible states of Yp. For a specified ith
state of Y,, Qi may be computed as the sum of all those individual
state probabilities for A for which the specified ith state of

Y5 occurs. Since the computation of the subset A requires the
calculation of all nonzero state probabilities in A anyhow, the

Qi may be accumulated as a byproduct of the subset computation.

In the preceding discussion, interaction among bivariables
is considered to exist if there is a potential for interaction
on the basis of the prescribed argument lists. It is possible
that the specific values assigned to the function sets of
potentially interacting pivariables are such that no actual
interaction occurs. Or if interaction does numerically occur,
it may have a negligible effect on the results. It is conceivable
that methods for testing interaction against some predefined
tolerance could be incorporated in the segmentation algorithm,
but these possibilities have not been investigated.

RELATIVE CONSEQUENCES AND RISK

In the first section, the concept of relative consequence
values was introduced.

As before, in the general scheme of the model, a set S, of
n bivariables has been defined. The 2D possible states of these
bivariables can be represented by the set In of all n-digit
binary numbers. A particular member of Zn, say an, corresponds
to a particular state (or outcome) in which the status of each
bivariable is specified as either zero or one. The probability
of the anth state is Qui. Equation (2) gives the absolute or
unconditional probability that the kth bivariable will have a
yes (X, = 1) for the campaign.

2n-1
W = jZl X3 %n; (2)

If a consequence value C; is assigned to each possible state
an, then in the usual fashion, the expected consequence of the
cafmpaign, R, is defined as
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2n.1
R = Z G505 (12)
j=o '

Conceivably, the consequence function that defines C; could be any
function set with domain Z, and a range of real numbdrs. If
consequence values were to reflect both desirable and undesirable
campaign outcomes, both positive and negative Cj might be
encountered; here, however, the C; are considered to represent
only undesirable consequences and, for convenience, all Cj are
taken as positive, real numbers. A particular functional form
that permits considerable simplification is to assume that each
bivariable Xj has a consequence value Rj associated with it such
that the consequence value Cj for any state Zpj is equal to the
sum of the bivariable consequences Rj for which Xj = 1 in Zpj;

or

I

- : 13

¢ ES Xi5R; (13)
i=1

In equation (13) as before, Xj; 1is assigned the value (0 or 1) that
Xj has in the anth state. Combining equation (12) and (13) gives

2n-1
R = ES Xian
J=0
but
2n_]
Ef XQ5 = W3
J=0
therefore
n
R = ;g% WiRy (14)

Another way to state the foregoing functional dependence is
to say that the occurrence of Xi = 1 contributes a consequence
Ry to the overall consequence, regardless of the states and
consequence contributions of other bivariables. This might be
considered as a postulated independence of consequences. This
approach seems to correspond well with intuitive notions. Further,
a method is readily available to account for any interactions
among consequences for which there is a basis in judgment. For
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example, suppose a set Sn is defined and that one wishes to assign
a consequence for the simultaneous occurrence of Xj =1 and X = 1
that is greater than Rj + Rg. It is easy to add another bivariable
Xe to the set Sp so that Xg = 1 only if Xj = Xy = 1. A consequence
Re may be assigned to Xe explicitly to account for consequence
interactions of Xj and Xk. Thus the occurrence of Xj = 1 or

Xk = 1 (but not both) is represented by consequence Ry or Rk -
Simultaneous occurrence of Xj and Xx is represented by consequence
Ry + Rk * Re.

The units of consequence values must be consistent within
any analysis and among problems in which it is desired to compare
risks. 1In the PAR program, the units are arbitrary and the values
are identified as Relative Undesirable Estimates (RUE), which
must be provided as input.

PAR COMPUTER PROGRAM

The PAR computer program (Probabilistic Analysis of Risks)
is an experimental embodiment of the analytical approach previously
described. It-is at a stage where it might be usefully employed
in actual hazards analysis.

PAR is written in FORTRAN IV and will now accept up to 200
bivariables. We assume that the analyst groups his bivariable
data in a way that recognizes the segmentation logic built into
the code. Injudicious grouping could result in the definition
of a logically acceptable problem that would require prohibitive
computing time. The principal question of applicability of the
code concerns the amount of computing time required for practical
problems of interest.

The discussion of PAR is divided into sections that deal
with (1) data specification, (2) logic, and (3} input. The
output features are shown in the following section on Sample
Problem. The overall logical flow within the program is shown
as follows:
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Logical Fiow for PAR Program

[47 Read Data

)
I Write Data__J Options

!

Select Subset

Subset No

Defined
?

Yes

)

Compute Risks

Initiate
Subset and Cumulative
Computation Risks
Compute Next Write
3 Nonzero Subset Summary

State Probability

!

Assign Probability
Increments

Reduce External
Bivariables and
Reset Arrays

]
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Data Specification

The principal working arrays and mnemonics are:

Mnemonic

Description

KEV (200)
NCV (200, 32)

KSTR{200)
KDAT (200)

KHEX (3000)

PR@ST (3000)

RUE (200)

NET (200)
NIP (200)
NUP (200)

NGRP (200)

NPW(200)

NB(200)

KEV(I) is the number of bivariables in the argument
list of the Ith bivariable.

NCV(I,J) identifies the Jth bivariable in the
argument list of I. J < 1.

KSTR(I) is the address of the initial entry for
function set data in KHEX and PR@ST for the Ith
bivariable.

KDAT(I) is the number of data pairs entered in
KHEX and PRPST for the Ith bivariable, beginning at
KSTR(I).

State-identifier for argument list of I number is
formed by assigning binary bits from left to right
as 1 or 0 in accordance with the state of J in the
ascending argument list NCV(I,J).

PRQST(K) is the probability that the pertinent
bivariable is 1 (yes) if the state of its argument
list is given by KHEX(K). :

RUE(I) is the relative undesirability estimate for
the occurrence of the one-state of the 1th bivariable.

Scratch-pad arrays for developing structural
relationships.

NGRP(J) is the bivariable index of the JtN member
of the current actionable subset.

NPW(M) = 0 or 1 indicates bivariable status as
respectively unresolved or resolved.

During subset computation, the specification of
NB(1), NB(2), ..., NB(NCT) as (each) either 1 or 0
defines the current state of the actionable subset.
See Logic.
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Mnemonic Description

PMUL(200) In computing the nonzero probability PROB of a
specific subset state, PMUL(I) is the probability
that the Ith bivariable has a one-state.

