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Abstract 
 
To learn the cause of intermittent radium concentrations in groundwater of Coastal Plain 

aquifers, 31 groundwater wells in South Carolina, U.S.A. were sampled for radium and 

other geochemical parameters. Sediments cored from near the well screens were also 

sampled to examine any relationship between sediment properties and radium 

concentration in the groundwater. 

 

Elevated radium concentrations only occurred in groundwater with low electrical 

conductivity and pH values below 6.3. The adsorption edge for radium on hematite – a 

major surface active mineral in these aquifers -- is at a pH value of about 6. Near this 

value, small changes in pH can result in significant adsorption or desorption of radium. In 

groundwater with initially low alkalinity, small intermittent decreases in partial pressure 

of carbon dioxide in groundwater cause decreases in pH and desorption of radium. The 

result is intermittent elevated radium concentrations.  
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1. Introduction 

Elevated natural radium concentrations in groundwater of the Upper Coastal Plain of South 

Carolina, as well as other coastal plain aquifers, are common (Edgar, 1963: Michel and 

Moore, 1980;  Michel and Cothern, 1986; Michel and Price, 1989). These concentrations 

often exceed the combined (228Ra + 226Ra) radium drinking water limit of  0.18 Bq/L (5 

pCi/L) and are of concern to a large portion of the population that obtains their drinking 

water from subsurface aquifers Zapecza and Szabo (1988). Wells that consistently exceed 

radium drinking water standards can generally be explained by local geological or 

mineralogical factors. For example, consistently elevated radium concentrations in Southeast 

Coastal Plain aquifers tend to occur near the Fall Line that separates Piedmont from Coastal 

Plain aquifers (Michel and Moore, 1980;  Zapecza and Szabo, 1988). In the South Carolina 

Coastal Plain, mineralogical factors include the presence of placer deposits containing 

monazite (Mertie, 1953) and the occurrence of uranium- and thorium-rich deposits of 

gorceixite (Ferguson et al., 1979). More difficult to explain are intermittent concentrations 

of elevated radium common to many wells of this area. Groundwater from these wells 

occasionally has elevated radium concentrations. The persistence of this in particular wells 

strongly suggests that the phenomenon is not a result of analytical or sampling error. 

Intermittent elevated radium concentrations are of concern to water supply well owners, as 

well as those responsible for monitoring waste sites for radium emissions. In addition, 

occasional elevated concentrations of other metals of environmental concern may result 

from the same mechanisms that cause intermittent radium concentrations.  
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Intermittent elevated concentrations of radium in groundwater are not adequately explained 

by mechanisms invoked to explain consistent radium concentrations. Radium derived from 

direct dissolution of radium-bearing minerals should occur at fairly consistent 

concentrations. Furthermore, at the pH values typical of coastal plain aquifers (pH>5) most 

radium-bearing minerals are sparingly soluble. Radium flux into groundwater caused by 

alpha recoil should also result in consistent radium concentrations. Likewise, these 

mechanisms would suggest that elevated radium concentrations should occur wherever there 

is an abundance of uranium- and thorium-bearing minerals. However, this does not seem to 

be the case. Hence, the mechanism of intermittent radium occurrence must be more 

complicated and involve factors that vary with time. 

 

In this study we analyzed groundwater samples from 31 background wells on or near the 

Savannah River Site (Figure 1) for 226Ra, 228Ra, and other geochemical parameters. The 

Savannah River Site is a large nuclear facility operated by the United States Department of 

Energy. Because of the history of nuclear processing at this site, it is important to understand 

all radionuclide occurrences in groundwater, including those that are natural. The wells 

sampled for this study were installed specifically to monitor groundwater composition in 

uncontaminated areas for comparison to groundwater in contaminant plumes. Each of the 

wells is screened to monitor the top or bottom of a major aquifer. The 31 wells sampled 

cover all of the major aquifers in the area. Several municipal water supplies in the vicinity 

have had problems with intermittent radium concentrations, and groundwater sampled for 

this study is representative of that tapped by these systems. 
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2.0 Methods 

The wells sampled have dedicated single or variable speed submersible pumps.  Before 

sampling, each well was purged in excess of two well volumes until field parameters 

stabilized.  A YSI Series 6 Water Quality Logging system with a flow through cell was 

used to measure water quality parameters, which included pH, conductivity, temperature, 

oxidation-reduction potential (ORP), and dissolved oxygen.  A DRT-15 turbidimeter 

provided measurements of turbidity.  Water samples collected for cation, anion, and 

radium analyses were filtered using in-line 0.45 micron filters. 