PRCM (3000) PRCM(J) accumulates the probability factor that
is applied to PRPST(J). This takes place in the
reduction of external variables. See Logic.

ABSPR@(200) ABSPR@(I) is the absolute or unconditional proba-
bility that I has a one-state (yes) for the campaign.

RISK(200) At output, RISK(I) = ABSPR@(I) * RUE (1)

CURISK(200) At output, CURISK(I) is the accunulated sum of
RISK(J) for J < I.

NFAM(200) NFAM(I) = 1 denotes a family generator. See

Logic.

NCT - Number of bivariables in the current actionable
subset.

NZ@ NZ@ = 107%°; in testing for zerc in entries of the
PRPST array, any number less than 107°° is considered
as zero.

NVAR Bivariable index on input card.

NT@T Total number of bivariables defined at input.

NF@RM Specifies form of input data for a particular

bivariable, See Input.

K@PT Options for listing contents of working arrays.
See Input.
NMAX Maximum permissible subset size. Unless inten-

tionally overridden on input, NMAX is 25.

The integer function LGLAND(I,J) appears several places in
PAR. The value returned by this function is the integer constructed
by a logical AND of the corresponding binary bits of I and J.
For example;

I = 25 (binary 11001)
J = 21 (binary 10101) k
LGLAND(1,J) = 17 (binary 10001) .
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Subroutine FAM(J,NET) generates the calculable subset in
which J is the subset member of highest index. Members of the
calculable subset are designated in NET(200) as NET(I) = 1. FAM
has access to the arrays NCV and KEV through labeled COMMON /SAVE/.

Logic

The discussion of logic is intended only to give a qualitative
picture of the coding with respect to Selection of Actionable Subsets
and Subset Computation, including the Reduction of External
Bivariables.

Wherever symbols are employed that are not code mnemonics, but
which might be mistaken as such, they are introduced in quotes.

Selection of Actionable Subsets

At least one bivariable in a set defined for a problem has
the property that it does not appear in the argument list of any
other bivariable. (The bivariable of highest index in the set
always has this property.) Such bivariables are called generators.
Each generator is associated with a family, which is the calculable
subset derived from the generator. Two different families may have
bivariables in common — and, in fact — may differ only in their
generators. The significance of a family is that any pair of
bivariables interact if they belong to the same family.

It is possible to identify the isolated (if any) external
bivariables of any calculable subset by determining if a candidate
is or is not a member of some family that contains at least one
other external bivariable. A calculable subset is considered to
be actionable if at least one external bivariable is isolated.

(It is also possible for a subset to contain a single resolvable
member with no external bivariables and thereby to qualify as
actionable.)}

The next actionable subset to be computed is found by
determining that actionable subset which has the smallest number
of members. Ties are broken by selecting the actionable subset
of lowest maximum index. If the selected actionable subset contains
more than the specified NMAX number of members, the progran
terminates with a note to that effect and gives a partial summary
of results up to that point.

- 27 -
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Subset Computation

Assume that A is the current actionable subset and that it
contains NCT members. The bivariables that comprise A are ordered i
by increasing index K and identified in NGRP as NGRP(1), ...
NGRP(K), ... NGRP(NCT). The possible states of A may be represented
as the set of m-bit binary numbers Z. In the code, the role of the
binary number Z is assigned to the array NB(J). NB(1) represents
the left-most bit and NB(NCT) is the right-most; integers 0 and 1
are the only values assigned.

e

The subset computation proceeds by systematically finding
all nonzero state probabilities of A. Initially all NB are zeroed,
corresponding to the initial binary number Z = 0. The corre-
spondence between Z and NB is as follows:

Z NB(NCT) NB(NCT-1) NB(NCT-2) ...

0 0 0 0
1 1 0 0
10 0 1 0
11 1 1 0
100 0 0 1

The possible states of A are explored to find the nonzero
state probabilities by proceeding systematically through the \
sequence of Zj from 0 to 20_1 (n = NCT). The specification of a
particular Z (overall state of the subset) also determines the :
state of each bivariable argument list so that a unique probability ¢
for each bivariable can be assigned from the input data. The
probability of each Z state is the product of the individual
bivariable probabilities. Not all Z states must be considered
explicitly; since this fact is the basis for exploiting high zero
density, further amplification is in order.

For convenience, assume the potentially nonzero states are
ordered in sequence, Zi, Za, ...y Zi -reo Suppose Zj has just
been considered and it is desired to determine the next Z that
must be considered in detail. If the bits of Z are ordered 1, 2,
3, ... from the right, suppose the first nonzero bit of Zj is the
kth bit. Then there are two rules that govern the selection of
Zi+1, depending upon whether the bivariable corresponding to the
kth bit does or does not have a zero probability in state Zi. 1If
the probability is not zero, then the next state that must be
considered is Zj+1 = Zi + 1. If the probability is zero, the next .
state that must be considered 1is

Ziep = Zj + 257




ity

R

The reason for this is that the state of the argument list for
the bivariable represented by the kth bit is specified by bits of
Z; to the left of the kth bit; if this state probability is zero,
it will remain zero for all possible Z's that-have the same bits
as Zj in the kth and leftward positions. The next potentially
nonzero Z in the sequence is therefore obtained from Zj by
arithmetically inserting 1 in the kTh bit of Zj; this is the
equivalent of adding 2 -1 to Z3.

In the extreme limiting case where all input probabilities
are zero, the number of possible states that must be considered
in a subset A of m bivariables is m instead of 2m,

When a nonzero state probability for A is found and computed
as PRPB, the increment is accumulated in the array ABSPR@(I) for
all resolvable bivariables in subset A; i.e., the current value
of PRPB is added to ABSPRA(I) if I represents a resolvable
bivariable with a one-state in the current Z state for A. The
accumulated value of ABSPRA(I}, when the subset computation is
complete, is the unconditional probability that the Ith bivariable
has a value of 1 for the campaign.

Reduction of External Bivariables

The isolated external bivariables in E are prepared for
reduction as the subset computation for A proceeds. The current
value of PR@B is appropriately accumulated in PRCM(J), where J
matches the position of an entry in the array PR@ST(J) that stores
the input probability function sets for all bivariables. The
reducible members of E are found by searching NIP(I} to find those
elements tagged with integer 4. !

The reduction step may be conveniently described symbolically
as follows: Consider the probability function set for a particular
reducible member of E. Suppose it has n bivariables in its
bivariable list; let m be the number of these bivariables in A,
and k be the number in A. Make the following definitions with
respect to the bivariables of the argument list:

ZT = n-bit binary state identifier for the argument list

ZA = m-bit binary state identifier for the bivariables
in A

Zx = k-bit binary state identifier for bivariables in [y
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Zp is the binary number obtained by suppressing or ignoring the
m bits in zy related to A; Zx is the binary number similarly
derived from Z by ignoring the bits related to A. Thus for any
specific Zy there corresponds a unique pair of Zp and Zx. For
example, if the argument list is X1, Xz, X3, Xs, X10 and Xy, Xz,
and X5 are in A and if Zr = 11010,

then

101

[ |
L]

1%¥018

and

ZK = X18%0 10

The probability function set (for the particular reducible
external bivariable being considered) consists of a list of
specific Zp values (stored in KHEX), each with a corresponding
probability (stored in PR@ST). When a nonzero probability
increment PR@B has been computed for a specific state of A, say
Zi, the appropriate bits of Zj permit the specification of a Za
which may be compared with the Zp's of each function set pair
(as derived from ZT). Where a match is found for some J, PRPB
is accumulated in the corresponding PRCM(J) position. When the
subset computation is finished, the original function set
probabilities in the PRPST array are now modified in the reduction
step as follows:

PR@PST(J) = PRCM(J) * PR@ST(J)

The binary identifier, ZT, previously stored in KHEX (J) is
replaced by ZX. At this point, there may be several entries in
the function set that have the same KHEX values (Zx). The
function set is scanned to find such multiple entries and to
consolidate them in a single entry; the corresponding values

of PR@ST are accumulated as a total in a matching entry. The
working arrays NCV, KEV, and KDAT are modified to reflect the
changes brought about by reduction of external variables.

In the event all bivariables in the argument list of a
reducible external bivariable J are included in the subset A, the
reduction process eliminates all bivariables from the argument
1list of J, and the single remaining entry in the PRPST array for
J represents the absolute probability of that bivariable. The
corresponding KEV(J) will become zero (corresponds to a null
argument list).
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Input

Card Card
TXEe Columns
1 1-72
2 1-5
6-10
11-15
16-20
3 1-5
6-10
11-25
26-30
31-35
36-80
3! 1-80
3n 1-25
4 1-80

Card input data are arranged as follows:

Mnemonic Format

Description

NTQT
K@PT

NMAX

KHD

NVAR

NF@RM

RUE(I)
KE
KA

NCV(I,J)

NCV(I,J)
NCV(I,J)
PRPAST

72H

I5
I5

15

IS

I5

IS

E15.5

15

I5

1115

1615
515.
16E5.2

Problem title.

Total number of bivariables.
Option specifying listing of
input data.

Maximum permissible size of sub-
set (If blank, program sets

NMAX = 25).

Specifies I/0 Format to KHEX
{see Card Type 5).

index number of bivariable
(must follow serial order I = 1,
2, 3, ... NTgT). '
Specifies card type that follows
current Card 3 or its continu-
ation. Type 4 for NFPRM = O;
Type 5 for NFORM = 1.

Relative undesirability of Ith
bivariable.

Number of bivariables in
argument list of I.

Number of data pairs for I
(needed only for NFRM = 1).
Bivariable indices in argument
list of I, monotonically
increasing order.

Continuation of 3 if needed.
Continuation of 3' if needed.

KE**2 probability entries are
expected. Sequence of entries
must track binary states of
argument list. Use as many
Type 4 cards as required.

Type 4 must follow 3 if NF@RM =
0 on 3.
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Card

Card

Type - Columns Mnemonic Format

Description

5

1-10 KHEX I10
Z10

11-15 PR@ST E5.2
etc.
thru 75

Type 5 must follow 3 if NF@RM =
1. KHEX is read as I10 if KHD =
0; KHEX is read as Z10 if KHD =
1. KHEX and PR@ST, for any pair,
represent a single argument list
state and a corresponding proba-
bility. Five pairs per card in
5(I10,E5.2) or 5(Z10,E5.2) Format
for as many cards as required to
make KA pairs (see Type 3).

Repeat Types 3/4 or 3/5 for each I until all NT@T bivariables are

listed.

Note:

Use of 7 format for entering KHEX data is especially
convenient since each number derived from an argument list
state is basically a binary number to begin with so that

conversion to hexadecimal
decimal integer.

is easier than construction of a
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Input Limitations

Maximum number of bivariables 200
(Working arrays could be redimensioned to
accommodate many more bivariables if desired.)

Maximum number of bivariables in any argument list 32
Maximum number of total pairs of entries in KHEX
‘ and PR@ST 3000
N
Options

Optional listing of initial data in the working arrays
is controlled by the value of K@PT on Card 2. Available choices

are:
K@PT Qutput List

0 For each bivariable index I, KDAT(I) and KEV(I} are
listed :

As above plus listing of NCV array

Same as 0 plus listing of KSTR and KHEX
Combine 0, 1, and 2

Combine 0, 2 plus PR@ST array

Combine 0, 1, 2 plus PR@ST

~ O N

SAMPLE PROBLEM

! ' A short sample problem is described in detail to illustrate
the application of PAR. The problem comprises a set of 25
bivariables that relate to the operation of an imaginary test
reactor. In the example, two. types of hazard are treated. The
first type has to do with the possibility of losing control of
the reactor while it is being brought to power — a startup
accident. The second type relates to a power surge accident.
Obviously a complete hazards analysis for an actual reactor
would require consideration of many more potential accidents in
much greater depth. The propositions that represent the
bivariables are intended to be illustrative of the kind that
might actually be used. However, it must be recognized that each
proposition in practice would require careful definition to avoid

’ ambiguity in the classification of possible events. The input

probability and relative undesirability data in the sample

problem are pure fiction.
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The 25 propositions that form the bivariable set are given
in order. Each proposition is intended to apply to a randomly
selected day. Thus the campaign is one day. In each ecase, the
argument list is given and the nonzero probabilities for designated
states of the argument list are shown. The state identifiers
(Arg State) are given as hexadecimal numbers.