 

3M Co. Empore™ RAD solid phase extraction (SPE) disks were used to concentrate 

radium from well water samples prior to quantification of the 226Ra and 228Ra by high 

resolution gamma-ray spectrometry.  This served to concentrate the radium from a large 

volume sample (~1.8 liters) onto a 47mm SPE disk for a more efficient counting 

geometry.  The SPE disks are composed of 90% by weight elemental specific resin beads, 

with the balance being Teflon microfibrals.  To prepare a sample the disk was placed on a 

vacuum flask and the aqueous sample pulled through the disk at a flow rate of up to 300 

mL per minute Beals et al. (2001).  Barium-133 was added as a yield monitor although 

radium is generally quantitatively retained by the disk under most conditions. The disks 

were then counted in the Underground Counting Facility using a high purity germanium 

(HPGe) well-type gamma-ray spectrometer.    

 

Samples for cation analyses were preserved with nitric acid and analyzed by inductively 

coupled plasma atomic emission spectroscopy (ICP-AES), Varian Vista AX  
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Simultaneous ICP-AES.  Unacidified samples were analyzed for anions using a Dionex 

DX500 ion chromatograph.  

 

Sediment samples for heavy mineral separation, bulk geochemical, and grain size analysis 

came from archived geologic cores from locations of sampled wells.  Sediment was 

collected from cores either above or at the same depths as the screen zones for nine of the 

monitoring wells. Mineralogical analysis was conducted using a Siemen D500 automated 

diffractometer in addition to optical microscopy.  Density separations were used to 

concentrate heavy minerals for analysis. Analyses were done using optical microscopy, 

scanning electron microscopy with energy dispersive spectrometry, and x-ray diffraction.  

 

Geochemical calculations were done using the United States Geological Survey program 

PHREEQC (Parkhurst, 1995). The radium adsorption curves were generated assuming an 

aquifer with 1 wt. % hematite as the dominant surface reactive mineral. It was further 

assumed that only 60% of the hematite surface was available for reaction. Surface 

complexation parameters were extrapolated from those for barium and strontium presented 

in Dzombak and Morel (1990) and the specific surface area used was 29 m2/g Fokkink, et al. 

(1986).   

 

3.0 Results 

Results presented in Table 1 show that of the 31 wells sampled, 228Ra was detected in 15 and 

226Ra was detected in 8. Only 1 well exceeded the combined radium standard of  0.18 Bq/L 

(5 pCi/L), though 3 additional wells exceeded 0.11 Bq/L (3 pCi/L) combined radium. The 
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low calcium and magnesium concentrations, as well as the low carbonate alkalinity indicate 

that the aquifers from which the groundwater is derived are predominantly silicate aquifers 

with little influence from carbonate minerals. This is consistent with the known geology of 

the area. 

3.1 Relation of Radium Concentrations to Sediment Properties 

Relationships between chemical components in groundwater and physical properties of 

aquifers are common. Michel and Cothern (1986) found correlations of radium 

concentrations with aquifer rock type. The aquifers we sampled were all sandy coastal plain 

aquifers, and thus such analysis was not possible. However, we did analyze grain-size 

distribution and abundance of heavy minerals in aquifer material from cores taken when the 

wells were installed. The grain-size distribution is important because fine- grained sediments 

adsorb more radium than coarse sediments. Thus, fine-grained sediments can be a sink for 

radium and remove it from groundwater. Conversely, if conditions change to mobilize 

radium, fine sediments may release more to groundwater than coarse-grained sediments. 

Heavy mineral content of the sediments is also important because the heavy mineral fraction 

typically contains more uranium and thorium than the non-heavy fraction and can, thus, be a 

source of radium.  

 

The solid samples analyzed were from the same elevations as the screen zones of the wells, 

often with multiple samples from each screen zone interval. These analyses were only done 

for wells with detectable radium concentrations in groundwater and results are shown in 

Table 2. The aquifers are dominated by coarse to medium sand, with the silt plus clay 

fraction ranging up to 16 wt.%.  The mean wt.% of heavy minerals is 1.74 and the range is 
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from 0.15 to 8.45. The highest value may be the result of inclusion of several rock fragments 

in the heavy mineral fraction. The mineralogy of the heavy minerals was dominated by 

tourmaline, staurolite, and rutile, with minor amounts of zircon and garnet. The presence of 

monazite was confirmed in 1 sample. Despite the potential importance of these factors, no 

definitive relationships between them and radium concentrations were observed. These 

relationships may truly not exist or their absence may be an artifact of the small number of 

samples analyzed for heavy minerals. 