Data
No. Bivariable Proposition Arg State Prob
1 The reactor operated.
Arg List: Null
RUE = 0 - .75
2 Departure from standard operation was
required.

Arg List: 1

RUE = 0 1 3 .10
3 There was an operating error.
Arg List: 1 2

RUE = O 1 0 2 .05
11 3 .10
4 There was a serious operating error.
Arg List: 3
RUE = O 1 1 .05

5 A startup accident occurred (SUA).
Arg List: 1 4

RUE = O 1 1 : 3 .50
6 SUA. Period meter "A" was bypassed.

Arg List: 5
RUE = O 1 : 1 .05

7 SUA. Period meter ''B" was bypassed.
Arg List: 5 6
RUE = 0 1 0 2 .05
1 1 3 .01
8 SUA. Flux monitor 'C" was bypassed.

Arg List: 5

RUE = O 1 1 .10
9 SUA. Flux monitor "D'" was bypassed.
Arg List: 5 8
RUE = ¢ 1 0 2 .10
11 3 .01
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Data

No. Bivariable Proposition Arg State  Prob
10 SUA. Flux monitor "E"” was bypassed.
Arg List: 5 8 9
RUE = O 1 0 0 4 .10
1 0 1 5 .01
1 1 0 6 .01
1 1 1 7 .001
11 SUA. Flux trip level set too high.
Arg List: 35
RUE = 0 1 1 .10
12 SUA. Reactivity addition rate exceeded
x % k per second.
Arg List: 4 5
RUE = O 0 1 1 .01
1 1 3 .10
13 SUA. Period scram failed
Arg List: 5 6 7
RUE = O 1 0 0 4 .001
1 0 1 5 .002
1 1 0 6 .002
11 1 7 1.0
14 SUA. Flux level scram failed.
Arg List: § 8 & 10
RUE = O 1 0 0 0 8 .0001
1 0 0 1 9 .0001
1 0o 1 0 A . 0001
1 0 1 1 B .01
1 1 0 0 C .0001
1 1 0 1 p .01
1 11 0 E .01
11 1 1 F 1.0
15 SUA. Some fuel was melted.
Arg List: 11 12 13 14
RUE = 1 o 0 I © 2 .001
o 0 1 1 3 .01
0 1 1 0 6 .10
o 1 1 1 7 .50
1 1 1 0 E .20
1 1 1 1 F 1.0
16 SUA. More than 10% of fuel melted.
Arg List: 12 15
RUE = 10 0 1 1 .05
1 1 3 .50
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Data

No. Bivariable Proposition Arg State _Prob
17 SUA. More than 50% of fuel melted.
Arg List: 12 16
RUE = 500 1 1 3 10
18 SUA. Reactor was disrupted.
Arg List: 17
RUE = 500 1 1 .20
19 A power surge accident occurred (PSA).
Arg List: 1 3 4
RUE = O 1 1 0 6 .01
1 1 1 7 .10
20  PSA. Temperature monitor trip level
set too high.
Arg List: 19
RUE = 0 1 1 .10
21 PSA. Temperature operating limit
in use was incorrectly high.
Arg List: 19 20
RUE = 0 1 0 2 .10
1 1 3 .50
22 PSA. Unwanted control rod motion
occurred.
Arg List: 18
RUE = O 1 1 .10
23 PSA. Temperature monitor scram failed.
Arg List: 19
RUE = 0 1 1 .01
24 PSA. Scome fuel melted.
Arg List: 4 20 21 22 23
RUE = 10 0 0 0 1 1 3 .20
1 ) 0 1 1 13 0
1 1 1 0 0 1C .50
1 1 0 0 ); 18 .05
1 0 i 1 0] 16 .10
0 0 0 1 0 2 .01
25 PSA., More than 10% of fuel melted.
Arg List: 4 24
RUE = 100 O 1 1 .05
3 .50

]
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Note: The inclusion of SUA or PSA in the proposition is to be
interpreted to mean that the designated accident occurred as
well as whatever is otherwise asserted by the proposition.

Appendix A shows the card input data for the problem; B, C,
D show the output listing of the data obtained with K@PT = 7 as
an option; and E summarizes the results.

If the results are taken at face value for the sample problem,
the risk of melting fuel via a power surge accident far outweighs
the risk from a startup accident. The largest single contribution
to the total risk is the risk of No. 25: that over 10% of the fuel
might be melted in a power surge accident. The probability of such
an accident on a randomly selected day is computed as 2.7 x 1077,
Presumably if the operating characteristics, administrative
policies, and instrumentation remained the same for an indefinite
period so that the input data continued to apply, one could expect
such an accident to occur with a mean-time-between-failure of about
1000 years.

Some points in connection with the sample problem are discussed
in the following:

Selection of Bivariable Propositions

It should be evident that there is a great deal of freedom
in the selection of propositions. Obviously there is no single,
unique way to go about it. The important factors to keep in mind
are:

1. Pertinence of propositions to the dbjective of the analysis
2. Nature of the available data

3. Structure of the bivariable set to facilitate computation

Assignment of Relative Undesirability Estimates (RUE)

In the example, RUE values were taken as zero for all
bivariables except those that involve actual damage to the fuel
or to the reactor. Where nonzero RUE values were assigned, the
magnitudes were intentionally selected to reflect possible
influences of subjectivity in judging consequences. For instance,
RUE for melting more than 10% of the fuel in a startup accident
(16) is 10; the RUE value for melting more than 50% of the fuel
in a startup accident is 500. The gross nonlinearity is meant
to reflect a possible judgment that the larger accident is a
great deal more serious than is reflected by the amount of fuel
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melted. Also for 10% or greater melting, the RUE for the power
surge accident is ten times that for the startup accident; this
might reflect the presence of a fission product inventory in the
former accident. '

Interpretation of Argument List Data

Consider a particular proposition: say bivariable (13),
which states in full, "A startup accident occurred and the period
scram failed." The function set for the argument list indicates
conditional probabilities contingent upon the state of three
bivariables of lower index:

5. A startup accident occurred (SUA).
6. SUA. Period Meter A was bypassed.

7. SUA. Period Meter B was bypassed.

Obviously (13) can't be true if (5) is false, so all probabilities
associated with the argument list states that have a zero-state
(false) for (5) must be zero — and are therefore not listed.

When neither period meter is bypassed, the probability of a scram
failure is very low: .001; this, perhaps, could be considered

the probability that the circuitry on the output side of the period
meters fails. When only one period meter is bypassed, the slightly
higher probability, .002, might reflect an additional probability '
of failure within the meter itself. (The probability of independent
failure of two meters was negligibly small compared to the .00l that
represents possible failure beyond the period meters.) Finally, if
both period meters are bypassed, the’ probability of a scram failyre

is 1.0. This implies that a startup accident is defined in such a

a way that the period scram should always be tripped. The number

that appears under "Arg State' is readily identified with the bit
configuration under the argument list; e.g., 110 in binary is 6 in
hexadecimal.

Zero Entries by Judgment

Consider proposition (24) and note that entry 11100 (Hex 1C)
is listed with a probability of 0.5. Almost certainly one would
expect the probability of melting to be at least as great or
greater for argument states 11101 (1D), 11110 (1E), and 11111
(1F). The omission of these states from the data list means they
will be considered as having zero probability. This might be .
explained as a case where the analyst judged that contributions
by these additional terms would have to be small compared to that
from the 1C term. To demonstrate the maximum effect on the
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results, the problem was rerun, but with the three additional
terms included — each with a probability of 1.0. The rerun
yielded an absolute probability of 3.3 + 10”% for (25) instead
of the original 2.7 + 10°%. The difference is indeed negligible,
and the omission of the data is justified in this case.

Segmentation

The output below the Summary of Appendix E indicates the
sample problem was solved in 5 subset calculations and that the
maximum subset size was 16. The segmentation algorithm caused
the computation to proceed as follows (refer to the listing of
the NCV array):

1. ‘The first actionable subset consisted of the ten bivariables
1, 2, 3, 4,19, 20, 21, 22, 23, and 24. External bivariables
were 5, 12, and 25. Only 25 is isolated and therefore
reducible. Bivariables 19, 20, 21, 22, 23, and 24 are
resolvable; 1, 2, 3, and 4 are not. Reduction of 25 in this
case leaves a null argument list.

2. The second actionable subset consisted of the single
bivariable 25 because its argument list is null and can be
resolved and because it is now the shortest actionable

subset.

3. "The third actionable subset consisted of the 16 bivariables
1 through 16. The only external (and therefore isolated)
bivariable is 17. 1In the computation, 1 through 16 were
resolved and 17 was reduced to a null argument list.

4. The fourth actionable subset consisted of a single
bivariablie, 17. There was a single external bivariable,
18. On computation, 17 was resolved and 18 was reduced
(to null argument list).

5. The fifth and last subset consisted of a single bivariable,
18. There were no external bivariables, but the subset
was nevertheless considered actionable because it was possible
to resolve at least one bivariable (18).

With this segmentation, the execution time on the UNIVAC
1108 and on the IBM System/360-65 was approximately 6 seconds.
In an earlier version with less powerful segmentation, the
sample problem was computed as a single subset containing
bivariables 1 through 24, with 25 as external; execution time
was 47 seconds. Although this difference in time 1s not
important for the sample problem, the improved segmentation
might make the difference between minutes and hours in the
solution of larger problems.
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APPENDIX A

Card Input Data
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APPENDIX B

Sample Problem with 25 Bivariables

Input Data
VAR  MUNBER OF CONTINGENTS ~DATA ENTRIES

1 0 1
2 1 1
3 2 2
4 1 1
5 2 1
& 1 1
7 2 2
) 1 1
9 2 2
10 3 4
11 1 1
12 F 2
13 3 4
14 4 ]
15 4 L)
16 2 2
1 2 1
18 1 1
19 3 2
20 1 1
21 2 2
22 1 1
23 1 1
24 5 6
25 2 2

APPENDIX C

NCV Array

1 L] !

2 1

5 1 2

4 3

11 1 4

6 5

7 S 6

8 -

9 5 8

10 5 & 9

11 5

12 4 5

13 5 & 7

14 5 8 9 10

15 11 12 13 14

16 12 15

17 12 16

13 17

19 1 3 4

20 - 19

21 1% 20

22 19

23 19

24 4 20 21 22 23

~
w
£y

24

- 42 -




11

21

=
=t O

[

G,75E 00
0. 10E 00
0. 20E-02
0.10E 01
4.20E 00
0.50E 00

[
O RO

0.10E 00
0.10E-0¢1
0.20E-02
0.10E-92
0.108-01
0,50E-01

LU T ISR N S

»

0.50E-01
Q. 10E 00
0.10E 01
0, 10E-01
9.10E 00
4. 10E 00

B O OO NN

0.10E 00
0. 10E-01
0.10E-03
0.10E 00
0.10E 0O
0.1¢E-01

APPENDIX D
KSTR Array
3 3
8 10
13 20
18 41
23 48
KHEX Array
1 3
6 7
9 10
7 14
2 3
1 3

PROST Array

0.50E-01
0.10E-01
0.10E-03
0.50E 00
0.10E 00
0.50E-01

0.50E Q0
0.10E-02
0.10E-03
0.20E 00
0.S0E 00
¢.50E 00

RN

14
19
24

0.50E-01
0.10E-01
0.10E-01
0.10E 01
0.10E 00

11
24
42
49

0.50E-01
0.10E-02
0.10B.03
0.S0E-01
0.10E-D1

0.10E-01
0.10E 00
0.10E-01
0.50E 00
0.20E 00

13
32
a4
55

14
19

0.10E BO
0.10E-02"
0,10E-01
0.10E 00
0,108 01




APPENDIX E

Summary of Results

BIVAR PROB RUE RISK CUMRI SK

1 0.75E 0@ 0.0 C.0 0.0

2 0.75E-01 0.0 0.0 0.0

3 0.41E-01 0.0 0.0 0.0

4 0.21E-02 000 0-0 0.0

5 0.10E-02 0.0 0.0 0.0

6 0.52E~04 0.0 0.0 0.0

7 0.49E-04 0.0 G.0 0.0

8 0.10E-03 0.0 0.0 0.0

9 0.94E~04 0.0 0.0 0.0

10 0.B5E—04 0.0 0.0 0.0

12 0«-10E-03 0.0 0.0 0.0

13 0.16E-05 0.0 0.0 0.0

15 0.18E-07 O.10E 01l U.18BE-D7 0.18E-07
lé Q.84E~-08 Q.10 02 0.84E-07 0.10£-06
17 0.83E-09 0.50E 03 0.42E-06 Q.52E-06
18 0.17E-09 0.50E 03 0.83E-07 0.60E-06
19 0.60E-03 G.0 0.0 0.60E-06
20 0.60E-04 0.0 0.0 0.60E-06
21 0.84E-04 0.0 0.0 0.60E-006
22 0.60E-04 0.0 3.0 0.60E-06
24 Q0.58E—-05 0.10E 02. 0.58E-04 0.58E-04
25 0.27E-05 0.10E 03 0.27E-03 0.33E-03