 

3.2 Relation of Radium Concentrations to Groundwater Composition 

None of the geochemical relationships observed in systems with consistent elevated radium 

concentrations are present in this system. Several investigators have observed a positive 

correlation between total dissolved solids and radium concentrations (Herczeg, et al., 1988; 

Sidhu and Breithart, 1998;  Sturchio et al., 2001). This is not true for the groundwater we 

analyzed, but this groundwater had much lower total dissolved solids than other studies. 

Others have also observed that radium behaves similarly to other alkali earths such as 

barium, strontium, and calcium (Sturchio et al., 2001). Yet, in the groundwaters we analyzed 

there is no correlation between concentrations of these metals and radium. 

 

Nevertheless, there are relationships between radium concentrations and other parameters. 

Figure 2 illustrates that elevated radium concentrations only occur at pH values below about 

6.3. Likewise, elevated radium concentrations only occur at low electrical conductivities 

(Figure 3). The relatively high detection limits for the radium analysis method tend to 
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obscure these relationships somewhat, but when detectable radium is differentiated from non-

detectable the relationships are much clearer. 

 

4.0 Discussion 

The relationship between radium concentrations and conductivities is a reflection of a 

relationship between carbonate alkalinity and radium concentration. The anion suite in most 

Savannah River Site groundwater is dominated by bicarbonate ion (Strom and Kaback ,1992) 

which is a major contributor of electrical conductivity. Figure 4 is a plot of SRS groundwater 

analyses from Strom and Kaback (1992) illustrating that carbonate alkalinity is strongly 

correlated to electrical conductivity. Analyses from our study are also plotted in Figure 4 

showing a similar trend.  

 

These results are most consistent with adsorption controlling the behavior of radium in the 

aquifers sampled. Figure 5 is a calculated curve showing adsorption of radium on hematite 

versus pH. The adsorption edge is at a pH value of about 5.8, meaning that small deviations 

in pH near this value can result in large changes in amount of radium adsorbed. This is 

consistent with experimental results of Beneš et al. (1984). The adsorption edge depends, in 

part, on the amount of the surface reactive mineral in the aquifer. The dotted lines in Figure 5 

show the variation from 70.5 to 23.5 grams of hematite. Most of the pH values of 

groundwater sampled are between 5.5 and 7.0, very close to the adsorption edge. Thus, 

intermittent decreases in pH could cause intermittent elevated radium concentrations from 

desorption of radium on surfaces of aquifer minerals. 
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In non-carbonate aquifers at relatively oxidized conditions, the strongest control on 

groundwater pH is the partial pressure of CO2 (PCO2). Figure 6 shows the effect of PCO2 on 

hydrogen ion concentration in water with different initial bicarbonate alkalinities. At low 

alkalinity there is little buffering capacity in the water and small increases in PCO2 result in 

relatively large increases in hydrogen ion activity, or decreases in pH. In the low alkalinity 

groundwater sampled, small increases in PCO2 could account for intermittent elevated 

radium concentrations. A model calculation of radium concentration in groundwater versus 

PCO2 is presented in Figure 7. At amounts of reactive hematite less than 47 g/Liter of pore 

space and PCO2 values less than 0.02 atm., small changes in PCO2 result in large changes in 

dissolved radium concentration. Thus, intermittent small increases in PCO2 could readily 

cause the intermittent elevated radium concentrations observed in coastal plain groundwater. 

Interestingly, the lack of pH buffering capacity in samples with low concentrations of fine-

grained material (e.g. hematite) results in larger pH changes with varying PCO2, and in turn, 

larger variations in radium concentration. This may explain the lack of correlation between 

grain size distribution and aqueous radium concentrations, despite the tendency for fine-

grained material to contain more radium. 

 

5.0 Conclusions 

These data suggest a conceptual model for intermittent elevated radium concentrations in 

groundwater that involves three intersecting factors. Foremost, there must be a source of 

radium. We have established that the sediments of the aquifers sampled are relatively 

enriched in heavy minerals, some of which contain elevated concentrations of uranium and 

thorium. The source minerals provide a continuous flux of radium that adsorbs to minerals in 
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the vicinity. Secondly, there must be fluctuations in pH of the groundwater, most likely 

caused by variations in PCO2. When pH drops below the adsorption edge, radium is released 

to the groundwater. Finally, to allow variations in PCO2 to cause sufficient pH changes, the 

alkalinity of the groundwater must be relatively low. When these three factors intersect near 

a monitoring or water supply well, intermittent elevated radium concentrations may occur. 
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Figure Captions 

 

Figure 1:  Location map of southeastern United States; inset shows Savannah River Site 

vicinity. Black circles on inset map show well locations. 