SUBSET CALCULATIONS
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APPENDIX F

FORTRAN Listing

PROGABILISTIC AaNALYSIS UF RISKS

ADAPTED FRUM PAaRG WRITTEN 0¥ Je me CRUALH JUNE 1967
CUnTAINS MUDIFICATIUNS In LUGIC SULWESTEL oY CRUACH

AnD MOUDIF ICATIUNS 1N READ wiITt FURMATS wR I TTEN
BY Le Me ARNETT AJLUST 1369

LUMMUN/&AVEIKE!‘ZUUI-KUA?(200)|K51R(200!|NCV(200Q520'

PRUST(30U0) y RHEX (300D

C UMMUN KUt(ZOOI'NuKPlZUUl|AoSPRU(200}'NEI(ZOOJyNIP(ZUUI|

NuPtZUD).Nh(2UOJ,PMULIZUOI.CuRlS&!ZOOI.RlSK(ZOOl
C UMMUN PRCM (30000 s NFAMI 20U ) ¢ NIAL200)
REAL NZO
WiN = 5
nUUT = o
KuUP=0J
NZJ=1les0E=-30
READ {NINL1H
akITE (NOUT, 1}

1 FURMAT (72hl

2Jl
2J0

1

by 2 I=1,200
LoSPRULII=0
NFAM{ L) =0
NJPLLY=0
NIPEHI=0

Nuwi il 0
KEVLL) 4]
sOAT(I) = 0
KSTRELE = O
Du ¢ J=l,32
aCvtlsdt = 0
Uu 3 i=1,3000
PrRUSTC(IY = Q.
PriMili = Q.
KcXily = Q
REAU{NIN.&JNTUT.nuPT.uNAX.hnO

FuskMaT{Llol5}

IF {wMAX «Ede O) NMAXK = 22

@ARKN = 0 !

pu 1u L=l NTUT
k:AulNlN.?|ann.NFuaM.uuclil.&&.&A.(NLV(l.J!.J=l.9l
FurMaTi2i2+EL15e 201150

FFINCY T 9T beEdad) wuw TU 200

{FiREaLEsa9) bd TO 240

weauldlne 2000 (NCVEEdd s d=1dent}

Formaf{lols}

CunT INJE

IF{] «NEe WYAR) b TC 15

nevii) = KE

Kalrel) = MaARK + 1

IFINFURMeEWel]) wu TU 8

LiNg = 2%¥nE

KAl = MARRE]L

and = AARKRHL ENG

we il Lowlyrs) (PRUDTEIIrY = KRLaRKZ2)

FuRmATllokbSe &)

1a = 2
Ju 4 w=lyLbve
R3S = MARKHK

Ir (¢HUSTERAZ) oLTs N2u) wu TU @
1a = 1A + 1

KA 3 = MARNHLA

KtEALRAIF = K=1

e e e s . s e




KOATLL) = [a
Khé4 = MARKK+K
PRUST(RKRI) = PRUSTI(KR&)
4 CUNTINUE
LENG = A
wu TU 10
8 KDAT(L) = KA
KKl = MARK+1
KKZ2 = MARK+KA
IF{KHDeaNEL Q) WU TC 225
READ (NInge5H (RAEAIJ I o PRUST A 9D = nEklpan)
S FURMAT L51110+E5e2145X)
oy Tu 221
225 READCNENS 222 J{KHEX(J) 2PRUSTIJ) s =R R]1 KR E T
222 FURMAT{5(L104E5421454)
221 LENUEKA
10 MARK = MARK + LENL
Lu TU 20
15 wRITEANUIT, L)
16 FURMAT (// /430Xy LTHINPUT ERRURe 5STUF)
ST
LIST INPUT ULATA
20 WRITEINJUT 17}
17 FURMAT (55X, 0HINPUT UATA/55X10Hssssas=2=za)
WRITE{NUUTy 18]
18 FURMAT (//22Xs4bHVAK NUMBEK OF CunTINGENTD UATA ENTRIES/
1222 &oH=== EEE*E=STISRHASSSATSITEIS zpamzasasxaz/ )
DU 19 1=1,NTuT
19 aRITEINUSTe1é) TanbviL}ef0AT(L)
le FUKMATI(22X1[3,36413,17x15)
IFLRUPTotwaed) w TA &1
IF(LLLAND [NUPTyl babwsu) wd TJ 130
wRITE(NJIUT 120
12y FURMATY (/74554 30NV ARRAYZ/55XA,SH=sszs=saass/)
0J 122 I=1s0aTuT
: AE = KEVIL
122 wRITE(NOUT 1230 Toluwlvll o) sdslyhE)
123 FORMAT(45X1 341041614, /2dX1614)
130 IFALoLaNDIRJPT s 2 eEweVl Lo Td 2}
w1l TEINGUT ¢y 1314
131 FuURMATY (/77:55X,10HKSTH AKRAY/55X,10n22=z3z=z25/]
Ak ITEANOUT 1320 (L4 KSTRUL )y i=1NTOT)
132 FuRMATI(S110413,1100)
wRITELNUUT 41 33)
133 FURMAT (/7 425K 10OHKHEA ARRAY/553A,10H==23s=s==3=/)
ARITE INUJIT ¢ 1 301 (KHEKIJ!vJ=1'HAKKJ
134 FuRMAT (54,10112)
[FleoLANDIRUPT yotebweul) wu Tu 21
wriTelnauT 1430
143 FURMAT (/7 ,55%911HPRUST ARRAY/S59Asllhss=zs=ss===/)
wRITEINUUT gld) (PRISTIJ) yu=1yMARK)
las FUrRMAT{SKsluEl2e 3]
INITLATE SuwssteT CuMmruTaTiun
21 CunTIiNuik
nCALC=0
MaX3up=1
JuP=ENTUOT
500 BJ 601 [=1.dupP
d=JUP=1+1
IFINUP{J)aNELY]l LU Tu oull
NFaMLJ} =1
oJ Tu 003