 

 

Figure 2:  Radium concentrations in groundwater versus pH. Closed symbols had detectable 

radium, open symbols were below the detection limit for that sample. 

 

 

Figure 3:  Radium concentrations in groundwater versus electrical conductivity. Closed 

symbols had detectable radium, open symbols were below the detection limit for that 

sample. 

 

 

Figure 4:  Electrical conductivity versus alkalinity for groundwater from the Savannah River 

Site. Closed circles are data from Strom and Kaback (1992), open squares are from this 

study. 

 

 

Figure 5:  Calculated adsorption curve for radium onto hematite. Solid line shows 

adsorption for system with 47 g hematite/L, dotted line shows adsorption for system with 

half this amount and twice this amount of hematite. 
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Figure 6:  Calculated curves of hydrogen ion concentration versus partial pressure of carbon 

dioxide (PCO2) for water with different initial concentrations of bicarbonate ion.  

 

 

Figure 7:  Calculated curves of dissolved radium versus partial pressure of carbon dioxide 

for a system that includes adsorption of radium to hematite. 
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Table 1:  Groundwater composition data from 31 wells. Gray highlights wells with radium concentrations above detection limit. 

Well Sample 
Date pH ORP Dissolved 

Oxygen
Specific 

Conductivity Turbidity 226Ra  228Ra Ca Mg Na K Fe Si Cl SO4

mV mg/L uS/cm NTU pCi/L pCi/L
C1 AIK 2378 5/19/2003 5.57 NA 9.7 20 0 <0.62 0.58 1.990 <0.004 1.24 0.330 NA 5.34 2.00 2.29
C1 AIK 2380 5/19/2003 5.99 NA 8.02 19 6 <0.8 0.45 0.240 <0.004 1.04 0.285 NA 4.44 1.82 1.14
C2 AIK 818 5/21/2003 5.69 NA 9.06 14 1 1.2 <0.58 0.324 <0.004 0.816 0.254 NA 4.25 1.68 1.00
C2 AIK 825 5/21/2003 6 NA 8.06 18 0 <1.4 0.66 1.42 0.113 1.60 0.287 NA 3.21 1.90 1.00
C3 AIK 826 5/27/2003 5.58 NA 8.63 22 6 1.9 2.3 1.19 0.073 1.48 0.654 NA 5.36 1.70 5.14
C3 AIK 845 5/27/2003 5.44 NA 8.66 28 0 6.2 6.2 2.21 <0.004 0.856 0.520 NA 4.98 1.61 7.85
FC-2C 4/15/2003 7.11 139 4.28 171 0.69 <2.5 <1.1 NA NA NA NA NA NA NA NA
FC-2D 4/15/2003 6.69 293 5.04 87 0.18 <2.2 <1.1 NA NA NA NA NA NA NA NA
P-15C 4/29/2003 5.85 149 8.62 58 4.5 <1.7 <0.8 NA NA NA NA NA NA NA NA
P-15TB 4/29/2003 6.98 -120 0.2 60 6 <2.0 <1.0 NA NA NA NA NA NA NA NA
P-16A 4/15/2003 4.9 443 9.59 17 0.34 <1.1 1.3 0.452 0.346 0.675 0.311 <0.004 2.99 1.82 1.00
P-16B 4/16/2003 4.9 402 9.3 15 0.16 <2.1 1.5 0.327 0.348 0.529 0.303 <0.004 2.67 1.97 1.00
P-16TA 4/15/2003 5.58 268.3 5.48 23 14.3 <0.9 0.72 1.01 0.102 0.704 0.347 1.07 4.17 1.55 1.00
P-16TC 4/15/2003 5.63 293 6.68 18 12.8 <2.5 <1.2 1.75 0.134 0.705 0.462 1.34 4.46 1.87 1.78
P-17TA 4/16/2003 5.37 -28 0.11 38 0.54 2.5 2.3 8.38 0.274 0.477 0.591 0.431 6.08 1.53 9.42
P-17TC 4/21/2003 6.03 -2 0.12 49 0.76 <2.5 <1.1 2.04 0.314 0.717 0.704 3.41 4.85 1.69 11.1
P-23B 4/22/2003 7 -104 0.09 157 0.34 <0.62 <0.30 4.95 1.46 2.25 4.11 2.26 5.67 1.41 12.7
P-23TA 4/23/2003 5.53 NA NA 61.1 1.14 <1.8 <0.84 1.68 0.354 3.37 3.24 3.40 5.33 1.37 12.5
P-23TC 4/22/2003 6.29 -58 0.13 70 14.7 1 0.64 38.2 0.727 1.09 1.05 0.221 7.41 2.40 10.8
P-24A 4/22/2003 9.14 216 5.22 84 1.3 <2.5 <1.1 8.38 0.204 1.54 1.31 1.54 4.46 1.54 11.7
P-24TA 4/21/2003 7.22 -225 0.05 65 6.24 <2.7 <1.1 9.06 0.431 0.631 0.950 1.27 5.66 1.92 8.67
P-24TC 4/22/2003 6.12 -25 0.11 59 0.98 <2.3 <1.1 13.8 0.216 1.24 1.16 <0.004 5.44 2.27 1.05
P-26A 4/23/2003 5.01 NA NA 35.6 0.24 <1.5 <0.72 3.23 0.476 0.637 1.09 0.798 14.1 1.82 7.4
P-26B 4/23/2003 5.92 NA NA 72.1 0.84 <2.3 <1.0 5.09 0.945 1.28 2.81 4.57 5.36 1.59 10.9
P-26TC 4/23/2003 5.84 NA NA 65.4 0.16 <1.8 <0.88 10.5 0.575 1.28 0.922 <0.004 4.22 2.39 3.39
P-28TE 4/10/2003 6.15 32 0.15 60 0.4 <2.5 <1.3 9.25 0.217 0.619 0.675 0.062 6.21 1.72 11.7
P-29B 4/8/2003 5.7 349 7.68 27 0.6 <1.3 0.69 NA NA NA NA NA NA NA NA
P-29TA 4/8/2003 5.7 251 4.87 25 11.5 1.4 0.52 0.46 0.117 0.689 0.411 3.53 4.33 2.16 1.45
P-29TD 4/9/2003 5.43 116 0.84 34 3.4 3.3 1.36 2.25 0.149 0.583 0.352 3.07 4.81 1.85 8.72
P-30TA 4/9/2003 5.56 298 5.9 20 26 <1.5 <0.42 0.401 0.026 0.679 0.36 2.15 3.9 2 1.17
P-30TC 4/10/2003 7.36 286 8.67 51 2.2 <0.36 0.25 9.01 0.014 0.802 0.349 0.071 4.18 1.78 1.28

NA -- Not Analyzed

mg/L
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Table 2:  Properties of sediment cored near groundwater wells.

coarse sand silt+clay
>0.6 mm 0.6-0.425 0.425-0.25 0.25-0.18 0.18-0.15 0.15-0.106 0.106-0.075 <0.075

P-29B 179 0.33 14.81 20.47 40.55 12.28 3.12 2.92 1.75 4.09
186 0.61 54.37 19.20 10.84 4.37 1.90 2.47 1.52 5.32
195 3.91 13.29 6.36 5.78 6.74 10.02 32.76 17.34 7.71

P-29TA Acid 656 2.28 55.41 7.53 7.34 3.28 1.74 3.28 5.02 16.41
662 0.35 61.52 10.55 13.87 5.08 1.76 2.34 1.56 3.32
676 3.08 63.15 9.96 11.75 3.39 1.20 1.59 1.39 7.57

P-29TD 403 0.63 32.88 39.81 14.81 2.12 0.96 1.73 1.54 6.15
416 8.45 68.55 12.50 6.45 2.62 1.01 1.61 1.21 6.05
425 5.50 76.08 4.90 3.92 2.35 1.18 1.76 1.96 7.84

P-23TC 575 0.86 37.52 7.54 9.48 7.54 6.58 17.41 5.80 8.12
579 0.45 80.27 6.51 3.64 2.11 1.34 3.26 0.96 1.92
587 0.22 50.63 12.87 10.76 5.49 2.53 3.80 3.16 10.76

P-16A 125 1.44 63.54 23.83 7.33 1.83 1.02 1.22 0.41 0.81
136 0.15 51.44 32.10 9.88 2.26 1.44 1.65 0.41 0.82

P-16B 76 0.68 22.43 26.34 27.37 7.61 5.97 7.61 1.23 1.44
P-16TA 616 0.34 25.68 24.32 40.08 4.86 0.78 1.17 0.78 2.33
P-24TA 955 1.76 72.06 10.60 5.59 1.93 0.77 1.35 1.35 6.36

968 0.27 12.87 17.82 43.96 15.45 3.96 2.18 0.99 2.77
P-24TC 588 1.78 42.75 27.85 17.02 3.87 1.35 1.74 1.35 4.06

Well Sample Depth Wt.% Heavy Minerals
medium sand fine sand very fine sand

Sieve Analyses  wt%
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