<

[l o

601
603

604

25

27

30

32

33
40

42
41
4o

50

CONTINUE
wl TO 25
Jub = 4
CALL FAM{JUP yNIP)
LU 604 T=1:NTUT
IFI(NIPLI)sEdeld NUP(TII=]
CUNT INUE
LU TO &00

NFAM=]1 MAKKS FAMILY GENERATOURS
NLO = 10000
IT=NTUT
LAST =0
KAN=O

SELECT TRIAL SULMET wlTrn MAX InCEX KAN

KANSKAN + 1
IF{RANGLESNTUT) Gu Tu 30
IF INLUeEws 10000} GU Ty 100
wld TU 55
IFiRUW{RAN] oEie 1) LU TU 27
DO 32 1=1,NTJT
NIPLTI) =V
CALL FAM{KANNET)

CALCULABLE SUBSET LS WOw INUICATED BY NET Ew le

SUBSET BASED UN KANe TEST Tu SEE IF ACTIUNABLE
NCT =0
NAK=1
00 &0 [=),,NTOT
IF (NET(I) oEde 1) NCT =NCTel
IF (NET(L) +BEde 1) LU TU 4V
IF (NUWLI) efwe 1) LO TJ 40
WNUM=KEVLL)
IF (NUM oEWe U1 LU Tu %0
Dy 33 J=l,hNuM
KA = NOvilyeJd)
LFINET{nA] otwe 1) NETLII=Z
IF{KANg EWe KA NAKR=Q
CunT I NUE
CUNT INuE

EATERNAL MEMDERS ARE NETV=2
IF (nCT eioEe NLU e BNDe LAST «Eue J) wuw TJ 27
DU 48 1=1yNTUT
IF (NFAM{E} ente 1) wu TU 48
CaLk FaMilNUP)
sILL =0
00 41 J=1,NTUT
IFINET{JIenEal) LU TU 41
IF‘NUP‘JIQNEoli wlu Tu 41
KILLl=nlie+l
[FIRILL olLEe llou TU «2
NIP{JRUL) =2
niPtul = 2
JRUL = J
CanT Inut
CUNTINUE
MUK = O
Uy 50 I =1l,nTUT
IfF (NETLL) oNEe 20 WD Tu 50
[F (NIPLL)E oEde 2) LU TU 20
NIPLL =4
NuR=1
CUNTINUE
I[¥ (vuR otwe 1) GU TL 54

.- 47 -
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o600

o000

FF {NAK oEwe 11 GL TU 54
SUBSET NJT ACTIUNABLE. LUOP AGAIN
eu TO 27
CANDLUATEe CUUNT HMEMUERS AS wiT
Su IFINCTeEwel) GU TU b0
IF{LAST oEde 1) GL TU 60
Savt wiT AS NLO LE BT IS5 LOWEST YET FUUND
IF{NCT ouEe LD GO Ty 27
NLY SNCT
IT = nAN
Gu Tu 27
55 LAST = 1
KanN = [T
eu Tu 30
SUBYET uF LUAWEST INUEX KAN wlTH NCT
MEMBERS NUW TU bE LuMPUTED. MEMBERS ARE wIVEN AS NET EJUAL l.
INSTALL IN NGRP
&0 NGRUP=(Q
DO 62 I=1)KAN
TFINET{I) oNEel) LU TO 62
NURUP=NGRUP #]
NoRP (NGRUP) = |
62 CUNTINJE
1DENTIFY In NIP THE FULLUwlNG CUuES
NIP =0 [GNURE
NIP =] UNRESUOLVAbLE
NLP =2 IHRREUVCIOLE
NIP =3 RESULVAGLE
NIP =4 REDULIGLE
NO=Q
DO 65 I= LyNEQT
IFINIP{I)Ede®) GU TO 65
IFANET {1 )eEdel ) GL TU 65
IF (NUwil)eEWeld GU TO &5
NuM=KEV{I}
NIP(L}=0
[FINUMsEWs0i GO TO b5
DO 66 J=1,NuUM
NASNCY(Iyd )
LF (NET(NX}I«NEsl} GO TU 66
IFINCY (Lo JieGTeNU} NO=NCYILJ)
66 CUNT IyJE
65 CunTINUE
DU 67 J=l4NCT
KASNORP(J )
IFINALLEsNUL WU TU b8
NIP{KRA)=3
GO0 TU 67
b8 NIPIKA} = 1
67 CONTINJE
CALCULATE SVUBSET PrJJABILITIES
IFINCT oLEa NMAXY GG TU 810
WRITE (NJUT,612) NCT,nMAX
ol2 FURMAT (/734X 14nSUBSET SILE UF 1341 Ks28HEXCEEUS MAXIMUM SPECIFIED
1 AS13,/734X 30nTERMINATE wITh PAKT AL SUMMARY,//)
wu 10 100
oty NCALL = nCALC+L
IF (NCT suTe MAXSuUB) MAASUD = NCT
nulP 3 WCT
U 347 [zl enupP
MENgRE ([}
NET{M) =]

- 48 -
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347

349
3eb
3695

367

368

309

370

340

3159

352
355
3600
3sl

de3

371

3

NBl(i) = O

k=1

GU TU 344

LA = KUV

Lr (nsiiLA) «Ede WIGU TUu 367
Nu{LA) = 0

MaNGRP{LA)

NETIMI=0

LA=LA-1

IF(LALLT&L) GU T 375
bl TU 365

Na(LA)Y = 1

M = NerRP{ILAI

NET({MI=1

NUM = KEV{M)

JA = NSTRIM)

J o= JA

li'“\d‘Jf“oEdlU‘ od TL EYAY]
L =0

DJ 308 4 = 1 g NUM

Lty = NCviMyd)

LE (NET(LU) ebwe 1} L = Le2¥*inuM-Jdi

LUNTINUE

JY = JXx + KDAT(M) -1

DU 369 Jd=JdArdY
IFILeEwaXdbEX (I} LU Tu 370
CUNT I iNUE

Lu TJ deo

PMUL{LA) = PROSTLWI
IF{LAsCwenUP} LU TO 30l
K = LA + 1

VU 360 [=KynupP

ULl = 1le0

M o= NekPLL)

NUM = RiEY (M)

JA = KRETR(M)

JoB IR

IFi{NUMeCuieO) Wi TU 355
L =0

DO 350 Jd=1lyNuM

Lu = nNCViMyu

IF tnETiLuteEwe 1) L = LedER(NUM=J)

CunT Inue

JY = Jdx + KUATLMI = L
JU 352 u=JdAaJdY
IF({LeEdenAdcAldl) Lu Ty 35
CunT INULE

pu Tu 369

PMULLTL} = 1ls = PRLIT( U
CUNT I NUE

PRUOW = 1.0

Ou 363 1=lynupr

Prio = PROp®PMUL (1}

VU 385 I=Llealul
IF(NEPIilebLEs 1} LU Tu 385
IF(NIPLT}eNEs 3} &0 T2 371
IFINET(l)etws U} LU TU 3d3
ABSPRULL) = ABSPRULUL)+PRJL
ol To 385

KX = KSTROIL}

KY = ka + RUDATLL) =1

Asoslun FROBASILITY LuwlrCAENTS



375
80

362

385

ars

191

409
410
4ub

@l5
4ll

NUM = KEVLII])

LuUOs = 0

Jo = 0

DU 374 J=l,NUM

LU = NCvill,ui

IF{LUewTe KAN) wu TO 38O
IFINIP({LU)eEwe 01 LU TU 370
JUT = 2%x(nNuM=J]

JB=JH+I0T

IF (NET{LU)eEBwe D) wu TL 37B
LUUK=LLUK + JUT

CUNTINUE

DU 382 L=RXKY

JA = AneEX(L)
JCELOLANDE JA s Ju
IFlJCeNEsLUJK) LU TU 382
PRLMIL) = PRCMIL) ¢ PRUD
CunT INUVE

CUNTINUE

LU TU 349

CunsULIDATE RHEX ANL PRUST AKRAYDS

KESET KEvy RUDAT ANuU NLV
DU 395 1 = 1 ¢nTuT
1FINIPLL) «Ewe 31} nowllit =1
IFINIPLI) enke &} WL TU 395
JX =RSTRALT)
JY = JX ¢ KUATULI)Y = 1
NuM = KEviLL)
Ou 391 4 = 1gluM
LU = NCvilpd)
FRINIP{LU) oNte O} NCV{lsd} = O
LUNTINUE
UU @05 L=JAyJY
PrUSTIL) = PRUSTLLI%PROMIL)

PRUMIL =

JA = RBcAlL)

Jo = 1

Ji = 1

Ju =9 '

bu 410 Ju=1lymum

LA = NUM=J+]

l|‘ ‘NCV‘IQLA'.EH. b U I'J ‘tio
IF (LulAnulJAydllaEwed) wu T 45
JuUuEgo+do

Jbsg*Jdo

JL=2%4C

aAtAlL) = JJ

LA=ivyM

L=0

DU «11 J=lypmud

LFINCVILgd) stwe C) Ly Tu @lo
L=l+1

NOVELlald = nlvileud

LGuw TU 411

LA=sLA~]

CUNT INUE

Kevili=sLa

DU 280 J = JRraY

LE (PRUST U obTe NIu) wo TJ 382
LA = KrcXiad

IF (J eEwe JY) ou Tu 3dg

Jn = J + 1




DU 369 JA=JweuY
iF (PRUSTIJA) oLTe wiU) WU TU 3B9
LFiRHEALJAJsmbaLA) wu Tu 38Y
PRUST (a1 = PRUSTI) ¢ PRUST (JA)
PrRUSTLUA) = Oa
KAEX(JA) = O
duy LuNTiINYE
394 CunTINUE
Lm = L
Ua 390 Jd=ake JY
LE (PRUST Lol oLTe weuld wu Tu 390
La = LA + 1
A3 = JK ¢ LA -]
PROSTINRK 3 = PRSTLGL
RHEXALRKI) = KtEa{gi
390 CONTiLINUE
NDAT{1} = LA
lF{LAsEwe Ui nwal(l) = 1
395 CunTlidE
COMPUTAT [un UF SJYL2ET COMPLETE
LOUM BALR FUr NEAT sJbaET
bu T 25
CuMPdTE KISnS and TuTal
Lag sum = O
LEAREVINTUT ) evee0) WU Ty 162
MERSTRINTOT)
ABSPRULNTUT t =PRIST( M}
102 0O lud t=1enTuf
RISKild = RuE{li®aasSee0ild
Sum = Sum ¢ RaSad L
103 CurisdSntll = sSuM
wRITE Reoulls
ARITEINUUT 51054

1U5 FJRMAT (/7 455K THSUMMAKY /554y TH===2222}
AR ITEUNJUT 10T

107 FURMAT(// 3aR 0% lVAR PRUD wuE KN Cudnlsn/
13ex, YGH=====s ===z =z =% === s=zzza3/f)

LU 1190 1=1,ynTJT

110 wriTE(huUTluyd l.ADaPRU(lldeF(li-Kle(IluCquan(ll

Loy FURMAT(33-‘|l3"")’\|E11.”".‘“‘.E3.2’2A'E&.2|3x'E502’
WRITEANOUT 3111 )NCALCy MAXDUD

111 FURMAT (//734Xy1305UBSET CALCULAT Lundslbelukel3nmia dleE auwsaET.13)
>»TJP ! .
END




32

35

39
33
49

SUBRUUT INE FAM FUR PAR®

SUBKUUTINE FAM{KANGNET)
CUMMUN/SAVE/REVEIZ00 1, KADATLZQU 4R >
1PRUSTL3VJ0) pAHEX( 3000
INTEGER NETU(200)

vu 32 I=1,200

NET(I b=4

NET(KAN)=1

NUM = KREVIKAN)
IFINUMeELe Q) WO Tu &0
0OUJ 35 J=lyNUM

KA = NLVIKANJ)

NETIRKRAY = 1

KANCN = nAN = 1

Uu 38 I=1l.naNDN

1A = nAN - |

IF (WET{lA)sEde 01 LU Tu 33
nJM = KEVIIA)
lFlI\UM-EH.Q‘ GU TU 34
JU 39 Jd=1lyNuM

KA = NCviiAsJ)
NET({KA)=1

CUNTINUE

RETUKN

EnND
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